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The space-time interference pattern observed in the detection of one or two photons from a 
system of two simultaneously excited and spontaneously radiating atoms is considered. It is 
shown that the well-known Brown-Twiss effect occurs in the absence of interaction between 
the emitters, and that this effect is accompanied by "classical" interference when the emitters 
interact with each other. The effect on the photon interference of a time lag between the initial 
moments of excitation of the atoms is considered. 

The great interest in the results of photon interference 
experiments in which two light sources are used, and in 
which the quantum properties of electromagnetic radiation 
are observed has not abated since the development of quan- 
tum theory. A number of papers have reported the theoreti- 
cal and experimental investigations of the space-time struc- 
ture of the interference pattern from two light sources as a 
function of the conditions under which the photons are de- 
tected and of the various characteristics of the radiation 
sources (see Refs. 1-9 and the references cited therein). 

In the present paper we derive within the framework of 
the standard quantum-mechanical formalism the space-time 
interference pattern for photons emitted by two identical 
atoms. It is assumed that the two atoms are simultaneously 
in excited states when their excitation occurs over a time 
period At satisfying the relation 2T0At,< 1 ( f i  = c = l,ro is 
the natural width of the level of the isolated atom). In 1954 
Dicke2 theoretically investigated phase coherence of spon- 
taneously and simultaneously radiating atoms. The tempo- 
ral evolution of an atomic ensemble consisting of many 
atoms is considered in Ref. 6. The results obtained in that 
paper will be used below. 

Let us consider as a simple model two identical atoms 
that are in excited states at t = 0, and are separated by a 
distance R. Let the difference between the energies of the 
excited and ground states of an atom be equal to A. The 
Hamiltonian of the system of two identical atoms + the elec- 
tromagnetic field of the radiation can be written in the form2 

2 2 

where H,, is the Hamiltonian of the ith atom describing the 
c.m. motion and the interaction of the electrons with the 
nucleus; the second term describes the interaction of the ith 
atom with the quantized radiation field, whose vector-po- 
tential amplitude is denoted by A(r,t); and Ji (r,t) is the 
transition quantum current for the ith atom." In this case 
the atoms interact via the common radiation field, i.e., 
through the emission and absorption of photons. As shown 
in Ref. 6, the interaction is characterized by a quantity T,,  
that depends primarily on the distance between the atoms 
and the wavelength of the emitted phonons. 

Let us represent the wave function of the system of two 
atoms + the spontaneous radiation field in the form 

where q, T,, and q, ,,, are the wave functions of the atoms 
located at the points with coordinates r,  and r2 (the sub- 
scripts 1 and 2)  in the excited and ground states respectively; 
(k)  and (k,,k,) are respectively the wave functions of the 
states with one and two photons; and k is the wave number. 

To determine the coefficients A(t),a:t' ( t) ,  a?' ( t ) ,  and 
(t) ,  we used the ~eissko~f-wignermethod,"which, in 

particular, allows us to directly compute the natural width 
of a transition line. The coefficients found by this method for 
the initial conditions 

can be written in the form6 

x {p:" (t) + exp [ik, (r2-rl) I P ~ ?  (t) 1, 

xexp (-ik,ri) exp (-ik2r2) {b:i2) ( I  + erp[ i (k2-k,) (r,-r,) I )  

where 
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H ,  is the matrix element of an atomic transition accompa- 
nied by the spontaneous emission of a photon; y = T,,/T,; 

r lz( r )=3rdcos20~[s in  (AIr1)-AIrl cos (AIrI)] (Alrl)-3 

-[sin (Alrl)-Alrl cos (Alrl) l(Alrl  )F31}; 

(4) 
8 is the angle between the vector k and the axis of the dipole 
formed by the two emitter atoms (for the computation of 
r,,, see Ref. 6, Eq. (3.6)). 

Now we can derive expressions for the packets describ- 
ing the space-time picture of the propagation of one and two 
quantaf2: 

After simple, but tedious computations we find the following 
explicit expressions for q: 

xexp[-i(A-ir,(l+y)) (t-I r-r, I) 1 .  
x(exp[--r~yI r-r, I 1+1)0(t- lr-r, I ) + e ~ ~ [ - I ' , ( l - ~ )  t ]  

xexp[-i(A-ir,(l+y)) (t-Ir-r,/) I 
X ( e x ~ [ - r ~ y l r - r ~ l  I-1)0(t-Ir-r,l)}, (7)  

Y (r,  r', t )=  - '2 exp (-2iAt) { A  exp[iA (rf r r )  ] 
8nrr' 

FIG. 1. Mutual disposition of the sources 1 and 2 and the points of detec- 
tionofthe photons (inthez=z,plane); R = r ,  +r,, Ir,l = Ir,l =xo.  

where 

A=exp [-I'd I-y) (t-r)] exp [-ro(l  -y) (t-r')] . 
8 {exp [ -2roy (t-41 f exp [-2r0y (t-r') ])8(t-r) 0(t-r'), 

B=exp [-rO(l-y) (t-R,) 1 exp [-r,(l--y) (t-R,)] 

C=exp [-ro( 1-y) (t-7) 1 exp [-ro ( I-y) (t-R,)] 

x{exp [-2r0y (t-R,)] -exp [-2roy (t-r)] )0(t-r)O(t-R,), 

Xexp [-r0(l-y) (t-r')] {exp [-2r0y (t-r') ] 

-exp [-2r0y (t-R,) ]}0(t-R,)0(t-r'), 

and 8 ( t )  is the Heavyside theta function. The definitions of 
the spatial coordinates in Eqs. (8 )  and (9)  are clear from 
Fig. 1. 

From the expressions ( 7 )  and (8)  we obtain by the 
standard method the corresponding probabilities for propa- 
gation of the quanta: 

x{exp[-2r0(1+ y) ( t-(r-r ,()  ] ( I +  exp[-ray (r-r, I 
X0 (t- I r-rl I ) + exp[-2ro (I+y) (t- I r-r, I ) ] 
~ ( 1  expl-I',yIr-r,) l)20(t-lr-r21) 
-2 exp[-ro(l+y) (t- Ir-r, I) ] 

xexp [-To ( l i -y)  (t-(r-GI)] [ l+exp (-Toy (r-r,()] 

x [ l -  exp(-royIr-r21) I C O S [ A ( I ~ - ~ ~ I - ~ ~ - ~ ~ ~ )  I 
X0(t-~r-rl~)O(t-~r-rz~)}. (10) 

From this expression for W ,  it folIows that an interference 
pattern can be observed even for the single-photon state 
when the atoms interact with each other (i.e., when y#O) 
and the relation 2r,(1 - y)t  5 1 holds at those points in 
space up to which the signal has already propagated 
(el = 82 = 1). 

The nature of this phenomenon is fairly simple: if the 
atoms can exchange quanta, i.e., if they interact via the radi- 
atior, field ( y  #O), then both atom 1 and atom 2 can each 
emit a photon, and as a result of this exchange interference 
occurs, which is described by the third term in Eq. (10). 
Naturally, the interference for the single-photon state disap- 
pears in the absence of interaction between the atoms (i.e., 
when y = 0).  
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A similar expression for the probability in the case of 
the two-photon state can be obtained from (8) :  

IHA 1 4(A2+,2+,2+D2 W 2  (r ,  r f ,  t )  = - - (ti ) 2 ( r r / l z  
+2AB cos[A (r+rf-R,-R,)  ] +2AC cos[A (r ' -K,)  1 

+ 2AD cos [A ( r -R, )  ] +2BC cos [ A  ( R l - r )  ] + 
+2BDcos[A(R2-rr)I+2CDcos[A(r+R2-Rl-r')]). (11) 

Let us simplify the expression for the arguments of the co- 
sines, assuming the distance between the planes of the 
sources (atoms) and the radiation detectors to be fixed (see 
Fig. 1)  and equal to z,, and, retaining the first terms of the 
power series expansion in (x/z,), derive for W, the follow- 
ing expression: 

2x0 + ~ A B  cos [ A - (2-x')  ] +2 (AC+BD)  cos 
20 

In the y = 0 limit, when the atoms do not interact via 
the radiation field, C = D = 0. Then there remains in the 
expression for W, only one interference term 
-AB cos [A2x,(x - x' )/zo] , which depends only on the dif- 
ference between the coordinates of the points of observation 
of each quantum. This natural result corresponds to the 
well-known Brown-Twiss effectI3 (two independent sources 
located at a distance lR I %7r/h from each other and two ra- 
diation detectors). 

If y #O, all the four interference terms in the expression 
for the probability remain: in this case there appear, besides 
the term proportional to AB, which determines the Brown- 
Twiss effect, terms that depend only on the path difference 
for the rays from the two sources. Thus, the expression ob- 
tained for the spatial probability for detection of two pho- 
tons includes, besides the normal Brown-Twiss effect, "clas- 
sical" interference between two photons emitted by different 
atoms interacting via the proper field of the spontaneously 
emitted quanta: the two sources become tuned in to one oth- 
er. 

It should be noted that, although our arguments are for 
a system of two emitter atoms, the entire procedure and all 
the conclusions can easily be generalized to the case of an 
arbitrary number of emitters (see, for example, Refs. 6 and 
9) .  

Let us now consider how the interference pattern 
changes if one of the two atoms (for any pair from a large 
ensemble of atoms) is excited some time T after the first. Let 
us derive the time-averaged probability for the two-photon 
state: 

W 2 ( r ,  r g ,  t )  = n )  d~  W , ( r ,  r'; t ,  t + ~ ) .  (13) 
0 

Here the normalization factor n is the number of atoms ex- 
cited in unit time (for a given density of the atoms of the 
requisite kind this quantity depends only on the power of the 
generator exciting the atoms) and T is the excited-state pro- 
duction time (T) l/T,). Let us, for definiteness, assume 

that atom 2, with coordinate r, ( see Fig. 1 ), is excited after 
some delay. 

Then in the expression we must for W,, make the substi- 
tution t-t + T everywhere in those exponents which con- 
tain the coordinates (rl,R, ) characterizing this source. 

The expression for k2(r , r f , t )  is quite unwieldy, but can 
be obtained from ( 12) through elementary integration. 
Therefore, we simply note that k2 has the same form ( 12) as 
W,, with the only difference that, instead of exponential 
functions of the type exp [ - a ( t  - r)  ] appearing in (9) ,  we 
will have {exp [ - a ( t  - r)  ] - exp ( - aT))/a, where 
r = rf,R ,. A general factor for W, will be n/To. From this it 
follows that only those pairs of emitter atoms for which the 
time shift T between the instants of excitation satisfies the 
condition T 5 l / r O  function effectively (i.e., produce an in- 
terference pattern). 

Under steady emission conditions (i.e., for T -  CQ ), the 
second exponential function tends to zero, and the interfer- 
ence pattern is similar to the pattern obtained from two emit- 
ters with account taken of the rate of generation of these 
states. 

Thus, a consistent quantum-mechanical calculation of 
the space-time dependence of the probability for detection of 
the two-photon state allows us to naturally obtain, without 
making additional assumptions about the radiation sources, 
the conditions for the appearance of an interference pattern 
from two atoms, and to describe its nature. 

It should be emphasized that this approach, in contrast 
to those discussed in Refs. 14 and 15, allows us to obtain the 
space-time picture of the propagation of wave packets for 
the one-and two-photon states without making additional 
assumptions about the quantum states of the photons in the 
radiation field. It is shown that an interference pattern arises 
as a result of the exchange of photons between the atoms 
even in the single-photon state if the parameter characteriz- 
ing the interaction of the atoms via the radiation field has a 
value y - 1. For the two-photon state there occurs, besides 
the Brown-Twiss interference effect,15 which manifests itself 
in the y = 0 case as well, interference between two photons 
emitted by different atoms interacting via the radiation field 
( y - 1 ) . In Refs. 14 and 15 the effect of the interaction of the 
atoms via the radiation field is ignored. 

In conclusion, the authors express their gratitude to I. I. 
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