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Variation of a quantizing magnetic field H applied along the axis of a one-dimensional 
superlattice induces metal-insulator phase transitions due to the dependence of the density of 
states in the minibands on H. An analysis is made of the existence of the intervals of H in 
which Fermi electrons moving along the magnetic field become localized. The characteristics 
of the photoconductivity of a superlattice in a quantizing magnetic field are determined. 

1. ENERGY SPECTRUM 

The interest in the electronic properties of superlattices 
is due to the unique ease of controlling their band structure 
and of imparting a number of properties not attainable in 
natural crystals.'s2 They include, in particular, a strong an- 
isotropy. In the case of one-dimensional superlattices (to 
which our treatment will be confined) the electrons which 
move across the layers have to overcome relatively high po- 
tential barriers distributed with a period d and their energy 
spectrum in this direction can be described in the tight-bind- 
ing approximation. However, the electrons traveling in the 
planes of the layers are free and they retain the dispersion 
law of the original crystal &,(k). In a wide range of carrier 
densities typical of semiconductors this dispersion law can 
be regarded as quadratic (for simplicity, we shall assume 
that it is isotropic). Consequently, the energy spectrum of a 
superlattice is 

ei (k) = f i Z (  k,2+k,2)/2m,+ei+'IZA, (I-cos k,d) , (1)  

where&; is the position of the bottom of the ith miniband and 
A, is the width of this miniband. The low probability of tun- 
neling across a barrier, which justifies the use of the tight- 
binding approximation, means that A; <&,+ ' - &,. This in 
turn indicates that longitudinal effective masses near the 
miniband extrema (which represent the motion along the 
superlattice axis) are very large for fairly low values of A,: 

m,,"'=2fiel~,d2 W m,. 

If A, k 5 X eV and d z  50 A, the longitudinal effective 
mass mi" is larger than the mass of a free electron. 

If the electron gas in a superlattice is degenerate, its 
principal properties are known to be determined by the 
shape of the Fermi ~ur face .~  It readily follows from Eq. ( 1 ) 
that in the majority of cases the Fermi surface of a superlat- 
tice is a system of corrugated cylinders. Only when the Fer- 
mi energy f lies within a narrow interval of width A,, defined 
by 

points where f = E ;  we can expect phase transitions of order 
two-and-half (see Ref. 3 )  due to the appearance of a new 
Fermi surface sheet, whereas at the points where 
f = E ;  + A, these phase transitions are due to conversion of 
a closed Fermi surface into an open one. This should result in 
disappearance of saturation of one component of the magne- 
toresistance in a classically strong magnetic field applied to 
the superlattice axis." 

We shall now consider the properties of a superlattice in 
a strong magnetic field H parallel to the superlattice axis. 
Such a field quantizes motion in the plane of the layers and 
lifts the spin degeneracy, giving rise to an energy spectrum of 
the type 

Here, w, = eH/m,c; po is the paramagnetic moment of an 
electrons which, in the absence of the spin-orbit interaction, 
is identical with the Bohr magneton; q = 0, 1, 2, . . . ; 
a = _+ 1. The energy spectrum of Eq. (4)  corresponds to the 
density of states 

which at the miniband edges has square-root singularities 
typical of quasione-dimensional motion. 

In relatively weak magnetic fields (h, <Ai ) the Lan- 
dau quantization has the usual consequences: at low tem- 
peratures all the electronic characteristics of a superlattice 
oscillate as a function of 1/H with periods A(1/ 
H) = 2?rfie/cSe,,, , where Sex,, is an extremal section of the 
Fermi surface (de Haas-van Alphen and Shubnikov-de 
Haas effects). Each corrugated cylinder, with extremal sec- 
tion differing little from that of another cylinder (i.e., when 
f is not too close to E;  + A;), should give rise to beats in the 
form of amplitude oscillations with a large period2' indepen- 
dent of n: 

ei<C<ei+At, ( 3 )  

is one of the sheets in the form of a strongly elongated ova- A'*) ( 1 / H )  =efi/cmLAi. (6)  

loid and at the Fermi energy close to the left-hand limit of 
this interval the Fermi surface is a strongly elongated ellip- 2. 

soid with the ratio of the axes equal to (m;ii)/m, ) '") 1. A further increase of the magnetic field alters consider- 
It therefore follows that variation of the carrier density ably the properties of a superlattice associated with the ap- 

n or of the superlattice parameters can alter the Fermi sur- pearance of energy gaps in the density of states described by 
face topology (as first pointed out in Ref. 4). Then, at the Eq. (5 ) .  The appearance of such gaps is mentioned in Refs. 6 
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and 7. The gaps occur when the separations between the 
energy levels exceed the miniband width, i.e., if 

In this case the spectrum splits into separate allowed mini- 
bands, each of which has 

states per unit volume. In the limit A, -0 these minibands 
are transformed into 8-like peaks of the density of states, 
which are typical of two-dimensional systems in a magnetic 
field." 

Since the capacity of N of each miniband depends on the 
magnetic field, the change in the field in the case of a con- 
stant total carrier density n alters the band populations in a 
superlattice. Then, at T = 0 the minibands with the period 

are completely filled and emptied, i.e., metal-insulator tran- 
sitions take place. 

It follows that every time when the field has the value 

i.e., every time that the carrier density is an integral multiple 
of the miniband capacity N, the chemical potential level is 
"switched" from one miniband to another. 

It should be stressed that the periodicity of these metal- 
insulator transitions is independent of which of the mini- 
bands are neighbors. In moderate fields these minibands are 
separated by a gap -h,, whereas in extremely high fields 
the gaps are of the order of E,  + , - E, .  It should be stressed 
that in this case we have an unusual situation: oscillations 
are not due to a change in the population of the Landau 
levels, but due to the filling or emptying of minibands with 
different serial numbers i [see Eqs. ( 1 ) and (4)  1.  

In an ideal sample at T = 0 this switching of the chemi- 
cal potential from one miniband to another is abrupt, but at 
T # 0 the dependence [(H) has no singularities (see Figs. 1 
and 2) .  We shall now determine the nature of the depen- 
dence <(H)  near H = H,. We shall consider two minibands 
between which the Fermi level is located in a field H = H, 
and we shall assume that energies are measured from the 
bottom of the lower miniband (Fig. 1 ) . If hc ) T, the other 
minibands play no role. We can find < from the equation 

FIG. 1. Electron occupancy of minibands 

FIG. 2. Dependence of the chemical potential on the magnetic field. 

We are assuming here that both minibands correspond to 
neighboring Landau levels with the same quantum number i 
(in the case when h, < ei + , - E, this is the most probable 
situation). The width of the two minibands is the same (we 
shall omit the index i). 

The solution of Eq. ( 10) for T &  A and H z  H, is 

A - i/,n2A(H,/H-1)2, H-H, >> H a  (T/A)'", 
'/,(ho,+A)+ Tln[ (1+6')'" + 61,'IH-He( <H8(T/b)", 
tio,+'lp n2A (H,/H-I)', H.-H IT8 (TIA)"', ( 11 

where 

In the case when the deviation o f H  from H, is exponen- 
tially small, we have 

If a gap between minibands contains localized states, 
the shift of the Fermi energy 5 from a miniband to another is 
smeared out and depends on the density of states in the "for- 
bidden" band. 

Since a metal-semiconductor transition described here 
results in a redistribution of electrons between minibands 
which are relatively far apart on the energy scale (when 
fimc ) T ) ,  we have to consider the relaxation time .r, of such 
a transition. At first sight it might appear that the attain- 
ment of an equilibrium requires an exponentially long time: 
rR a exp ( h , / T )  . In reality this is not true." Figure 1 illus- 
trates the energies of elementary excitations: in a field 
H = H, the excitation of the system requires overcoming of 
a gap amounting to hc - A ,  whereas in a field H #H, there 
is no need to overcome this gap. We must remember that 
when H i s  varied (in particular, when the value H = H, is 
passed), the energy of the ground state of the whole system 
changes continuously. In fact, it readily follows from Eqs. 
(5 )  and ( 11 ) that the contribution of the miniband being 
filled to the energy of the system tends to zero in the limit 
H-H,. Therefore, the change in the ground state due to an 
adiabatic change in the magnetic field may occur instanta- 
neously. This is not in conflict with the fact that in a field 
H5 H, some of the electrons are in a miniband with the 
energy equal to or even exceeding h,. The region for the 
transition is the need to satisfy the requirements of the Pauli 
principle. In other words, the whole electron system should 
be modified (collective effect) and the value of fio, (one- 
electron gap) should be divided by the total number of elec- 

407 Sov. Phys. JETP 65 ( Z ) ,  February 1987 



trons. Consequently, in the thermodynamic limit a single 
electron need not acquire a finite energy for the transition to 
the upper miniband: the true gap is zero. As long as the 
magnetic field is varying, the system does not achieve a 
steady state and electrons do not have a definite energy; how- 
ever, at the end of the process some of the electrons (gov- 
erned by the difference between H a n d  H, ) are in the upper 
miniband. 

We shall conclude this section by considering the case 
of extremely strong fields: 

when only the lowest miniband of width A, is partly filled, 
i.e., when a metallic state is obtained. The Fermi energy mea- 
sured from the bottom of the miniband decreases on increase 
in the field: 

Ifpfd /fi< 1, we have 

We can see that in this quantum limit of very high fields the 
anisotropy induces strongly (in accordance with the mass 
ratio) the Fermi energy. This means that in the case of a 
superlattice we can observe lifting of the degeneracy of an 
electron gas: an increase in H may give rise to the case when 
[< T, even when T< A,. Similar behavior can be expected 
also at H z H , ,  when the Fermi energy measured from the 
edge of the relevant miniband is less than the temperature T 
of a sample and the temperature is less than the width of the 
corresponding miniband. 

3. LONGITUDINAL CONDUCTIVITY IN A QUANTIZING 
MAGNETIC FIELD 

We shall consider galvanomagnetic properties of a su- 
perlattice in the range of strong fields defined by Eq. (7)  
when there are energy gaps in the density of states. As point- 
ed out already, in this case a superlattice is in many respects 
similar to a purely two-dimensional system in a quantizing 
field. In a plane xy perpendicular to the field the diagonal 
components of the conductivity ox, and oyy should vanish 
periodically and, because of the localization effects, this 
should occur in finite intervals ofH. In the same intervals the 
Hall conductivity N should exhibit a plateau typical of the 
quantum Hall effect, but because of the parallel connection 
of N superlattice layers, this should be observed for a,, 
= jNe2/2di( j,1,2,3, . . . ). Such a plateau (after allowance 

for the ineffectiveness of the outer layers in real superlat- 
tices) has indeed been ob~erved .~  

However, there is an effect which distinguishes a super- 
lattice in a basic manner from two-dimensional systems: this 
is the conductivity a,, along the applied magnetic field. We 
shall consider this quantity in more detail. The periodic met- 
al-insulator transitions mentioned above should give rise to 
giant oscillations of the value of a,, . A fairly unusual situa- 
tion appears: variation of the magnetic field can alter qual- 
itatively the nature of the conductivity not only across, but 
also along the field. 

Some general expression for the longitudinal conduc- 
tivity of a superlattice in a magnetic field in the case of scat- 
tering by phonons are deduced by Polyan~vskii '~ '~ and ex- 
perimental evidence of the vanishing of a,, at H = H ,  is 
given in Ref. 9 [our notation of the fields isused: see Eq. 
(9a) l .  We shall make clear the physics of these phenomena 
and consider the main features of the metal-insulator transi- 
tions described above by estimating the conductivity a,, us- 
ing the relaxation time (T)  approximation. 

In the degenerate case the contribution to the conduc- 
tivity comes only from a partly filled band and we have 

or,= ( e Z H ~ / 2 n Z f i 2 c )  I vZP 1, (15) 

where the Fermi velocity is luf 1 = d [[(A, - [) ] 'I2/fi, if 
the Fermi energy {is measured from the bottom of the corre- 
sponding miniband. 

The transitions described above are manifested as van- 
ishing of v r  at the points H = H,.  The actual nature of the 
dependence a,, (H) is governed not only by u:, but also by 
the dependence of T on H, which itself may be singular. The 
special nature of a superlattice lies in that, because of the law 
of conservation of energy, a particle with a wave vector k, 
can be scattered elastically only to a state - k,. A similar 
situation occurs in the case of the longitudinal magnetocon- 
ductance of three-dimensional systems in the extreme quan- 
tum limit,".'2 except that in our case the dispersion law 
~ ( k ,  ) is not quadratic. We then have 

where k = d ' cos-'(1 - 2[/A); Vq is the Fourier com- 
ponent of the scattering potential. We can show (see Table I1 
in Ref. 11) that for the majority of the elastic scattering 
mechanisms the dependence of the integral in Eq. ( 16) on [ 
is of little importance. Then, T vanishes at H = H, entirely 
due to the singularity of g ( [ )  and on the whole near the 
transition points we have 

where 
( o ,  - e3112 d  

ozz - -- A 
n2i izc  h 

is the value of the conductivity a, in fields H S;H, and T - '  

is understood to the probability of elastic backscattering of a 
particle moving at a velocity -dA/fi. The above formula 
may be useful in estimating the value of r by comparison 
with experimental results. We recall that vanishing of the 
conductivity described by Eq. ( 17) should be repeated peri- 
odically and the period is given by Eq. (9 )  

In fact, a,, should vanish not only at individual points 
H = H,, but in whole intervals AH of magnetic field because 
of the presence of localized states. If we assume that the 
localization criterion is the Ioffe-Regel condition k :I- 1 ( I  
is the mean free path), it then follows from lcr ( H  - H, )2 ,  

and k f-a IH - H, I that these intervals AH can be estimated 
from 

A H a H ,  (d l r ) ' " ,  &>d, (19) 

where T is the mean free path in fields H far from the critical 
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values H,. We note that the intervals in which the compo- 
nent of the transverse conductivity a,, vanishes should be 
different from those in which a,, vanishes because there are 
no grounds for assuming identical localization conditions in 
the planes of the layers and along the magnetic field (in par- 
ticular, this is true because of the difference between the 
structures of the wave functions along different directions). 

The three-dimensional nature of a superlattice should 
be manifested particularly clearly in the possibility of propa- 
gation of an undamped helicoidal electromagnetic wave (he- 
licon) at H Z  H,. The absence of damping is due to vanishing 
of the dissipative components of the conductivity.'" 

In the derivation of the formulas in the present section 
we are assuming that T = 0. Obviously, at finite tempera- 
tures and in fields H-H,, when the level of the chemical 
potential is close to the middle of the gap [see Eq. ( 1 l a )  1,  we 
have 

a,, a exp ( - f i o C / 2 T ) .  

We shall conclude by considering the behavior of a,, in 
very high magnetic fields when all the carriers are near the 
bottom of the lowest miniband. If we also have T <  f [see Eq. 
(14)] ,  then denoting by a; the values of a,, in extremely 
high fields, we find that 

cs,,"= ( n e 2 / m , , ( o ) ) ~ m ( H ) ,  H B H , .  (20) 

The extreme simplicity of the above formula allows us to use 
the value of a; to determine the scattering mechanism. We 
shall compare a,, with (a,: ),, , which is the conductivity of a 
three-dimensional isotropic semiconductor with an effective 
mass m, is the same limit H- [the formulas for (a; ),, 
are given in Ref. 121. I t  is clear from Eq. ( 16) that the ratio 
of the corresponding relaxation times is governed by the ra- 
tio of the density of states at the Fermi level, which for same 
density is m, /mil.  The ratio of the values of /vrl is then equal 
to the same quantity and on the whole we have 

csriml(~rrm),s 2 (m,/m )2, (21 

i.e., the superlattice conductivity in extremely strong mag- 
netic fields is higher than the conductivity of a "normal" 
semiconductor under the same conditions. We recall how- 
ever that both conductivities decrease on increase in the 
magnetic field and for some finite value of H we can expect 
localization. In a superlattice such localization occurs in a 
field 

H-H, =R(T/d)'", Twd, (22) 

where 2 is the field in which the lower miniband is approxi- 
mately half-filled and is the corresponding mean free path. 

4. PHOTOCONDUCTIVITY EFFECTS 

The problem of the photoconductivity of purely two- 
dimensional systems and superlattices in quantizing mag- 
netic fields is very interesting. It is known that the photocon- 
ductivity Aa of materials with a very high carrier density is 
usually extremely low. However, the photoconductivity 
which is then observed would be of considerable interest for 
research and applications because of other parameters of 
these materials. These difficulties can be overconie in super- 
lattices and two-dimensional systems because in fields 

H = H, corresponding to the filling of an integral number of 
minibands (Landau levels) the values of a,, , up,, and a;, 
vanish, as demonstrated above. In other words, under these 
conditions the dark conductivity is sufficiently small in spite 
of the high total carrier density and this is true even if 
allowance is made for the effects of background radiation. 

In  such "insulating" intervals the photoconductivity of 
structures of this kind should be very high because any opti- 
cally induced transfer to a higher miniband creates a free 
electron in that band and a hole in the filled miniband, which 
increases ax,, cr,,, and a,,. The Hall conductivity is then 
practically unaffected. 

Another favorable circumstance is the considerable re- 
duction in the noise at the points corresponding to M -- fIs. 
Numerical values of the noise characteristics, like the values 
of a,, , a,,, and a,, are governed by the miniband occupancy 
(or  by the occupancy of Landau levels in two-dimensional 
systems). 

The photosensitivity spectrum should depend strongly 
on the polarization of the incident light. When this light is 
polarized in the xy plane, it gives rise to transitions between 
different Landau levels so that the photosensitivity maxi- 
mum occurs at the cyclotron resonance frequency 
( W  = W, ). When light is polarized along thez axis, it induces 
transitions between minibands (in two-dimensional systems 
between levels) corresponding to different values of i in Eq. 
(4) .  In this case the resonances are described by the condi- 
tion fm = E~ - E,!, when in the case of a mirror-symmetric 
potential of the superlattice the minibands i' and i should 
have different parities. The photosensitivity spectrum is 
then identical with the spectrum of the absorption cocffi- 
cient calculated for a superlattice in Ref. 14. 

We shall now obtain an expression for the pliotocon- 
ductivity in the case of light polarized in the xy plane. If the 
depth of the skin layer is large compared with the dimen- 
sions of the sample, the absorption of light is governed by the 
imaginary part of the permittivity E" and is due t o  transitions 
between magnetic minibands (cyclotron resonance): 

4nNe2 T 
E N  =-I-.- 

om, (@-o,)' + yZ ' 
Here, y is the width of a resonance and we are assuming that 
in the most interesting case the upper Landau level. is almost 
completely filled, i.e., it contains z N  electrons. Then, the 
density of nonequilibrium electrons at  the higher level is 

where I i s  the radiation intensity; E is the permittivity; and T,, 

is the lifetime.4' 
We can go over from An to the quantity ha of interest to 

us by using the relationship between the carrier density and 
the electrical conductivity which in the case of a superlattice 
is not as trivial as for a homogeneous sample. How 't - \ t r ,  near 
the metal-insulator transition points, when n - sJ'V $- Sn, 
wheres is an integer and 6n < N, we find that at absolute zero 
we have o- /6nJ (we shall omit the indices of a, because all 
this and the subsequent discussion applies both to ax,,, and 
to a,, ). Therefore, we have Au/oo = An/l (the ~ndex 
"0" represents the dark values of the identified quantities). 
We finally obtain from Eq. (24) the photoconductivity 
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The above formula describes the magnetic field dependence 
of the photosensitivity with singularities at H = H, and a 
maximum at H = wm,c/e, corresponding to the cyclotron 
resonance frequency. The most convenient for experimental 
observation is the case when these two conditions coincide, 
i.e., when the frequency of the incident light is 
w = 2dind / m  , . 

A similar formula for the photosensitivity can be writ- 
ten also for light polarized along the z axis if w, is replaced by 
the corresponding resonance frequency. In contrast to w,, it 
is independent of the magnetic field, which alters somewhat 
the nature of the dependence of Ag/uo on H, but the singu- 
larities at H = H, still remain. 

The presence of localized states in the system may alter 
considerably its photoelectric properties. In particular, opti- 
cally excited carriers may be found in localized states and the 
photoconductivity is then due to activation to the mobility 
edge or due to hopping. This alters the nature of the depen- 
dences of ACT on the temperature of a sample and on the 
Fermi level position (i.e., in the final analysis, on the mag- 
netic field). More specific conclusions cannot be drawn in 
the absence of information on the localization criteria and on 
the mobility edges of a superlattice representing an interme- 
diate case between two- and three-dimensional systems the 
localization properties of which are known to differ very 
strongly. 

The authors are grateful to V. G. Baru, Yu. V. Gribkov, 
Sh. M. Kogan, A. S. Rylik, and R. A. Suris for discussing 
various stages of the preparation of the manuscript. 

"It is very difficult to attain the condition of a strong magnetic field in this 
geometry because the effective mass mil is large. 

"Information on the de Haas-van Alphen effect in layer structures can be 
found also in the work of Gvozdikov.' 

3'The arguments given later were formulated with the assistance of L. P. 
Pitaevskii to whom the authors are deeply grateful. 

4JIn contrast to quasi-two-dimensional systems in the absence of a magnet- 
ic field, when the lifetime T,, is of the order of the momentum relaxation 
time T,, i.e., when it is anomalously short (see Ref. 15), in our case r,,has 
its usual value and becomes anomalously short only at o = w, (w,, is the 
optical phonon frequency), when the one-phonon recombination pro- 
cess is possible. 
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