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We consider wave propagation in a medium with periodic variations in the permittivity, and 
we calculate changes in the shape of the wave vector surface. Conditions are found under 
which virtual Bragg rereflections give rise to flattening of this surface, i.e., k, = ko + Bk :. We 
discuss the suppression of diffraction or the focusing effect for propagation in the direction of 
flattening. 

I. INTRODUCTION 

It is well known that when the Bragg condition is satis- 
fied in a medium with periodic inhomogeneities, an effective 
pumping of energy takes place from one wave to another, 
and Bragg scattering thereby changes the mean direction of 
energy flow. If the Bragg condition is satisfied approximate- 
ly, then only virtual scattering takes place, and the relative 
amplitude of the scattered wave does not increase with dis- 
tance, but instead remains at a constant (low) level. It is 
important, however, that even this admixture changes the 
direction of the Poynting vector, and thus the direction of 
the group velocity. 

For a monochromatic wave, the direction of the group 
velocity v/lvl is normal to the wave vector surface specified 
by the equation @(k,o)  = const. In the isotropic two-di- 
mensional case, this equation gives a curvature 

k ,= (k ,2 - -k ,2 )" i~kO-kx2 /2k ,+ .  . . and v/Ivl =k/Ikl, 

i.e., the group velocity is directed along the wave vect0r.A~- 
cording to the uncertainty principle, the spread in wave vec- 
tors for a wave packet propagating in the z-direction and 
bounded in the transverse x-direction is Ak, - l/Ax. Such a 
packet will then have a spread in group velocity direction 
AB, = Av, /U = Ak, / k  - (koAx) - ' , resulting in the well 
known diffractive spreading of the packet. 

The focusing of a sound wave in a homogeneous medi- 
um is a well known effect in crystal  acoustic^,'^ with the 
surface formed by the wave vectors containing a point of 
flattening, k, = ko + Ak + Bk 4, + ... . When a wave pack- 
et propagates in this direction, variations in the group veloc- 
ity vector are of high.order in the small quantity k, . Diffrac- 
tive spreading of the packet is then suppressed; this is known 
as the focusing effect. 

In general, the presence of Bragg reflections, even if 
they are virtual, causes the wave vector and group velocity 
vector to be noncollinear. In the present paper, we investi- 
gate the possibility of obtaining a point of flattening on the 
wave-vector surface for light waves, thereby realizing the 
focusing effect, through virtual Bragg reflections from spe- 
cially prepared volume permittivity gratings. 

We give the following physical interpretation of diffrac- 
tive focusing or the suppression of diffraction (see Fig. 1 ) . A 
transversely localized wave packet is made up of a set of 
angular components. When the packet propagates in free 
space, energy outflow into x > 0 during spreading is due to 
Fourier components of the field with k, > 0. 

The virtual reflection of these Fourier components into 
waves with k, <O by the grating 1 results in their being 
"squeezed back in the z-direction. The same remark also 
applies to the original components with k, < 0, which lie 
closer to the Bragg condition for scattering into waves with 
k > 0 by grating 2. The rate of diffractive beam spreading is 
thus retarded. 

The influence of virtual (almost-Bragg) reflections on 
birefringence and gyrotropy has been examined in Ref. 5. X- 
ray diffractive focusing under multiwave diffraction condi- 
tions has been treated theoretically and detected experimen- 
tally by Kohn and  coworker^.^-^ In contrast to the case of 
current interest, real Bragg scattering processes played an 
important role in these studies, in addition to virtual pro- 
cesses. 

2. DERIVATION OF EQUATION FOR THE WAVE VECTOR 
SURFACE (DISPERSION RELATION) 

We consider a monochromatic wave of frequency w in 
the two-dimensional (x,z) space. We start with the Helm- 
holtz wave equation for the scalar field E(x,z) with a spatial- 
ly inhomogeneous permittivity ~ ( x , z ) ,  or equivalently, with 
the wave number (w/c). (E(X,Z))"~: 

where a(x,z)  = ~ E ( X , Z ) / E ~ ,  a =a* ,  la1 < 1. The quantity 
k = (w/c)E;'~ is the wave number in a medium with uniform 
permittivity E, = E,*. 

We take the perturbation a(x,z) to be a sum of two 

FIG. 1: Schematic representation, for diffractive focusing, of wave vectors 
k and k for an incident wave and virtual reflection and periodic inhomo- 
geneities in a medium. 
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sinusoidal gratings: 

where the grating wave vectors are Q, = (Q,,,Q,,), 
r = ( x , z ) .  In the zeroth approximation, the wave of interest 
is of the form 

E (x, z)=Eo exp (ipr), Ipl =k. (3)  

In first-order perturbation theory, the scattering of the 
wave (3)  by the inhomogeneities (2)  leads to excitation of 
the virtual waves 

E (x, z) = Eo exp (ipr) +  ex^ [ i (p+Q) r]  
i 

From Eq. ( 1 ), we then have 

In next order, the waves ( 5 ) scattered by the perturbations 
(2)  give components of the form exp[(p + Q, f Q, )r] .  
Whenj = m, there is among these a coherent contribution to 
the original wave field. Requiring that there be no resonant 
build-up of the original w a ~ e , ~ , ' ~  we can derive an improved 
equation for the wave vector p: 

+ ] } E~ exp (ipr) = 0, ,=, (Q-p)'-kZ (Q+p) '-k2 

(6)  
where we have assumed la, I = Ia,l for definiteness. We now 
seek a solution of (6),  expressing p in the form 

and assuming Ip, I <k, i.e., assuming that the beams propa- 
gate essentially in the z-direction. We solve Eq. (6) in the 
sense of finding a value of p, for given p, . Let the wave 
vectors Q ,  and Q, be symmetric relative to the z-direction: 

IQiI=IQZI=Q=2k(l+A), 
( 8 )  

Qiz=Qz1=Q cos 9, Qix=-Q2x=Q sin rp 

(see Fig. 2).  An almost-Bragg interaction can take place, in 
particular, if we simultaneously have I A 1 < 1, p < 1; this is in 
fact the case we consider. The second denominator in (6)  
can then be neglected (i.e., the E '+' waves are only weakly 
excited), and Eq. (6)  takes the form 

where p, = + p,  p2 = - p,  p > 0. We have assumed here 
that A + p 2/2 #O, SO that there is no Bragg scattering when 

FIG. 2. The dashed line indicates the wave vector surface p: + p: = k 
for a uniform medium, i.e., the Ewald sphere. The wave vector surfaces 
are modified in a medium with lattices exp( + iQ,,,r); the solid curve 
indicates the branch of the dispersion curve containing the point of flat- 
tening in thez-direction for the case of interest; the dotted curve shows the 
other branch of the dispersion curve. 

the wave interacts with a periodic medium. In writing (9), 
we have omitted all-high order terms in p and A and their 
derivatives, as well as terms of order (Sp, ) 2. 

3. SOLUTION OF THE DISPERSION EQUATION 

Although we are interested in the dependence ofSp, on 
p,, let us first consider Eq. (9)  for Sp, withp, = 0: 

the roots of which are 

We are interested in those solutions which in the absence of a 
grating ( la/ -O), give Sp, = 0; this corresponds to choosing 
the minus sign preceding the square root in ( 1 1 ) . It can be 
seen from (11) that when I (A+p2 /2 ) I<1  and la1241 
hold, terms involving (Sp, )' in the derivation of Eq. (9)  can 
in fact be neglected. When the grating is strong enough, with 
la 1 > 2 (A + p '/2) 2, Bragg reflection becomes so strong 
that wave propagation in the z-direction becomes impossi- 
ble. The quantity Sp, becomes complex, corresponding to 
entry into the forbidden region. We consider the case 
laI2 < 2(A + p 2/2)2, i.e., the allowed region. 

Starting with the root (Sp, ),, we can find the correction 
for p, # O  from ( 11 ) with p, = 0. By summetry, Sp, is an 
even function ofp, . From (9) ,  we have 

We have introduced the following notation in ( 12) for the 
dimensionless quantities t and Y. 

It is important to notice that there are no terms of orderp: in 
(12) because of the symmetry of the problem. For Ial-0 
and fixed A and p,  we find y + 1, which is responsible for the 

437 Sov. Phys. JETP 65 (3), March 1987 6.  Y. Zel'dovich and T. V. Yakovleva 437 



parabolic expansion 6p, =. -p:/2k of the equation for the 
neighborhood p: + p: = k '. 

4. SUPPRESSION OF DIFFRACTION 

We are interested in the possibility of obtaining a point 
of flattening on the wave vector surface withp, = 0, corre- 
sponding to y(t,Y) = 0. Figure 3 shows the plane in t, Y2 
coordinates. Below the solid curve, Bragg scattering is not 
strong enough to suppress diffraction. The curve correponds 
to the solution of the equation y ( Y ',t) = 0. i.e., 

Above the solid curve, we have overcompensation, i.e., the 
x-components of the group velocity and wave vector have 
opposite signs.The forbidden region corresponds to Y > 1 
(to the right of the dashed line). 

We may also solve the analogous three-dimensional 
problem. We assume that there are two pairs of gratings 
(Ql,Q2) and (Q,,Q,), with wave vectors in the (x,z) and 
(y,z) planes respectively, and that these are symmetrically 
oriented about the z-axis; the amplitudes are pairwise equal: 
la,l = la21,1a31 = Ia41. We also assume that the Bragg de- 
tuning is the same for both, D = p :/2 + A, = p :/2 + A,. 
If we then introduce the quantities 

we obtain for the wave vector surface 

1 
p.  (pJ = coust + - (pxp ,2+p ,p ,2 ) ,  YZ=  Y12+Y32( 

2 

It is interesting to note that the presence of just one pair of 
gratings (for example, in the (x,z) plane: Y, #O, Y, = 0)  
reduces 10, I, i.e., it flattens the intersection of the wave vec- 
tor surface with the planep, = 0, but it increases the curva- 
ture of its intersection with the orthogonal planep, = 0. The 
condition for surface flattening at the point p, =p, = 0 
takes the form 0, =P, = 0. In the totally symmetric case 
t, = t,, Y, = Y,, this condition takes the form 

(see Fig. 3b). 
Let us make some numerical estimates. We take 

~ ~ 0 . 2 8  rad- 14" and AZ lop2. Then for the two-dimen- 
sional problem, t = 0.8, Y ' ~ 0 . 5 ,  and JaJ -- 5. lo-'. For 
beams with a total angular spread of 28,-p-0.14 rad, the 
Fresnel distance is il /(28,)'- 50 at a wavelength of /Z - 1 

FIG. 3. Plots of parameter values Y,t for which a point of flattening oc- 
curs: a )  two-dimensional problem; b) three-dimensional problem. 

pm. Thus, in the example considered, diffraction suppres- 
sion shows up at distances greater than or of order 50 pm. 

These estimates indicate that near a Bragg resonance, 
even relatively weak amplitude gratings can markedly sup- 
press diffraction, or give rise to diffractive focusing. 

The calculation of fourth-order terms in p, remains 
outside the scope of the present discussion. Moreover, calcu- 
lations have shown that flattening takes place when the am- 
plitude of the virtual waves is of the order of that of the main 
wave. Under these conditions, an initial incident wave gener- 
ally excites both of the solutions corresponding to the two 
eigenvalues (p, ) ,,, of ( 1 1 ) . This is the basis for believing 
that diffraction will be enhanced for the second wave, and at 
sufficiently large distances, the amplitude of the first wave 
will dominate near the axis. 

The temporal analog of the present problem is of great 
interest, specifically the inhibition of temporal pulse spread- 
ing in a single-mode fiber due to virtual Bragg scattering 
from a specially prepared grating. 

The authors thank V. V. Shkunov for discussions. 

'L. A. Chernozatonskii and V. V. Novicov, Sol. St. Comm. 51, 643 
(1984). 

'B. Taylor, H. Maris, and C. Elboum, Phys. Rev. Lett. 23,416 (1969). 
'B. Taylor, H. Maris, and C. Elboum, Phys. Rev. B 3, 1462 (1971). 
4W. Philip Jr. and K. S. Viswanathan, Phys. Rev. B 17,4969 (1978). 
5N. B. Baranova and B. Ya. Zel'dovich, Zh. Eksp. Teor. Fiz. 79, 1779 
( 1980). [Sov. Phys. JETP 52,900 ( 1980)l. 

6V. G. Kohn, Fiz. Tverd. Tela (Leningrad) 19,3567 (1977) [Sov. Phys. 
Solid State 19, 2085 ( 1977) 1. 

'V. G. Kohn, Kristallografiya 24, 712 ( 1979) [Sov. Phys. Crystalogr. 24, 
608 (1979)l .  

8V. V. Aristov, V. T.Polovinkina, A. M. Afanas'ev, and V. G. Kohn, Acta 
Cryst. A36, 1002 (1980). 

9L. D.  Landau and E. M. Lifshitz, Mechanics (Third Edition), Pergamon 
Press, New York (1976), $28. 

'ON. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the 
Theory of Non-Linear Oscillations, Hindustan Publishing Corporation, 
Delhi (1961 ). 

Translated by M. Damashek 

438 Sov. Phys. JETP 65 (3), March 1987 B. Y. Zel'dovich and T. V. Yakovleva 438 


