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The properties of the nonergodic state of a frustrated Ising antiferromagnet (antiferromagnetic 
spin glass) and the peculiarities of the reentrant transition to this state are investigated. Phase 
diagrams in a magnetic field are plotted for various degrees of disorder. Distinctive properties 
of the phase diagram are the rise of the reentrant transition temperature T, with increase of 
the magnetic field, and the feasibility of a field or temperature phase transition when long 
order sets in or vanishes in the nonergodic state. The temperature dependences of the magnetic 
susceptibility and of the sublattice magnetization are investigated in an approximation linear in 
T = (T, - T)/T,. 

One of the most interesting results of the infinite-radius 
theory for strongly disordered magnets is the predicted exis- 
tence of nonergodic systems with long-range magnetic order 
(called the mixed phase). In this state, the spin-glass order 
parameter [the Parisi function q(x)  ] and the usual ferro- or 
antiferromagnetic order parameter are simultaneously non- 
ero. 

A temperature transition from an ergodic ferromagne- 
tic state into a nonergodic one was observed and investigated 
many times (see the reviews by Fischerl and Huang2). In 
recent studies3-l3 a similar transition was observed both in 
Heisenberg and in Ising antiferromagnets. It is shown in Ref. 
6 that in the frustrated Ising antiferromagnet Fe, Mg, - , C1, 
the mixed state actually exists: the long-range magnetic-or- 
der parameter differs from zero in the nonergodic phase. The 
question of the existence of a mixed state in frustrated ferro- 
magnets has not yet been answered, possibly because their 
investigation is made complicated in this case by domain 
effects. 14.15 

The standard Sherrington-Kirkpatrick modelI6 de- 
scribes transitions into a mixed state only from a ferromag- 
netic phase (these are customarily called reentrant transi- 
tions). In our preceding s t u d i e ~ ' ~ ~ ' ~  we propose a 
two-sublattice variant of the Sherrington-Kirkpatrick mod- 
el, which describes transitions not only from the ferromag- 
netic but also from the antiferromagnetic phase into a mixed 
state. We shall hereafter call this state antiferromagnetic 
spin glass ( AFSG) . 

The distinctive nature of frustrated antiferromagnet is 
manifeted in their behavior in an external field. In a transi- 
tion from the ferromagnetic phase into ferromagnetic spin 
glass (FSG), a magnetic field increases the magnetization 
and suppresses thereby the glass so that the reentrant transi- 
tion decreases monotonically with increasing field. In 
AFSG, on the contrary, a magnetic field suppresses both the 
antiferromagnetic and the spin-glass order parameters. The 
phase separation boundary has thus a nontrivial dependence 
on the field. Thus, it was shown in Ref. 17 that for strongly 
and weakly frustrated antiferromagnets there exists a range 
of fields in which the temperature T, (H) of the transition 
into the nonergodic state increases with the field. 

We show in the present paper that the magnetic feld can 
raise the transition temperature T, (H) at any degree of frus- 
tration of an antiferromagnet. 

In Refs. 17 and 18 were investigated the properties of 

only the ergodic state. We pay here principal attention to the 
magnetic properties and to the phase diagram in the noner- 
godic state. Equations of state are derived for the Parisi func- 
tions q,,, (x) ,  the sublattice magnetization m,,, , and the 
magnetic-field distribution functions. These equations were 
solved near the T, (H) line, making it possible to plot the 
phase diagram in a nonergodic phase near the multicritical 
point of intersection of the T, (H)  line and the line TN (H) 
of transition to the magnetically ordered state, and find the 
temperature dependences of the long-range magnetic order 
and of the susceptibility below T, (H). 

It was found that in the nonergodic state a temperature 
or magnetic-field transition is possible from the antiferro- 
magnetic phases into a phase without long-range order. At 
the point of phase transition from the ergodic into the noner- 
godic state, m ( T) is a continuous function (m ( T) is the 
magnetization of the ferromagnet or the moment of the anti- 
ferromagnet sublattices) : the derivative dm/dT is contin- 
uous at the point T = T, . 

It is known19 thae equilibrium susceptibility (i.e., the 
susseptibility average over all the states of the nonergodic 
ensemble) of a "pure"l'spin glass is independent of tempera- 
ture down to T = 0. This is one of the few Parisi-theory re- 
sults that can be directly compared with experiment. Nu- 
merous experiments show indeed that the equilibrium is 
independent or almost independent of temperature below 
T,. The question of the temperature in the mixed phase, 
FSG or AFSG, remains open. We show in the present paper 
that in the mixed phase the susceptibility depends on tem- 
perature, but weakly. In AFSG the susceptibility decreases 
with decreasing temperature. In the transition through T, 
from AFSG to AF derivative 6' lnx/d 1nT increases jump- 
wise, although the susceptibility depends weakly on the tem- 
perature near T, even above the transition. With further 
temperature rise, the susceptibility in the AF  phase begins to 
increase rapidly and can have in a strongly frustrated anti- 
ferromagnet a maximum below the NCel temperature. The 
susceptibility in the FSG phase increases weakly with de- 
crease of temperature. 

1. EQUATIONS OF STATE OF ANTIFERROMAGNETIC SPIN 
GLASS 

In the simplest mode that describes AFSG, the Hamil- 
tonian is of the form 
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where Spi are the spins of subsystems 1 and 2, Jv are the 
energies of the exchange interaction of spins of different sub- 
systems; these, as always in the Sherrington-Kirpatrick 
model,I6 are independent of the distance rU and have a nor- 
mal distribution with variance N - ' I 2  and mean value J,/N, 
where N is the total number of spins in each subsystem. The 
exchange interaction within a subsystem is neglected. 

Using the Parisi parameteri~ation'~.~' for the matrices 
qa0 that determine the spin-glass order parameter, we obtain 
in the Appendix expressions for the free energy Fand for the 
equation of state of antiferromagnetic spin glass: 

Here q,,, are Parisi functions, and f, and f2 are equal to 

where p(x,y) and P(x,y) satisfy the equations 

with boundary conditions 

~~,~(l, Y ) = T  In 2 ch(y/T), (6)  

and 

A dot denotes differentiation with respect to x, and a prime 
with respect toy. P ,,, (x,y) are distribution functions of the 
molecular fields y for valleys whose overlap is less than 
q(x)." 

We shall use frequently in lieu ofp, ,,, ( x y )  the function 
m,,, (x,y) = p ;,, (x,y), given by the equation 

with the boundary condition 

Differentiating (9)  with respect and using (8)  and ( lo ) ,  we 
obtain a system of equations for q, and q,: 

It is seen from this that in the interval x, < x  <x,,  where q, 
and q, differ from zero, the following relation should hold: 

meaning marginal stability of the Parisi parameteriation at 
all temperatures. 

From this relation, just as in the case of pure spin 
glass,', it follows that at low temperature the AFSG en- 
tropy, and with it the heat capacity, is proportional to T2. 

Since the functions m (x,y) and P(x,y) are independent 
of x at T = T,, relation ( 12) goes over, if (7 )  and (1 1) are 
taken into account, into the equation for the de Alameida- 
Thouless line 

and from (6)-(9) follow at T = T, the equations of state of 
a frustrated antiferromagnet, which agree with those ob- 
tained in our earlier paper1' in the replica-symmetric ap- 
proximation: 

where the angle brackets denote averaging over y with the 
distribution function PI, ,  (0,y) from (7).  

2. LONG-RANGE MAGNETIC-ORDER PARAMETER NEAR T, 

We check in this section whether the long-range order 
parameter has a kink at the transition into the nonergodic 
state. 

Near the transition point, at small T = (T, - T)/  
T, g 1, the function q,,, depends on x only in the narrow 
interal x,, < x  <x, ,  whose width will be shown to be propor- 
tional to T. This allows us to expand the thermodynamic 
quantities in powers of T. At small T the function q,,, ( x )  can 
be regarded as linear in the interval x, < x  <x,,  so that 

We confine ourselves here to the case H = 0, so that 

Representing m (x,y) in similar form, we obtain from 
(10) 

(16) 
where 

Substituting ( 15) and ( 16) in relation ( 12) at x = x, and the 
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self-consistency conditions ( 8 )  and ( 9 )  form and q at x = 0 ,  
and expanding in terms of T and rA, 

we obtain a set of equations for the quantities A,S, , and 6, at 
T < T , :  

J" -- - Kl,z+3q-2qT,-z(1-q), 
I'K 

( 1 8 )  

Jo 5 
6 .  - K , , + S ,  (---; ~ ~ ~ - 4 )  + A (3KOr-2T,') 

T ,  T ,  

Here 

The first and second equations are obtained from the self- 
consistency of (8)  and ( 9 ) ,  and the third from ( 1 2 ) .  

The last equation does not apply at T>T,,  and A = 0.  
Since A and S, enter the first two equations only in the form 
of the combination T, -2Sq + A, it follows that 6 ,  is deter- 
mined both above and below the transition point by one and 
the same expression. The long-range order parameter has 
therefore no kink at any J, at the transition to the mixed 
phase. 

We show in the next section that the susceptibility does 
have a kink at the transition point. It can apparently be con- 
cluded from these two facts that the inverse phase transition, 
just as the transition from the parmagnetic phase into spin 
glass,23 is of third order. 

3. MAGNETIC PERMEABILITY 

A direct consequence of the marginal-stability condi- 
tion is that the equilibrium magnetic susceptibility of pure 
spin glass is independent of temperature.I9 The temperature 
dependence of the susceptibility in the mixed phase has not 
been studied for either the heretofore uninvestigated antifer- 
romagnetic spin glasses or the ferromagnetic spin glasses. 

In the calculation of the susceptibility it is convenient to 
use Eqs. ( 8 ) and ( 9  taken at the point x = 0 .  Representing 
( 8 )  and ( 9 )  in the form 

differentiating with respect to H, and recognizing that 
~ I ( O , Y  = - m 2 ( 0 , y  = m , q  ,(XI = q 2 ( x )  = q ,  dm,/  
dH = dm,/dH and dq,/dH = - dq2/dH as HO, we get 

Equations (21 ) and ( 2 2 )  are valid in both the ergodic and 
nonergodic states. We find first the temperature dependence 
of the susceptibility in an ergodic antiferromagnet, substitut- 
ing in ( 2 2 )  the solution of replica-symmetric equations 
( 1 4 ) .  

Figure 1 shows a plot of X (  T )  for J, = 1.2 and 1 .5 .  It 
was shown in Ref. 18 that the susceptibility increases with 
decrease of temperature at T <  T ,  if Jo < 2'". It is seen from 
Fig. 1 that in this case the susceptibility has a gently sloping 
maximum in the ergodic state and decreases with tempera- 
ture as T, is approached. 

Note that frustrations of the intrasublattice interaction 
suppress the increase of the susceptibility in a transition to 
the AF phase. If the intrasublattice interaction is large 
enough and is strongly frustrated, the susceptibility has at all 
J, a maximum at the NCel temperature. We have calculated 
the susceptibility in the nonergodic state ( T <  T, ) in an ap- 
proximation linear in T. It suffices for this purpose to substi- 
tute in the expressions for the mean values in ( 2 2 )  the solu- 
tions of the system ( 1 7 ) - ( 1 9 ) .  The derivative d x / d T  is 
expressed in terms of various combinations of the quantities 
S, , S ,  , and A. Since the last two quantities are discontinous 
at the point T = T, , the derivative d x / d T  also has a discon- 
tinuity at this point. 

Figure 2 shows a plot of d lnx/d 1nT vs. Jo above and 
below T, . It can be seen that in the mixed state the suscepti- 
bility depends on the temperature, in contrast to pure spin 
glass. But this dependence is weak. On going from the noner- 
godic to the ergodic state, the derivative d lnx/d lnT in- 
creases abruptly, but remains much less than unity. 

A similar calculation for FSG shows that in this case the 
susceptibility in the nonergodic state depends on tempera- 
ture. The susceptibility has a kink at T,, but, in contrast to 
AFSG, in the nonergodic state it increases weakly with de- 
crease of temperature. 

FIG. 1 .  Magnetic susceptibility vs. temperature at J, = 1.5 (upper curve) 
and J,, = 1.2 (lower curve). 
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FIG. 2. Dependence of ( d  ln,y/a In T),= ,w on J,, in the ergodic 
(T- T, + 0, curve 1 ) and nonergodic (T-  T, - 0, curve 2 )  phases. 

4. PHASE DIAGRAM IN A MAGNETIC FIELD 

As noted in the earlier paper," frustration prevents the 
existence of the A F  phase at sufficiently low temperatures, 
so that the T, ( H )  and TN ( H )  curves cross on the ( T , H )  
phase plane. The temperature of the transition from the AF 
phase into the AFSG state has a nontrivial dependence on 
the magnetic field, since the field suppresses these two 
phases unequally. It has shown T, has a nonmonotonic de- 
pendence on H at J,$ 1 and Jo< 1 ,  and that the temperature 
T, increases with the field at the point of intersection of 
T, ( H )  and TN ( H ) .  This analysis of the phase diagram, 
however, is of course incomplete. First, comparison with ex- 
periment requires an analysis at J, - 1 =: 1 ,  where TN ( 0 )  
and T, ( 0 )  are not too strongly different. At such Jo the 
phase diagram differs substantially from that given in Ref. 
17. Second, no study was made in Ref. 17 of the possibility of 
transitions between different phases of the nonergodic state. 
In particular, we do not know how the TN ( H )  line is contin- 
ued into the nonergodic phase, and whether an AFSG-SG 
transition is produced accompanied by vanishing of the anti- 
ferromagnetic order parameter. 

Phase diagrams for different values of Jo are shown in 
Fig. 3. The principal features of the interface between the 
ergodic and inergodic states are the following: 

1 ) There is always a field region in which T, increases 

FIG. 3. Phase diagram in the (T, H )  plane at J,, = 1.7 (Fig. 3a) and 
J,, = 3.0 (Fig. 3b). The inset of Fig. 3a shows in enlarged scale a section of 
the phase diagram near the triple point. The dashed line shows the slope of 
the T, ( H )  curve in the nonergodic phase. 

with H. The increase of T, is stronger the larger J,. At 
J, = 3(TN (O) /T ,  ( 0 )  ~ 5 0 0 )  we have a ratio T, ( H , ) /  
T, (0) z 30 ( H ,  is the field in which the lines T, ( H )  and 
TN ( H )  cross). But also at J, = 1.7, when TN ( O ) /  
T, ( 0 )  = 9.4, the temperature T, ( H )  is twice as high as 
T, ( 0 ) .  If, however, J, - 1 4  1 ,  then T, (H, )  < T, ( 0 ) .  

2 )  At J, - 1 4 1 and JOB 1 the temperature T, ( H )  is a 
nonomotonic function of H if H < H,: initially T, ( H )  de- 
creases with increases of the field, and then increases. For 
intermediate values of J, corresponding to the interval 
TN (O) /T ,  ( 0 )  =: 1.5-30, the temperature T, ( H )  increases 
monotonically with H all the way to H = HO. 

3 )  T,  ( H )  decreases monotonically with the field at 
H > H,. The T, ( H )  curve has a kink at the point H = H,. 

The maximum field at which an antiferromagnetic 
phase can exist is somewhat higher than H,. 

The ratio Ho/TN ( 0 )  has a nonmonotonic dependence 
on the parameter J,. At J -  19 1 the field 
H o z  TN ( 0 )  (J ,  - 1 ) 3 1 4  T~ ( 0 )  (Ref. 17).  If, however, 
Jo> 1 we can obtain for the field H the estimate 

We consider the nonergodic state. To find the transition 
line from the AFSG phase, in which the antiferromagnetic 
order parameter I differs from zero, to the SG phase, where 
I = 0, we must find in the SG phase the generalized suscepti- 
bility relative to a field that is directed upwards for spins of 
one subsystem and downward for the other. This susceptibil- 
ity has a pole when J, P = 1, where P is determined by the 
same expression ( 2 2 )  as for the usual susceptibility, but the 
mean values are calculated in an external field. 

The calculations can be carried out to conclusion only 
near ( H ,  T o ) .  Confining ourselves, as before, to the linear 
terms in the dependence of q ,,, on x in the interval 
x , ( H )  < x  < x ,  ( H )  and expanding all the quantities in pow- 
ers of7 and ( H  - H,)/H,,  we obtain the slope of the TN ( H )  
curve in the nonergodic phase at the point (H,,T,) .  

The calculation results are shown in Figs. 3. It can be 
seen that in the nonergodic state there exist regions with 
antiferromagnetic order as well as with pure spin glass. 
There is an interval of fields weaker than H, in which the P- 
AF-AFSG-SS phase transitions take place in succession as 
the temperature is lowered. 

CONCLUSION 

We have shown that a temperature of field transition, in 
which long-range order vanishes (appears), is possible in the 
nonergodic state. Since it was found that the susceptibility in 
the mixed state depends little on the temperature, it is quite 
difficult to detect this transition by finding a kink an the 
X (  T ) curve. 

A more suitable method in this case is apparently neu- 
tron diffraction, which would permit detection of the van- 
ishing of antiferromagnetic reflection. As to transitions from 
the antiferromagnetic phase into antiferromagnetic spin 
glass, they can be investigated by the usual macroscopic 
methods. Such investigations were carried out in Refs. 3-6 
for the layered Ising metamagnet Fe, - , Mg, CI,. The mea- 
surements were made at a magnesium concentration x near 
the percolation threshold in a plane, so that the interaction 
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of the spins in the plane was greatly suppressed. In this sense, 
the situation accords with the model considered by us, in 
which no account was taken of interactions within the sub- 
lattices. A strong increase of Tg with increase of the magnet- 
ic field, by almost a factor of two, was observed in Ref. 14 at a 
ratio TN/Tg ( 0 )  z 3; this is in qualitative agreement with the 
result of the theory above. 

The increase of T, with increase of H was attributed in 
Ref. 4 to the influence of random magnetic fields on the 
antiferromagnetic phase. Such fields appear in a disordered 
antiferromagnet in an external magnetic field.24 But these 
fields must suppress also the spin-glass state, so that the in- 
fluence of the random field on T, is not clear beforehand. 
Since there are no random fields in our model with random 
bonds and with only intersublattice  interaction^,^^ and the 
transition temperature can increase with the field, it is clear 
that the T, ( H )  growth observed in Ref. 4 can be explained 
also without assuming an influence of the random field. Ran- 
dom-field effects can be easily taken into account by includ- 
ing intrasublattice interaction in the model. 

Note that an increase of Tg with H was observed also in 
Heisenberg antiferromagnetic glass, l 2  where the growth was 
stronger the larger TN (O)/T, ( 0 ) .  

It was mentioned above that the temperature depen- 
dence of the sublattice magnetization in Fe, Mg, -, Cl,. was 
measured in Ref. 6. The magnetization varies smoothly with 
temperature, and in accordance with the results of Sec. 2 the 
m,,, ( T )  curve has no kink at T,. It would be of interest to 
identify the singularity of m ,,, at T, . If the reentrant transi- 
tion is, just as the transition into "pure" spin glass, of third 
order, a kink can appear already on d 'm,,, /dT2.  

APPENDIX 

The replica method was used in Ref. 17 to obtain the 
following expression for the free energy 

wherep = 1 or 2, n is the number of replicas, 

1 
@ (i"p=y,"L) = - z ( ( x P )  I + ( x I a )  + (iP) I) 

a 

In the nonergodic phase, the replica symmetry of the 
matrices q is violated. The quantities ma do not depend on 
the replica indices and determine, as we shall show present- 
ly, the moments of the sublattices. We express next the trace 
in (A.2)  as a product L,L,, where 

1 
L, = ~p erp [+ s , ~ H ,  + 7C s ~ ~ s ~ ~ ( P ~ ~ ~ - ~ ~ ~ ~ ) ]  , 

a (a,P, 

We use the Parisi parametrization for the matrices q,"*. 
Then, using the identity 

weobtain, following the Duplantier method,26 an expression 
for the free energy 

Here q , ( x )  is the Parisi function for the parameter, while f, 
and f2 are equal to 

while the functions q, (x ,  y ) satisfy the equation 

and x," , x; , Y , " ~ ,  yyB the solutions of the saddle-point equa- 
tions 

i 1 
x3a = - ( x i a + x Z a ) ,  ysaB = - - 

2 2 ( y i a p + y * a p ) .  

The angle brackets denote averaging with the exponential 
under the trace sign in (A.2) .  

with boundary conditions 

Y cp , , , ( l ,  y)= Tln 2ch-. 
T (A .9 )  

A dot denotes differentiation with respect to x, a prime dif- 
ferentiation with respect toy,  and x varies in the interval 
[1,21. 

An equation for q, ( x )  can be obtained from (A .2 )  by 
varying and again using the Duplantier method. It is more 
convenient, however, to use the variational procedure pro- 
posed in Ref. 22. To this end we write down the variational 
functional F i n  the form 
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X 
+ 7$243-4~)  ( T P ~ ( x ,  Y )  Y ] .  ( A .  10) 

The last two terms are zero by virtue of (A .8 )  and (A .9 ) ,  
and do not alter F. P are indeterminate Lagrange multipli- 
ers. 

Variation of the functional (A.lO) with respect to the 
functions q , ( x )  and m, leads to the equations 

m3='/z(mif mz). ( A .  14) 

Varying with respect to p(x,y)  and p(0,y)  and using 
( A .  12), we obtain equations for P , , ,  (x ,y)  

with boundary conditions 

Using ( A .  15 ) we can, following Ref. 22, simplify expres- 
sions ( A .  11 ) for q ,,, ( x ) .  To this end, differentiating both 
halves of (A .8 )  with respect toy ,  we obtain equations for 
m l , ~  (x,y) = P I , ,  ( x , ~ )  : 

where we have introduced the operator 

It follows from (A.15) that any function satisfies the rela- 
tion 

Using ( A .  19), we see that the last two terms in ( A .  1 1 ) can- 
cel out, so that 

I t  follows from ( A .  17) that 

We have thus derived Eqs. ( 3 ) - (  1 1 )  of the main text. 

"A spin glass is called "pure" if it has no long-range order, and only its 
spin-glass order parameter q ( x )  differs from zero. 
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