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We obtain the temperature dependence of the spin susceptibility, the spin-flop field, and the 
antiferromagnetic resonance frequency in a model with overlapping parts of the quasi-one- 
dimensional Fermi surface and a weak anisotropy of the spin interaction. We show that the 
magnetic properties are the same as those obtained in a model with localized spins only at 
T = 0. We compare the results with experiments. 

1. INTRODUCTION 

A new class of organic substances, called Bechgaard 
salts, which are the TMTSF and TMTTF salts,' were syn- 
thetized in 1979. In contrast to other quasi-one-dimensional 
compounds many of them disclose an antiferromagnetic 
state-a spin density wave (SDW) at temperatures T < 10 to 
14 K. Below the transition point the substance considered 
possess all the properties of an antiferromagnetic: anisotro- 
py of the magnetic susceptibility, spin-flop field, antiferro- 
magnetic resonance f r e q ~ e n c y . ~ - ~  

The Fermi surface in Bechgaard salts consists of two 
open sections with an insignificant transverse di~pers ion.~ 
The electron energy near the Fermi surface is 

El*'  (p) = + U F ( P ~ , T P ~ ) + ~ ~ ~  cos pba+2tc cos PC*. (1 )  

It was noted in Ref. 6 that the spectrum ( 1 ) has a degeneracy 
connected with the possibility for two sections of the Fermi 
surface to overlap: 

In that sense it is analogous to the spectrum of the Keldysh- 
Kopaev model with embedded electron and hole Fermi sur- 
faces.' The phase transition occurring at a rather low tem- 
perature is the pairing of an electron and a hole near different 
parts of the Fermi surface which lifts the energy degeneracy 
(2 ) .  The order parameter is the quantity 

p,z  

For a number of reasons (vide infra) the vector Q in this 
expression cannot be the same as the vector Q, which would 
give exact overlap of the Fermi surface. Sonin8 noted in his 
review paper that an order parameter of the form ASaB cor- 
responds to a structural instability and AuaB to a spin den- 
sity wave ( a  are Pauli matrices). 

Earlier one used for the interpretation of the experimen- 
tal results on the magnetic structure of the compounds con- 
sidered formulae borrowed from the localized spin model 
(see, e.g., Ref. 2).  As the Bechgaard salts have a high con- 
ductivity above the antiferromagnetic ordering tempera- 
ture, this model does clearly not correspond to the true phys- 
ical picture as was noted in Ref. 2. Moreover, the model of 
Ref. 2 does not allow us to obtain the temperature-depen- 
dence of the calculated quantities. An evaluation of the mag- 
netic properties of Bechgaard salts in a model with unloca- 
lized electrons is therefore of great interest. 

We choose for a comparison of the results obtained with 

experiments the compounds (TMTSF),AsF, (Refs. 2 and 
3) and (TMTTF),Br (Ref. 4 )  in which the main set of 
quantities which characterize the antiferromagnetic struc- 
ture were measured. 

2. GROUND STATE 

The term 

$af (~+')$a+(~-')Kaa, T~(P+' ,  P-', P-, P+)$T(P-)$&(P+), 
( 3 )  

in the electron interaction operator is important for the for- 
mation of a SDW; herep + p'+ 1 -pF; P - lI, PI- - - pF . 
Below the transition temperature there appear anomalous 
mean values relating the wavefunctions of electrons near dif- 
ferent parts of the Fermi surface. We can distinguish in the 
kernel of (3 )  terms of a Coulomb provenance, exchange 
terms, and terms with a weak spin anisotropy. The latter is 
caused by small spin-orbit and dipole-dipole interactions. It 
was noted in Ref. 9 that the main role in Bechgaard salts in 
the magnetic anisotropy energy is apparently played by the 
dipole-dipole interaction. For the sake of simplicity we re- 
place the expression for the screened Coulomb interaction in 
the momentum representation by a constant (in the weak 
coupling model the results do not change because of this). 
We can thus write 

, I 

Ka,a,Ta (P+', P-', P-, P+) =G~~s~TASK ~ : , ~ ( p +  P- 7 P-j P+). 

(4)  
The equations for the Green functions have the form 

Gaa++(iz, p) =Gae+(iz, p) -Gal+ (iz, p) ~ ~ a + - G a ~ - +  (iz, p), 

In this case the self-consistency condition is satisfied 

1 T 
A-+= ( i \ h f h i k )  oi - ~p [ QG-+ (iz, p) d s p ]  . 

2 (2n) 
(6)  

One sees easily that the equations are invariant under 
the multiplication of the order parameter by a phase factor. 
The leeway in the choice of phase corresponds to the possi- 
bility of a spatial shift of the incommensurable SDW. In the 
case of strong commensurability 1 :2 states with wavevectors 
Q and - Q correspond to the same quasimomentum and, 
hence, G + - and G -+  are the same. There is then no leeway 
in the choice of phase. We write the order parameter in the 
form A + -  = u(A1 + iA"), where A' and A" are real. It fol- 
lows from Eqs. (5 )  and (6 )  that we must have A'llA" or 
A'lA". The first case corresponds to a sinusoidal and the 
second to a helicoidal SDW which was considered in Ref. 10. 
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In the weak coupling model the ground state is, as one can 
easily verify, a sinsusoidal SDW. 

The gap in the electron spectrum is determined by the 
quantity DetA+-. For a sinusoidal SDW the gap is of the 
same order of magnitude as the order parameter. In the case 
of a helicoidal wave DetA+- = A"' - A". The value of this 
quantity is determined by the A,, tensor and in the isotropic 
case DetA+- = 0. For a helicon the gap in the spectrum is 
thus small compared with the order parameter in as far as 
the anisotropy energy is small. From measurements of the 
conductivity in the compounds (TMTSF),AsF, and 
(TMTTF),Br it follows that the number of free carriers in 
turn decreases fast below the antiferromagnetic ordering 
temperature. The ground state is clearly dielectric. Hence 
one may conclude that the spin density wave in these com- 
pounds is sinusoidal. 

The easy z-, the intermediatey-, and the difficult x-mag- 
netization axes are in the model considered the principal 
axes of the A,, tensor. The anisotropy tensor is determined 
apart from an additive term proportional to A,, which en- 
ables us to put the eigenvalue A, = 0. In that case 
A, <A, <O. It turns out that the (TMTSF),AsF, and 
(TMTTF),Br salts the principal axes of the anisotropy ten- 
sor are the same as the axes of the conductivity tensor. The 
easy magnetization axis is in this case the b * axis. The inter- 
mediate axis is in the first compound close to a and in the 
second to c* [the (a,b *,c*) system of the principal axes of 
the conductivity tensor differs slightly from the triclinic sys- 
tem realized in Bechgaard salts]. 

In the nesting model6 the solution of Eqs. ( 5 )  and (6 )  
which is thermodynamically suitable corresponds to the vec- 
tor Q, = (2pF, n-/b *, TIC*) which guarantees the exact 
overlap of parts of the Fermi surface for the spectrum ( 1 ). It 
was noted by Gor'kov in his review article" that the mea- 
surement of the Hall effect in the compounds considered 
indicates the usefulness of the "straight" nesting vector 
Q ,  = (2pF, 0, 0 )  which must be considered to be an alterna- 
tive possibility. How one can determine the choice between 
Q,, and Q ,  is still far from clear. In the framework of the 
model considered this choice may be connected with the way 
the kernel of the interaction ( 3 )  depends on the momentum 
transfer in the transverse direction [ A  (Q,) #A ( Q ,  ) 1. 

Because of the peculiarities of the structure of the Bech- 
gaard salts the ratio t, /tb is small5 in them ( - 1/10-1/30) 
so that we neglect in what follows the dependence of the 
transverse dispersion of the electron spectrum on the com- 
ponent PC. putting t, (p, ) = 2tb cospeb*. The expression for 
the electron energy takes the form 

E(*)  (p) = k u F ( p , , i p F )  +2tb cos pb'. ( 7 )  

In the case of straightforward nesting the existence of anom- 
alous averages might lead to the formation of electron-hole 
"pockets." For this to happen we must have /A1 < 2  
maxlt, (p, ) 1 .  It was shown in Ref. 12 that at T = 0 for a 
spectrum of the form (7 )  the dependence of the order pa- 
rameter on the transverse dispersion has a "step" form: 
IAl =A,whenA,>2tb,  A=OwhenA,<2 tb .  In thatcase 
there are in the excitation spectrum in the magnetic phase at 
T = 0 no electron-hole pockets which is confirmed by the 
disappearance of free carriers at sufficiently low tempera- 
tures. 

FIG. 1. Transition temperature as function oft, 

Substituting the solution of the set (5) for Q = Q, into 
Eq. ( 6 )  and changing to integration over g = v,  (pll - p,) 
we get 

n wa 

where 6 = A/rb *c*u, and E,  = 172 + 1 A 1 2 .  The frequency 
w, to cut off the integral is of the order of the Fermi frequen- 
cy. Equation ( 8 )  determines the temperature-dependence in 
the case of straight nesting. Putting ( A (  = 0 in (8) and inte- 
grating over p we get an equation for the t ,  -dependence of 
the transition temperature: 

U" 

The result of a numerical solution of Eq. (9)  is shown in Fig. 
1. For small T, 

(this equation was obtained in Ref. 12 with logarithmic ac- 
curacy). When A, = 2tb the transition temperature 
vnaishes. The temperature-dependence of the order param- 
eter for some values oft, is shown in Fig. 2. 

FIG. 2. Temperature-dependence of the order parameter for different val- 
uesoft,,: 1:2t , /A, ,=O,2:0.5;3:0.8;4:0.9;5:0.95.  
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3. MAGNETIC PROPERTIES 

We use perturbation theory for the evaluation of the 
spin susceptibility to expand Eq. (5)  up to terms of first 
order in the magnetic field. We need then take into account 
only the spin part of the interaction. Using the fact that 
A&-A- + = IA12Sav we get for the electron Green func- 
tion, say, to the right near the Fermi surface the expression 

++ ( i~ - t - )~ (aH)  +A+- (OH) A-+ G++ (iz, p) = G H - o  (iz, p) +pB 
[ (iz-E-) (iz-E+) - 1 A 1  'IZ ' 

where 

The contribution to the magnetization is given by the fcr- 
mula 

Substituting ( 1 1 ) into ( 12) and writing n = A/A we get 

where 

In what follows all formulae for the susceptibility pertain to 
the straight nesting case. Using the residue theorem and in- 
tegrating by parts in the expression for X, we find 

(the equivalent expression for the case of ideal nesting was 
obtained in Ref. 13 ) . 

The transverse susceptibility in the model considered is 
thus identically equal to the spin susceptibility of a normal 
metal X, = p i N ( 0 )  where N(0) = 2/n-b *c*v, is the den- 
sity of states at the Fermi surface. As for the dispersion law 
( 7 )  the formation of electron-hole pockets is impossible at 
zero temperature the longitudinal susceptibility vanishes at 
T = 0. This result is in agreement with the experimental data 
for3 (TMTSF) 2AsF6 and for4 (TMTTF),Br. 

Near the transition point the longitudinal susceptibility 
changes linearly with temperature. The derivative of the lon- 
gitudinal susceptibility for I A 1 Tc is 

ca 

For Tc 4 A, the slope becomes small: 

Using ( 10) we can rewrite this expression in the form 

FIG. 3. Temperature-dependence of the spin susceptibility for different 
values of r , :  1: 2rb/A,, = 0, 2: 0.5; 3 :  0.8; 4: 0.9; 5: 0.95. 

For t, = 0 Eq. ( 16) gives ax,, /aT = 2xn /Tc . We show in 
Fig. 3 the result of a numerical calculation of the tempera- 
ture dependence of the longitudinal spin susceptibility. The 
dependence obtained agrees qualitatively with experiments 
for (TMTSG),AsF, (Ref. 3) and (TMTTF),Br (Ref. 4).  
We discuss below the problem of a quantitative agreement. 

We turn to the evaluation of the spin-flop field. As we 
noted above the easy, intermediate, and difficult magnetiza- 
tion axes are the principal z, y, x axes of the anisotropy ten- 
sor. The easy axis zllb*. The spin rotation occurs in the yz 
plane. When H > Hfl  the magnetization of the sublattices is 
parallel to the intermediate axis. 

Near Tc the change in the order parameter when the 
field is switched on is piH '/lAI. We shall assume in what 
follows that (p, H /Tc )'< (Tc - T)/Tc. We can then use 
the thermodynamic identity which connects the derivatives 
of the Hamiltonian and the thermodynamic potential with 
respect to the parameter: 

Formally differentiating the Hamiltonian with respect top, 
we get for the change in the thermodynamic potential when 
the field is switched on the obvious expression 

We introduce the angle 6 between the direction of the mag- 
netic field which is parallel to the easy axis and the vector A. 
Substituting (13) into (20) we get 

6Q1=-'/zH2(~l-~11) 6 sin2 0. (21 

The term in the Hamiltonian which describes the anisotrop- 
ic part of the effective interaction has the form 

~,,"/~hi,oa,io~b"$.' (P+') $e+ (P-') 47 (P-) $6 (P+) - (22 

The anisotropy is small which allows us to use again Eq. 
( 19). The response of the thermodynamic potential to a ro- 
tation of the sublattice magnetization is 

I A I Z  h,6sinz8. 6Q,=-2 - (23) 
AZ 
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FIG. 4. Temperature dependence of the spin-flop field for different values 
oft,: l :2tb/A,,=0;2:0.5;3:0.8;4:0.9;5:0.95.  

The total change in the potential is SR = SR, + SR,. The 
equilibrium value of the angle 6 minimizes the quantity SR. 
One sees easily that the spin flop is a first order transition 
and 

Sincex,, = 0 but X, = xn at T = 0 for the spectrum (7)  

One can obtain a formula which explicitly determines 
the temperature dependence of Hsf by substituting Eqs. 
( 15a), ( 15b) in (24) (Fig. 4) .  In the case of ideal overlap- 
ping of parts of the Fermi surface the values of the spin-flop 
field at zero temperature and near the transition point are 
connected by the relation 

H S f  (T,) IH,, (0) =2y/ (75 (3) )'"=1-23. (26) 

If the superstructure vector is straight, Hsf (T, ) increase 
with increasing t, becoming infinite at t, = A0/2 (Fig. 5 ) .  

FIG. 5. H,, as function oft, close to the transition point. 

To evaluate the antiferromagnetic resonance frequency 
we apply the method of analytical continuation of thermo- 
dynamic responses expounded in Ref. 14. The quantity waf is 
determined from the self-consistency equation for a small 
addition to the order parameter. Detailed calculations are 
given in the Appendix. At T = 0 the expression for the anti- 

I ferromagnetic resonance frequency has the form 

The + and - indices refer to the polarization of oscilla- 
tions which are, respectively, parallel to the difficult and the 
intermediate magnetization axes. As A, <A, <O, we have 
w; > o ; .  

One sees easily that as there are no electron-hole pock- 
ets at T = 0 we have the relation w,) = 2p,Hsf which is also 
valid in the localized spin theory. Experimental data for 
(TMTSF),AsF, (Refs. 2 and 3) and (TMTTF),Br (Ref. 
4) indicate that the relation considered is, indeed, satisfied in 
these compounds at sufficiently low temperatures. 

4. CONCLUSION 

The results obtained thus indicate the applicability of a 
model with two open parts of the Fermi surface for a qualita- 
tive description of the magnetic properties of the 
(TMTSF) ,AsF, and (TMTTF) ,Br compounds. In this 
model an antiferromagnetic has, just as in the model with 
localized spins, an anisotropic spin susceptibility, a spin-flop 
field, and an antiferromagnetic-resonance frequency. 

It turns out that at zero temperature the predictions of 
the delocalized model with the spectrum (7) is independent 
of the choice of the superstructure vector. The ground state 
in the compounds considered is at T = 0 apparently dielec- 
tric which confirms the conclusion that at zero temperature 
there are no electron-hole pockets in the quasi-particle spec- 
trum. The relation waf = 2p,Hsf obtained for T = 0 is to a 
good accuracy checked by measurements in the compounds 
(TMTSF),AsF, and (TMTTF),Br at sufficiently low tem- 
peratures. One must note that the relation considered is, gen- 
erally speaking, violated in the case when electron-hole 
pockets are formed, if the transverse dispersion law allows 
their existence. 

At finite temperatures the theoretical curve of the tem- 
perature dependence of the spin susceptibility agrees only 
qualitatively with experiment. In that case it is for 
(TMTSF),AsF, closest to the experimental curve corre- 
sponding to ideal overlap. On the other hand, in the com- 
pound (TMTTF) ,Br the behavior of the xi, ( T) curve indi- 
cates a difference between the superstructure vector and the 
vector Q, realizing ideal overlap. 

In the model considered the ratio of the values of the 
spin flop field at T, and at zero temperature is always larger 
than unity. The minimum value Hsf (T, )/Hsf (0)  z 1.23 is 
reached for ideal nesting. Experimentally, Hsf in 
(TMTSF),AsF, is practically independent of the tempera- 
ture which again indicates that in that compound the super- 
structure vector is close to Q,. Unfortunately, in 
(TMTTF),Br the quantity Hsf has been measured4 only at 
T = 4.2 K, but the fact that at that temperature the relation 
w,f = 2p,H,, is satisfied enables us to conclude that the 
difference between the overlap vector and Q, can at any rate 
not be too large. 
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The "Shubnikov-de Haas" oscillation frequencies in 
(TMTSF) ,PF, observed in Ref. 15 turned out to correspond 
to a series of exciton transitions in the magnetic field. As the 
areas of the orbits are in that case not too small ( - 1 % of the 
Brillouin zone cross section) the conclusion was reached in 
Ref. 15 that in Bechgaard salts there exists an antiferromag- 
netic structure with a straight overlap vector. Comparing 
this statement with the results obtained above we are led to 
the conclusion that the SDW vector may depend on the mag- 
netic field. 

The author expresses his deep gratitude to L. P. Gor'kov 
for suggesting the subject and for supervision of this work. 

APPENDIX 

Calculation of the antiferromagnetic resonance frequency 

We write Eq. (5) in matrix form. The perturbation of the 
Hamiltonian is 

The response in the matrix Green function is 
( i )  (0 )  - ( t )  - ( O )  

(2% ,z-u =-G* h, Gz-&,. (A21 

Substituting in this expression the solution of the set (5 )  when 
there is no external field we get 

The self-consistency equation for the perturbation as the form nance frequency corresponding to an absorption of the oscil- 

(-44) 
One sees easily that the equations have a solution when 

A"'lA, i.e., in the commensurate case the oscillations are 
transverse. To evaluate the sum over the frequencies the ther- 
modynamic functions must be continued onto the real axis. 
The analytic continuation is realized by the formula 

+ m 

2 - 0  ( 0 ) R A  (i) (0)R 
T ~ C . : : L ~  = - J & {th lT e, h, e,-, 

- w  

The fact that for the spectrum (7) t, (p, ) = - t, (p, + Q, ) 
enables us to simplify the writing down of the formulae. If we 

lations. If w < I A I < T we have 

If ( A (  < ( 0 1  < T the main contribution to the integral comes 
from the vicinity of the pole of the integrand. In that limiting 
case the resonance frequency becomes purely imaginary 
which corresponds to the diffusive mode. We now write down 
the dispersion relation taking relaxation processes into ac- 
count. For the sake of simplicity we put w < 1 A I. In the case of 
isotropic scattering one can get the result introducing an 
imaginary term in the frequency of the Green functions in 
(A5): z-z a i/2r. We have 

neglect the scattering of free carriers by phonons and impuri- If T, - T< T, the dispersion relation takes the form 
ty atoms the evaluation of the integral gives (w < T) o 641 A IT(-A,(,)) nb0c*vF 

oZ+i - - _-= 
2 

0. 
(t,+- th & + ~ ~ L ( P I )  'C 'A% (A101 

T G::::; (p) = A m  
2e 2T 

z When T = 0 the evaluation of the integrals in (A9) gives the 

oe 1 earlier result (27) for waf.  As one should expect when there 

+ A:)+- F ' ~  (ei-oz,41 are no electron-hole pockets the damping vanishes. 
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