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Geometrical trajectory effects in the electric conductivity of metallic points contacts 
(rnicrocontacts) in a strong field are investigated. When either the elastic electron mean free 
path I, or the electron cyclotron radius rH is smaller than contact diameter d, the kinetics of 
the electron gas near the aperture can be described by a diffusion equation. In a strong field 
such that rHa<d and I, j d ,  the electron motion is effectively one-dimensional, and transverse 
diffusion is the only means of restoring the three-dimensional nature of the current distribution 
near the contact. The contact resistance in a strong field is R ( H )  = ( p/d) ( l  + (OT, )2)"2 and 
increases linearly with the field at Or, & 1 (fl is the cyclotron frequency and r, = I, /uf). The 
inelastic current component in the microcontact is due to electron-phonon collisions and can 
increase in a strong field by a factor 1, /d compared with its value in a zero field. At 1, $ r ,  %d 
the resistance ceases to depend on the field, but the potential distribution in the contact is 
substantially altered and is characterized by oscillations whose period is proportional to the 
cyclotron radius (analog of the Sondheimer effect). 

$1. INTRODUCTION 

Metallic point contacts are unique objects for the pro- 
duction and investigation of spatially localized strong cur- 
rent perturbations in an electronic system. The substantial 
spatial inhomogeneity of the transport perturbations is due 
to the concentration, near the microconstrictions, of an elec- 
tric current whose density in real experiments reaches values 
j- 101° A/cm2. The substantial decrease of the current den- 
sity in regions far from the point contact is due to three- 
dimensional spreading of the carriers, which move along 
classical straight-line trajectories (Fig. 1 ). The nonequilib- 
rium distribution of the electrons at some point r is shown in 
Fig. 1. It is easily seen that in the ballistic regime considered 
by way of example ( I>  r, where I is the carrier mean free 
path) the density of the nonequilibrium electrons decreases 
like Sn zn (d  /r)' with increasing distance from the contact. 
The disequilibrium of the electronic system is concentrated 
mainly near the contact in a region whose size is determined 
by the length of the spatial spreading of the current, a length 
that coincides in this case with the size d of the contact. As a 
result, the resistance of the structure is determined by the 
electron scattering processes that take place in the indicated 
region. In particular, the phonon increment to the resistance 
turns out to be proportional to the probability of electron- 
phonon scattering over a length r  of the order of d. In the 
most interesting case, when the dimension of the contact is 
small compared with the electron-phonon mean free path I,, 
the main contribution to the phonon part of the resistance is 
made by single-quantum electron-phonon scattering pro- 
cesses, whose probability is proportional to d /I,. This con- 
tribution determines the nonlinear increment to the current- 
voltage characteristics (IVC) of the contact, analysis of 
which permits reconstruction of the electron-phonon inter- 
action function (microcontact spectroscopy). 

Application of a constant magnetic field H alters sub- 
stantially the character of the spatial spreading of the cur- 
rent in the point contact. The finite character of the cyclo- 

tron motion of the electrons in a plane perpendicular to the 
magnetic-field direction prevents three-dimensional spread- 
ing of the current, as a result of which the density of the 
nonequilibrium electrons ceases to decrease with increasing 
distance from the contact, and the transport problem is more 
readily reminiscent of the one-dimensional one. The natural 
reason for the restoration of the three-dimensional character 
of the spreading is interaction of the electrons with the scat- 
terers, as a result of which the characteristic scale of the 
localization region of the electron perturbation in the point 
contact turns out to depend on the mean free path and on the 
field strength. When the spreading region exceeds the size of 
the point contact, the current spreading turns out to be 
slower than in the case H = 0, and the electric conductivity 
of the point contact becomes substantially dependent on the 
magnetic field. In particular, the phonon increment to the 
resistance turns out to depend on the electron elastic-scatter- 
ing length 1, even when this length is large compared with 
the contact size. 

Recent experiments by Yanson, Gribov, and Shklyar- 
evskii3 have revealed a substantial dependence of the point 
contact spectra on the magnitude and orientation of the 

FIG. 1. Schematic picture of a point contact in the form of an orifice in an 
impermeable screen Z. The distribution of the electrons in momentum 
space is represented at the point r. O ( r )  is the solid angle of the orifice as 
seen from the point r (it determines the number of nonequilibrium elec- 
trons, and decreases like ( d  /r)' with increasing distance from the orifice). 
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magnetic field. This dependence was interpreted as a mani- 
festation of trajectory effects of the cyclotron motions in the 
kinetics of electron-phonon relaxation. 

The present paper is devoted to a theoretical analysis of 
the nonlinear electric conductivity of point contacts in a 
magnetic field. The presence of several parameters with the 
dimension of length, such as the cyclotron radius r,, the 
point contact diameter d, the length I, and I, of the elastic 
and inelastic scattering, lead to the feasibility of various re- 
gimes ofnonlinear electric conductivity. The spreading of an 
electric current behaves quite differently in two cases: strong 
magnetic field, r, <d, and weak ones, r, )d. In the former 
the carrier motion is in the main uniform, and the current 
spreading is a slow diffusion process, carrier motion trans- 
verse to the magnetic field, with elementary steps r, <d; it 
results from elastic scattering of the electrons (at I, $r, ). 
The characteristic length of the current spreading in the di- 
rection of the magnetic field turns out to be equal to dl, /r, , 
i.e., substantially longer than d. In the case of extremely 
dirty metals, I, < rH <d, the magnetic field has little effect on 
the carrier motion and the spreading region coincides with 
the contact dimension d. 

In weak magnetic fields, rH $d, there are two charac- 
teristic dimensions in the region of the spatial spreading of 
the current. Near the microcontact, r-d, the electrons prac- 
tically in straight lines and a three-dimensional trajectory 
spreading is realized, with a characteristic spatial scale r- d. 
At distances r-rH an important role is assumed by the 
twisting of the electron trajectories in the magnetic field, as a 
result of which the decrease of the electron disequilibrium 
with increase of r gives way to an oscillatory 6n ( r )  depend- 
ence. These oscillations, whose period is determined by the 
cyclotron radius rH , cause an oscillatory distribution of the 
electric potential (analog of the Sondheimer effect4). Final- 
ly, at distances r k I, $ r, the three-dimensional spreading is 
restored because of the interaction of the carriers with the 
scatterers. In this case the density of the nonequilibrium 
electrons decreases with the scattering in accordance with a 
law that is typical of the diffusion regime: 

The feasibility of point-contact spectroscopy of electron- 
phonon interactions is connected with realization of a con- 
servative carrier motion in the current-spreading region. To 
this end it is necessary that the time of motion in the spread- 
ing region be short compared with the inelastic-relaxation 
time 7;. In a zero magnetic field this condition is met in 
junctions with dimensions small compared with the elec- 
tron-phonon scattering length; in the presence of a magnetic 
field this condition is substantially modified. In a strong 
magnetic field, r, <d, the carrier diffusion-motion time in 
the spreading region (see Fig. 2 )  is equal to 

therefore the condition for the absence of thermal heating 
can be written in the form 

The distribution of the potential in the contact is shown for 
this case in Fig. 3. 

FIG. 2. Point contact in a strong magnetic held (-,, ' r  . n t  
spreads because of multiple elastic interaction ot :tic i ~ t ,  . I  , A tite 
scatterers (the scattering acts are represented bl the c i o  . 

In weak magnetic fields, single scattel I:I,, 1 . i  I ,  

impurities takes the electron out of the spatlad pic, ci: 12 ! i- 
t it< >sldit;<>n gion (see Fig. 4), so that r = I, /v,. The anral ), .,. . 

in the present case is therefore 

If inequalities ( 1 ) and (2 )  are satisftd, l I i t *  - I L I  IYI~C 

increment to the contact resistance is detennw.,: s*; rile 3111 

gle-quantum phonon-emission processes v llcs: n r ) , t : ~ ~ ~ <  

the subject of the present paper. In $2 we presc~rt a ge.:eiai 
formulation of the problem of nonlinear electr~i: c ( iidudii\~- 
ity of a point contact in the form of an orifi~e In an irnperine- 
able partition z = 0, with the magnetic axis drr,ccit..i along 
the z axis. Conditions (1)  and (2)  allow us to torrnriiiate a 
perturbation theory in terms of the electrgn-p:ri?mloi: coiii- 
sion integral and to derive general relatro~~s i i i  titi. tic~stic 
(zeroth order of perturbation theory) and ulela~trc \ hrst 
order) components of the point-contact cur? 2111 L hc .ZC tcal 
analysis of these relations for strong (r,, <.ill an,! .r<ed:c 
(rH $d)  magnetic fields is carried out In 5Cj3 and 4 We hace 
confined ourselves in the investigation of the eleitric con- 
ductivity to classical phenomena in the magnetle held, a,- 
suming fifl< T ( f l  is the cyclotron frequeri~y and 8" 1.p the 
temperature). Quantum effects in the contact reslsrance 111 a 
magnetic field are considered theoretically in Ref 3 and 
were observed experimentally in Refs. 3 and 6. 

$2. FORMULATION OF PROBLEM. GENERAL EXPRESSION 
FOR THE NONLINEAR COMPONENT OF THE P81MT 
CONTACT CURRENT 

Calculation of the current flowing through the point 
contact (see Fig. 1) entails as solution of the Roltz- 

FIG. 3. Schematic form of quipotential surfaces near a p n i r ~  culiidct in 3 
strong magnetic field ( r ,  (d). The parameter 117, is asi*i:nei i:t;g~. 
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FIG. 4. Point contact in a weak magnetic field ( r ,  s d ) .  The spreading of 
the current is due to single interaction with the scatterers (marked by a 
cross): a-ballistic trajectory, b-trajectory after scattering ( X ), c-tra- 
jectory of possible return with initial momentum p'. 

mann equation for the electron distribution function 

with boundary conditions ( e  = - VQ), 

v 
CD (r - .  w )  = - sgn z. 

2 

The electron-impurity and electron-phonon integrals, 
Ii { f, ) and I,,, { f, ) respectively, which enter in ( 3 ) ,  have 
the standard forms 

W:; is the square of the matrix element of electron-impuri- 
ty scattering, W ;  is the square of the matrix element of the 
interaction, n, ( x )  = (ex + 1 ) - I ,  and p is the chemical po- 
tential. 

If conditions ( 1 ) and ( 2 )  are met, the electron-phonon 
relaxation is weak and the electron-phonon interaction can 
be accounted for by perturbation theory. It is convenient to 
represent the distribution function in the elastic approxima- 
tion (I,,, {...) = 0 )  in the formX 

and then the probability a, ( r )  that the electron arrives at 
the point r with momentum p from the right-hand half-space 
also satisfies Eq. ( 3 )  with zero right-hand side. The bound- 
ary conditions for the function ( r )  follow from relation ( 4 )  
and take the form 

,ap ( r + w )  =6 ( z ) ,  (9)  

where 8(z )  is a function equal to unity at z > 0 and to zero at 
z < 0. 

Just as at H = 0, all the transport characteristics of the 
problem, and also the distribution of the potential, can be 
expressed in the form of functionals of a, ( r ) .  We consider 
below the case of low voltages typical of metallic contacts. In 
this approximation, the elastic component of the point-con- 
tact current satisfies Ohm's law 

where SF is the area of the Fermi surface n, = u , / u F ,  and 
(...) is an average over the momentum direction at E ,  = E ~ .  

The distribution of the potential Q ( r )  takes the form 

The inelastic component of the point-contact current is de- 
termined by an addition f i'' to the distribution function, 
calculated in first-order perturbation theory in I,,, {...I. It 
is convenient to express this increment, in analogy with Ref. 
8, in terms of the Green's function g,,. (r,r1;H) 

which is in turn the solution of the equation 

and satisfies the symmetry relation that reflects the reversi- 
ble character of electron motion in a magnetic field: 

gppl (r, r'; H )  =g -p f -p ( r ' ,  r; -H). (16) 

The necessary boundary condition for the Green's function 
follow from the corresponding conditions for the distribu- 
tion function f ,  ( r )  

where p, is the momentum of the electron reflected in a 
plane tangent to the contact surface at a point reB. Introduc- 
ing the function Gp (r)  defined as 

G p ( r )  = J dS1 f dp' ~ , ' g ~ - ~ ( r ' ,  r; H ) ,  (18)  

we represent the expression for the inelastic addition to the 
point-contact current in the form 

2e 
1' --I d r j  d p  ~ ~ ( r ,  H )  l .-, , ,{f~' ( r ) ) .  

(2nti) " (19)  

The equation satisfied by the function G, ( r )  and also 
the corresponding boundary conditions follow from expres- 
sions (14)-(17): 

Comparison of these equations with the analogous problem 
for elastic electric conductivity (3) - (5)  (in the case 
I,,, { . . . )a  = 0 )  yields the connection between the function 
G, ( I )  and the previously introduced function a, ( r )  : 
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Further transformations of the expression for the inelastic 
addition to the current lead to the following relation for the 
normalized second derivative of the IVC: 

0 

1 8 R  32 ed d o  Ro-eV --=---I R d V  3 v,, - G ( ~ ) s ( ~ ) ,  T 

where R = d V / d I  and 

The intensity of the point-contact spectrum is deter- 
mined by the transport factor K(p,pf ) contained in ( 14)  and 
connected with the functions a, (r) by the relation 

The substantial difference between the expression obtained 
for the K-factor and its value in a zero magnetic field (see Eq. 
(2 .29)  of Ref. 8 )  is due to the fact that reversal of electron 
motion in a magnetic field calls for simultaneous replace- 
ment of v by - v and of H by - H. This effect of the mag- 
netic field on electron motion manifests itself similarly in the 
Onsager symmetry principle for kinetic coefficients. 

Expressions ( lo ) - (  12) and (23 ) - (25 )  contain the 
complete solution of the nonlinear point-contact conductiv- 
ity problem, reducing it to finding the probabilities a, ( r )  of 
elastic motion of the carriers. The actual form of this quanti- 
ty depends on the relation between the parameters d, r H ,  and 
I ,  which determine the different electric-conductivity re- 
gimes. The values of a, ( r )  in the case of weak and strong 
magnetic fields will be calculated in the sections that follow. 

83. DIFFUSIVE SPREADING OF ELECTRIC CURRENT IN A 
STRONG MAGNETIC FIELD (r,, 4d) 

The quasi-one-dimensional trajectories of the electrons 
in a strong magnetic field are shown in Fig. 2. A specific 
feature of this problem is that account must be taken of scat- 
tering by impurities, which leads to drift ofthe carriers in the 
XY plane, with spacing r,. Assuming that the trajectory 
displacement during a collision time T ,  is r,, we obtain the 
coefficient of diffusion in a direction transverse to the field 

Dl-rHZla,, ( 2 6 )  

while the coefficient of electron diffusion along the field is 

Dil='/svpl. ( 2 7 )  

Their ratio is 

At rH = 0  the carrier motion is strictly one-dimension- 
al, and for any value of the elastic mean free path the struc- 
ture resistance is equal to that of a cylinder of diameter d and 
of infinite length, i.e., is infinite. The fact that the cyclotron 
radius is not zero leads to a finite resistance and to its de- 
pendence on the magnetic field. The Boltzmann equation for 
the function a, ( r )  is" 

where (a, ( r )  ) is the value of a, ( r )  averaged over the mo- 
mentum directions. The differential equation ( 2 8 )  can be 
replaced by an equivalent integral equation in which the in- 
tegration is over the time of particle motion along the cyclo- 
tron trajectory 

0 

1 
a p ( r )  = - J da eT/Tl(ap (rT)  >. ( 2 9 )  

7i -m 

Those particle trajectories in the magnetic field which satisfy 
the initial condition r  ( T  = 0 )  = r  are of the form 

x,=x+ (v,/Q) [sin(&+ r p )  -sin rp]  , 
y,=y+ (v,lQ) [cos(Qt+rp) -cos cp I ,  ( 3 0 )  

zt=vzz. 

Here v, = v, cos e, and u,, = - v, sin e, are the compo- 
nents of the velocity v at the instant T = 0 .  already noted, if 
rH 4 d  and rH 41i the carriers spread away from the contact 
to distances larger than li . (note that if li ( r ,  <d the influ- 
ence of the magnetic field is negligible and the diffusive 
spreading length d is also large compared with li ) . The func- 
tion ( a ,  ( r )  ) changes therefore slowly over the free-path 
times T. This allows us to replace the integral equation ( 2 9 )  
for a, by a differential one. Expanding ( a ,  ) up to terms of 
first order in li we obtain 

8 (a,  ( r )  > 
a, ( r )  =(a,(r)  )-*{vZ dz 

d (a,  ( r )  > + 3 [ i+(nn)z] - ' {  [-Q+ cos cp- ( Q G ) ~  sin c p ]  
Q ax  

-tIQn sin cp- (Qz,) * cos q ]  

Retaining terms of second order in li and averaging ( 3 1 )  
over the momentum directions, we obtain a diffusion equa- 
tion for ( a ,  ( r ) ) 

The boundary condition ( 9 )  should be supplemented by the 
condition that the current cannot leak through the point- 
contact boundary 

d <a, ( r ~ 2 )  ) 
= 0, 

dn 
( 3 3  

where n is the normal to the contact surfacez = 0.  The solu- 
tion of the boundary-value problem ( 9 ) ,  ( 32) ,  ( 33 ) is (Ref. 
8)" 

(a,(r)  >=B(z) -cpo [x, y, (1+Q2ziZ)-'"z] sgn z, ( 3 4 )  
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where r = (x2 + y2 + z2) ' I 2 .  Equations (32) and (33) are 
valid if at least one of the quantities, r, or li, is small com- 
pared with the contact diameter d. If li g d  and H = 0 we 
obtain from (34) a potential distribution corresponding to 
the diffusion limit.8 

The solution (34) leads to an expression for the point- 
contact resistance in a strong magnetic field 

where u = ne2ri/m. Note that in strongly contaminated 
contacts ( f i r i  = li /rH 1 ) Eq. (35) leads to a correction to 
the well known expression for the Maxwell resistance 
R, = l /ad (Ref. 9):  

In pure contacts ( f i r i  ) 1 ), on the other hand, the resistance 
becomes independent of the electron elastic relaxation 
length; furthermore, this takes place at li )d in a zero mag- 
netic field and at li )r, in a strong magnetic field (r, (d. 
The resistance is in this case 

where 
Z(2nti)' 16 1 Rk = ----- = - 

e2SS, 3n P o c T ~  

is the point-contact resistance in the Knudsen limit in a zero 
magnetic field (the Sharvin resi~tance'~." ) . Since expres- 
sion (35) for the resistance was obtained at V = 0, when 
thermal heating in the contact is negligible, condition ( 1 ) 
imposes in fact no limit on the validity of Eq. (35). Figure 3 
shows the form of the equipotential surfaces corresponding 
to the potential distribution [see ( 12) 1 : 

v 
@ (r) = - {28(z) -2rp,[x, y, (1+522~12)-B~]sgn z-I). ( 3 8 )  

2 

Note the strongly anisotropic form of the equipotential sur- 
faces, which corresponds to quasi-one-dimensional spread- 
ing of the carriers in a strong magnetic field. 

The expressions ( 3 1 ) and (34) that define a, ( r )  can be 
used to calculate the transport K-factor (25). Carrying out 
the required integration, we get 

where n = v/v, .  An interesting feature of the result is the 
dependence of the K factor on the transport length li. The 
result depends also on the magnetic field, and coincides as 
H- 0 with the corresponding expression li ( d  for the form 
factor in dirty point-contacts.' 

The relation obtained here, however, is valid also at 
li % d (if the condition ( 1 ) is met), and can correspond, since 
the K-factor averaged over the Fermi surface is zero, to ei- 
ther decrease or increase of the intensity of the point-contact 
spectra, and even to a reversal of their sign in pure contacts 
in the limit of strong field (these questions are treated in 
greater detail in the last section). Note also that the results 
obtained in the present section are valid not only for a spheri- 
cal Fermi surface, but also for a Fermi surface in the form of 
an ellipsoid with one crystallographic axis aligned with the 
point-contact axis. 

$4. TRAJECTORY EFFECTS IN THE ELECTRIC 
CONDUCTIVITY OF POINT CONTACTS IN A WEAK 
MAGNETIC FIELD (r,& d) 

The electric conductivity of point contacts in a weak 
magnetic field depends on the ratio of elastic mean free path 
and the cyclotron radius. In li gr,, the trajectory effect of 
cyclotron motion is weakly pronounced and the magnetic 
field leads to only a small correction to the electric conduc- 
tivity. We therefore restrict ourselvs in the present section to 
the case 

which we shall assume to hold together with relation (2 ) .  
The motion along the trajectories in the magnetic field deter- 
mines then for the most part the spreading of the electrons 
over distances that are large compared with the contact di- 
ameter. The carrier motion in the region r < 1, is ballistic, 
and the function a, ( r )  in ( 8 )  can be easily represented by 
classifying the electron trajectories r, in accordance with 
their ability to move through the point contact. The function 
a, (r)  is equal to unity of the trajectory goes off, under time 
reversal, from the point into the interior of the right-hand 
bank of the contact, and is equal to zero in the opposite case. 
Using the explicit trajectories of the electron in a magnetic 
field (30), we obtain for a, ( r )  the expression 

a, (r) =O(Z)  --0[(d/2)2-x2(t) -Y'(Z) ] 0 ( z v Z )  sgll Z, 
(41) 

With the aid of this function we can calculate the elastic 
resistance of the contact ( 1 1 ). We obtain (S is the contact 
area) 

As seen from (42), in a weak magnetic field (in the principal 
approximation in rH/li ) the resistance is independent of the 
field. The reason is that as li -, co the electrons in the point 
contact plane are classified as arriving from the right and left 
banks in accordance with the sign of the z component of the 
velocity, just as at H = 0. Although the resistance of the 
point contact does not change in a weak magnetic field, the 
potential distribution is radically altered. The differences oc- 
cur in regions relatively far from the contact, r)d, when the 
twisting of the electron trajectories in the magnetic field be- 
comes substantial. The potential distribution in the region 
r < li is given by 

Atzgr,  the trigonometric functions in (43) can be expand- 
ed in series and we obtain for J a  relation that coincides with 
that for H = 0 (Ref. 7).  In particular, a substantial voltage 
decrease amounting to V [  1 - ( d  /r, ) '1 occurs in the region 
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of the three-dimensional spreading of the current at dis- 
tances r on the order of d from the contact. Note the follow- 
ing features of the behavior of the function @( r )  at distances 
comparable with the cyclotron radius. First, at 

the potential @( r )  is equal to its limiting values V/2 sgn z. 
Such a rigid localization of the inhomogeneity of the poten- 
tial distribution in a direction transverse to the magnetic 
field is due to the existence of a "geometric shadow" 
p > 2rH + d /2 which the electrons passing through the con- 
tact cannot penetrate because of the twisting of their trajec- 
tories in the magnetic field. Second, asz- co the function 
@( r )  defined by Eq. (43) is not equal to the limiting value 
V/2 sgn z, but differs from it by an amount of the order of 
(d  /rH ) * (atp - rH ) . More accurate asymptotic values ofthe 
potential at z& rH are 

Here 

E(x,y) is an elliptic integral of the second kind, f ( p )  
= arcsin d /2p atd /2p < 1, and f ( p ) = ?r/2 at d /2p > 1. Us- 

ing asymptotic expressions for the function E(x,y), we get 

An expression for J in the form (45) becomes invalid near 
z = 2?rrHn ( n  are integers) in a region having a width of 
order d. As seen from (44), the distribution of the electric 
potential @(r )  is an oscillating function of z with a period 
b = 2mH. The reason for these oscillations is that the non- 
equilibrium electrons, moving along a helix in the magnetic 
field, periodically "hover" above one and the same point in 
the z = 0 plane at distances along z that are multiples of the 

FIG. 5. Distribution of electric potential in a weak magnetic field along 
thez axis ( p = 0) .  Curves 1,2, and 3 correspond to the parameter values 
rH/d=0.75,0.5,and0.375. 

pitch of the helix. (An effect similar to longitudinal focusing 
of electron beams in a magnetic field1' and leading, in partic- 
ular, to Sondheimer oscillations in the resistance of thin 
 plate^.^) 

Figure 5 shows the distribution of the klectric potential 
for finite values of z/r, at p = 0, obtained by numerically 
calculating (43). From the form of the plots it follows that 
the oscillatory dependence of the potential at z-rH is more 
pronounced that in the asymptotic expression (44), and is 
not due to the strong inequality rH >)d. The difference be- 
tween the limiting values of the potential @( r )  as z+  + co 

and V/2 sgn z is due to the absence of transverse spreading 
over distances r of order li , where the collisions between the 
carriers and the scatterers become substantial. To track the 
asymptotic approach of the function @( r )  to the limiting 
values V/2 sgn z, we consider the spreading of the current in 
the most remote regions of space, r > li . At these distances 
the change of the function @(r)  in the scale of the electron 
mean free path and therefore the connection of the current 
density with the electric field strength E ( r )  = - V@(r) 
can be regarded as local: 

j i (r )  =o,AER (r) . (46) 

The distribution of the potential in the system is obtained by 
solving the continuity equation div j = 0 under the condi- 
tion that the total current flowing through a closed surface is 
equal to the current I calculated on the section of the contact 
and equal to V/R. Solution of such a boundary-value prob- 
lem is equivalent to solving the equation 

where the diagonal components of the conductivity tensor 
are 

ul ( H )  =a (Chi) -', cr,,=a. (48) 

Analysis of (47) leads to the following expression for the 
potential distribution at large distances: 

It follows from the form of (49) that at z-li andp -rH we 
have 

which agrees in order of magnitude with the asymptotic po- 
tential (44), (45) obtained in the ballistic region. 

As mentioned in $2, the inelastic addition to the current 
is determined by the form factor K(p,pl). To calculate it we 
must substitute the function a, ( r )  in (25). If we confine 
ourselves to the value of a, ( r )  in the ballistic motion region 
(40), the integral in the definition of K(p,pl) can be reduced 
to the form 

X 5 dzp5 d r  0 [(f )' - r 2 ( ~ ;  p, p') 

(51) 
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z! r ,  p, r"'~ =-x t r fcL[sin (Sl~fcp) - sin cp]  

y (2; p, p') -y-t r,L[cos(Qz+cp) - cos rp] (52) 

t\ here ,,, = cp , /eH,  rg  = cp;/eH, p, cos e, = p, , 
p i i c ' p  p L ,  p; cosp l=p ; ,  p; s ine, '= -p; The 
rneanjrbg of  the ~ntegral with respect to r in the definition of 
the K factor In (51 ) 1s that it describes the electron-phonon 
relaxat~nn as the charge moves along a trajectory that ter- 
minates I n  a certain point p in the contact plane, correspond- 
Inp :o t :~ .  7 ~ l i i e  uf the momentum p. Account is taken here 
on14 of those trajectory segments within which the electron, 
scattered Into a state p', can land as it moves farther in the 
orifice of the contact and by the same token decrease the 
total current calculated without allowance for scattering 
(the so-called return current). It must be noted that the inte- 
gration wrth respect to r in (5 1 ) must be carried out over all 
times of electron motion on the trajectory, i.e., from zero to 
infinity. As H -0 we obtain from (5 1 ) a K-factor value 

which coincides with the ballistic K factor.' 
The situation in a magnetic field is much more compli- 

cated. The integral in the definition of the K factor diverges. 
The reason is that in view of the periodic recurrence of the 
coordinatep on the helical trajectory the electron can repea- 
tedly retilrn from the scattered state to the contact area. It is 
obvious at the same time that only elastic scattering can limit 
the integration with respect to 7. Attention must be called in 
this cclnnectio~l to the fact that even a single collision with an 
impurity under the condition rH $d  (see Fig. 4) places the 
electron on a irajectory from which ballistic return to the 
opening is impossible. The integration with respect to the 
time of motion 7 must be carried out up to the instant of the 
nearest crtllision with the scatterers. As a result, to estimate 
the order of magnitude of the K factor it suffices to integrate 
with respect to ,r in (51)  from zero to the time ri of the 
carrier e!astic scattering. Calculation of the K factor beyond 
this is possible, albeit very cumbersome. Compact estimates 
can he obtained only by averaging over the possible orienta- 
tions of thz  vectors p and p'. We then obtain 

where ( K , , )  is the averaged value of the ballistic K factor in a 
zero magntrtlc field and is equal to 1/4, while 7 is a coeffi- 
cient of the order of unity. 

Note that, just as for strong fields, the form factor de- 
pends on the elastic-relaxation length I, . In weak fields, how- 
ever, it increases as the square of the magnetic field. At 
r,, -- t' I obtained K factor is matched to the results of the 
preccdilrg section. In addition, the characteristic I, values in 
(54 j are bounded from above by the condition (2)  of one- 
phonoa ri,laxation of the electrons. 

5. 60!4CE.U81C9td 

The analysis in the present paper has demonstrated the 
substant~aI influence of a magnetic field on the character of 

spreading of the current in point contacts. Helical electron 
motion oriented along the magnetic field does not ensure 
three-dimensional spreading of the current, so that the char- 
acteristic length over which the electronic system remains 
substantially inhomogeneous is determined only by the elas- 
tic-scattering length I,. In pure contacts, I, >d, the effective 
phonon-generation region increases steeply compared with 
the case H = 0. The intensity of the point-contact spectra is 
determined by the value of the K factor. The expression (39 ) 
obtained for the K factor in a strong magnetic field is highly 
anisotropic, and its mean value in the limit as H+ cu is zero. 
The amplitude and sign of the spectrum depend, first, on 
whether the excited phonons are transverse or longitudinal 
relative to the field direction and, second, on the character of 
the electron scattering (intra- or intervalley). The last cir- 
cumstance is vital for semimetals3 and requires clarification. 

Intravalley scattering can excite phonons with arbi- 
trary wave vectors q(0 < q < k, ) . The electron-phonon inter- 
action has strong dispersion, and theK factor is not averaged 
out in (24) (even when (K ) 4 1 ). The intensity of the spec- 
trum in a magnetic field can then increase by a factor li /d. In 
intervalley scattering, the momentum change is 
Aq- k, b k, (k, is the Debye momentum), and the relative 
scatter of the values of q is small, of the order of k,/kD, i.e., 
the dispersion is weak. The main contribution to the point- 
contact spectrum is therefore made by the averaged value of 
the K factor. The amplitude of the spectrum depends in this 
case on the parameter ratios li/d and k,/kD, and can both 
increase and decrease with increase of field. Such a behavior 
of the inter- and inter-valley peaks was observed in experi- 
ments with a n t i m ~ n y . ~  The transition from an increase of 
the peak intensity in weak magnetic fields (rH $d)  to the 
strong-field regime described above takes place in fields sat- 
isfying the condition rH -d. This makes it possible in princi- 
ple to determine the dimensions of the contact by an inde- 
pendent method from the "size effect" in the intensity of the 
point-contact spectra. 

Although we have considered the case of field orienta- 
tion along the contact axis (along the current), it can be 
shown that the effects in a strong field, rH <d, remain un- 
changed also for another orientation. The reason is that the 
picture of "one-dimensional" motion in the field (Fig. 2) is 
not sensitive to the orientation of the vector H (except when 
the field is strictly parallel to the surface). 

We note in conclusion that the use of extremely strong 
magnetic fields with r, <d  increases the length of the 
spreading of the current and makes it commensurate with 
the length of the electron-phonon interaction. This should 
change the conditions of charge transport in the point con- 
tacts-a transition from the ballistic regime of point-contact 
spectroscopy to the thermal regime.'2*13 In this transition 
region, the point-contact spectra should broaden with in- 
crease of field, owing to the additional heating in the point 
contact. These effects (as well as one that does not follow 
from the present paper, a shift of the intervalley spectra in a 
strong field into a region of higher energies3') were observed 
in experiment3 for phonons due to intervalley scattering of 
electrons in antimony. The absence or smallness of such ef- 
fects for intravalley transitions may be attributed to the fact 
that in the latter case the magnetic field is not strong enough 
to violate condition ( 1 ) (e.g., in view of the large inelastic 
length I, in the region of small displacements). The charac- 
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teristic value of the magnetic field H, at which the change of 
regimes occurs is determined by relation ( I ) ,  viz., 

Study of the nonlinear electric conductivity in such strong 
fields offers a unique possibility of observing a transforma- 
tion, continuous in the field, of point-contact spectra on go- 
ing from a conservative to a thermal regime of electric con- 
ductivity. 

Oscillations of the potential in a contact in fields rH ), 
which appear at sufficiently large mean free paths I, ,I, ) rH,  
will lead to interesting effects, particularly to a resonant be- 
havior of the electric conductivity of a point contact in an 
alternating field. 

"We have neglected in (28) the influence of the electric field on the 
electron motion (eV<p) and chose for simplicity a collision integral in 
a model form corresponding to an elastic-scattering cross section that is 
independent of the momenta. 

2' Substitution of (34) in (3  1 ) confirms the validity of this expansion. The 
expansion parameter is r,/d < I. 

"Since the electron loses energy by collision, the maximum energy ac- 

quired in the field at I, -d  should be somewhat less than e V; this causes, 
besides broadening, also a shift of the spectrum towards higher energies. 
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