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A parameter rD is introduced to describe the temperature region near T,, in which the 
statistical spatial fluctuations of the order parameter are strong. It is shown on the basis of the 
Ginzburg-Landau functional, with the aid of the replica method, that two temperature 
superconductivity regimes are realized, depending on the degree of the disorder. At 
T, > rg = 2 . 4 9 ~ ~ ~  where T, is the Ginzburg parameter that characterizes the size of the 
region of strong thermodynamic fluctuations, the superconductivity is produced in spatially 
inhomogeneous fashion with droplike seeds. The drop density and their contribution to the 
free energy and to the diamagnetic susceptibility are obtained in a model of non-interacting 
drops. If rD < rg,  superconductivity sets in below Tc simultaneously in the entire volume, i.e., 
the usual second-order transition is realized. 

INTRODUCTION 

The theory of dirty superconductors, developed by 
Abrikosov and G ~ r ' k o v ' . ~  and by Ander~on,~  is the basis of 
the quantitative description of the superconducting proper- 
ties of a large number of disordered alloys. As the theory of 
strongly disordered system progressed, however, it became 
clear that the main results of Refs. 1-3 must be modified to 
fit mean free paths I of the order of the Fermi wave number 
k , ' (of the order of the interatomic distance). A growth of 
disorder in three-dimensional systems causes the electron 
diffusion to stop at mean free path I shorter than a certain 
value I, =. k , ', the electron diffusion ceases, the electronic 
states near the Fermi level become localized, and the system 
goes over into the state of an Anderson diele~tr ic .~.~ This 
metal-insulator transition manifests itself in a continuous 
vanishing of the metallic conductivity (at T = 0)  as I I,. At 
/%I, the conductivity is determined by the standard Drude 
formula and 0-1, whereas at 1 2  I, it decreases like 
a- (1 - 1, )", where Y is a certain critical exponent. The 
transition from diffusion to localization takes place at con- 
ductivities u on the other of the so-called minimal metallic 
conductivity a, =: (e2kF/a3fi) z (2-5). lo2 fl-'.cm-'. The 
theory of dirty superconductors does not take localization 
effects into account and is valid for conductivities in the in- 
terval (EF/Tc )a, )u%u,. 

The data known so far on the behavior of superconduc- 
tors near the localization threshold are the following. 

1. Assuming the density of states N(E, ) to be indepen- 
dent of the Fermi level and the dimensionless electron-pho- 
ton interaction parameter A,,, to be independent of I, it can 
be shown that T, decreases with decrease of I, owing to the 
corresponding growth of the Coulomb pseudopotential p*. 
This effect is due to the increase of the delay of the Coulomb 
repulsion in the Cooper pair as the diffusion coefficient de- 
creases on approaching the Anderson transition. The de- 
crease of the superconducting transition temperature Tc be- 
gins in the region u%u, and becomes rapid at a 5 ac (Refs. 
6-81. Belitz9 calculated the decrease of T, due to the de- 
crease of the effective density of the electronic states on the 
Fermi level under the influence of the Coulomb repulsion in 
the presence of impurities (the Al'tshuler-Aronov effect). 

The enhancement of the spin fluctuations with increase of 
disorder, and the appearance of localied magnetic moments 
near the localization threshold, due to the electron repul- 
sion,'' can also cause a decrease of T, in ultradirty supercon- 
ductors,' ' , I 2  but there is still no consistent quantitative the- 
ory of this effect. We note that the decrease of Tc due to the 
mutual influence of the disorder and of the Coulomb effect 
was first considered by Ov~hinnikov'~ and by Maekawa and 
Fukuyama (see Refs. 4 and 13) within the framework of the 
BCS model with allowance for the lowest localized correc- 
tions. 

2. Bulaevskii and Sadovskii7 and later Kapitulnik and 
Kotliar14 found the superconducting coherence length 6 (at 
T = 0)  in the region u<o,, and also in the localization re- 
gion (1 <1, ). At the mobility threshold itself, where 
I = / ,  =:k,'andu=O, we have 

In contrast to the standard theory of dirty superconductors 
with I) I, (Refs. 1 and 2) ,  in which 6 =go I is proportional 
to a ,  as 1-1, we have o - + O  whereas l remains different 
from zero both at the mobility threshold (I = I, ) and in the 
localization region, i.e., in an Anderson dielectric. The same 
result was obtained recently by Ma and LiI5 who used an- 
other method. Obviously, there results are valid only if T, 
does not vanish all the way to the Anderson transition, a 
situation possible only if rather strigent conditions imposed 
by the effects noted in Sec. 1 are met. The fact that 6 differs 
from zero when uvanishes at I<[, means conservation of the 
superconducting response in the phase of an Anderson di- 
electric. 

3. As the disorder increases, the region of thermody- 
namic fluctuations near Tc increases. The width of this re- 
gion is defined as T, Tc, where the characteristic Ginzburg 
parameter for dirty superconductors is equal to 
T, = [r2T,  N(EF )l 3 ]  -2. Kapitulnik and Kotliar14 noted 
that near the mobility threshold, where 6- (&k, * )  'I3, the 
parameter 7, does not contain a small quantity such as T, / 
EF (is not excluded, of course, that 7, remains small be- 
cause of a small numerical factor). Therefore a supercon- 
ducting transition near the location threshold can in princi- 
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ple not become an analog of aA transition in He4. Allowance 
for the fluctuations would lead in fact to a change of the 
critical exponents in the temperature dependence of the 
thermodynamic quantities near T, compared with the corre- 
sponding exponents of the molecular-field theory. 

All the cited theoretical analysis of the influence of dis- 
order on superconductivity were made under the assump- 
tion that the superconducting order parameter is self-aver- 
aging. This remarks pertains both the the classical papers on 
dirty superconductorsl-"nd to all recent studies of super- 
conductivity near and in the Anderson localization 
state.'-''. It is assumed here that the spatial fluctuations of 
the superconducting order parameter A( r )  are small, and 
the use of the parameter (A( r )  ) is justified. It seems natural 
for such a procedure to be valid at ass,, but there are no 
grounds for believing it to be correct near the localization 
threshold.". In such a system the electronic characteristics 
fluctuate strongly, and we shall in Sec. I below that these 
fluctuations actually lead to substantial spatial fluctuations 
of the parameter A( r )  ( a  brief summary of this section is 
given in Ref. 17). 

In Sec. I1 we consider superconductors with spatial 
fluctuation of the local "temperature" of the superconduct- 
ing transition. We shall show that if the amplitude of such 
statistical fluctuations exceeds a critical value, the supercon- 
ductivity manifests itself with decrease of temperature in a 
spatially inhomogeneous manner, in the form of supercon- 
ducting drops. We shall find the density of these drops as a 
function of temperature. In the model of noninteracting 
drops, we shall obtain also their contribution to the free en- 
ergy of the system, and the diamagnetic susceptibility. 

I. ESTIMATE OF THE REGION OF STRONG STATISTICAL 
FLUCTUATIONS OF THE SUPERCONDUCTING ORDER 
PARAMETER. 

As a starting point, we consider the usual BCS Hamil to- 
nian 

= o + % i n + M ,  aM = J dr B2(r)/8n,  

where B = curl A and u ( r )  is a random potential in the dis- 
ordered system. The pairing interaction can also fluctuate in 
space, but we assume hereafter that this interaction is weak, 
Ae,,, ( r ) < l .  

Let us write down Ginzburg-Landau functional for the 
non-averaged order parameter A(r) .  We introduce to this 
end the exact energy eigenvalues E, and the exact eigenfunc- 
tions p,u(r) of the electrons, corresponding to the Hamilto- 
nian 2?". We obtain with their aid a superconducting func- 
tional in the formI8 

6 (r-r') 1 
x [ ~ ~ , ~ ~ ( ~ )  - - K ( ~ , ~ ' ) ] A ( ~ ) A * ( ~ ~ ) + - ~ N ( E ? ) I A ( ~ )  2 1 4 } ,  

The statistical fluctuations of A,,, ( r )  and of the kernel 
K( r , r l ) ,  (in view of the random character of the values of 
p,, ( r )  and E,  ) cause spatial fluctuations of the supercon- 
ducting order parameter A ( r ) .  We have neglected in (2 )  the 
fluctuations of the parameter A; it will be seen from the anal- 
ysis that follows that they are less substantial than the fluctu- 
ations of the kernel K(r , r f  ). Assuming the fluctuations of the 
kernel K(r , r l )  and of the parameter A( r )  to be small, we 
estimate the temperature region in which this assumption 
turns out to be incorrect and where a description with the aid 
of the averaged order parameter is inadequate. It will be 
shown below that the variance is determined mainly by the 
long-wave variation of A(r) .  We can herefore transform 
from (2 )  to the G L  functional for the order parameter: 

where T, is the transition temperature determined by the 
averaged kernel K,(r - r ') with allowance for the short- 
wave fluctuations of the kernel K( r , r l ) .  In the derivation of 
( 3 )  we neglected the fluctuations of the coefficient 6'. The 
function t ( r )  plays here the role of the fluctuation local criti- 
cal "temperature," It takes into account the fluctuations of 
the pairing interaction, for which 
t ( r )  = A ;,' ( r )  - (A ,pL ( r ) ) ,  and also the fluctuations of 
the dipole density of the electronic states N(r,E,) : 

The functional for the fluctuations of the pairing interaction 
was investigated by Larkin and O v c h i n n i k ~ v ' ~  in connection 
with a study of the influence of structure inhomogeneities of 
the samples on their superconducting properties; the analy- 
sis that follows will be similar. Within the framework of per- 
turbation theory in the fluctuation A ( r  ) we obtain from (3  ) 
the renormalized temperature T, and the variance of A ( r ) :  

It follows from (5a) that the fluctuation-induced shift of T, 
is positive and the contribution made to it by the short-wave 
fluctuations is generally speaking not small. According to 
(5b), the fluctuations of A ( r )  are determined mainly by the 
behavior of the correlation function y (q )  at small q. 

The value of y (q )  neglecting the fluctuations of the 
pairing interactions, was obtained in Ref. 17. In dirty super- 
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conductors with uBuc i e  1 we have 
y(0)  z f N  -'(E, )D [ *, where Do = v,1/3 is the classical 
diffusion coefficient. We then obtain from (5)  

where 6- ( lo / )  'I2. The parameter T, introduced by us de- 
fines the region in which statistical (spatial) fluctuations of 
the order parameter are significant." It can be seen from (6)  
that T, -72, <rG < 1, in dirty superconductors, i.e., the sta- 
tistical fluctuations are unimportant even in region where 
thermodynamic flucturations are noticable enough. 

The situation changes radically in the vicinity of the 
mobility threshold, where3' y(q)  -6 31n( 1/69). From (5)  
we obtain for the variance of A ( r )  the expression 

According to ( 7  ), the statistical fluctuations near the mobil- 
ity threshold turn out to be most substantial, and are strong- 
er here than the thermodynamic fluctuations in view of the 
logarithmic factor in y(q) .  Thus, near the localization 
threshold we have TD 2 T, =: 1. The transition from the re- 
gime of weak statistical fluctuations (T, < r, ) to the regime 
of strong ones (T, 27,) takes place at the values 
u z u * z u c  (kFgo)-'13 of the conductivity, the physical 
meaning of which was discussed in Ref. 7. At this conductiv- 
ity, a transition takes place from the usual theory of dirty 
superconductors to the relations typical of the vicinity of the 
localization threshold. 

Below the localization threshold. The region of strong 
A ( r )  fluctuations expands even more. This is due to the ap- 
pearance of an additional delta-function singularity in the 
correlator of the local density of states." We obtain accord- 
ingly in y (q)  an additional term [N(EF ) Tc ( 1 + R :q2) ] -', 
where R, is the localization radius of the electronic states on 
the Fermi level. The variance of A ( r  ) acquires according to 
( 5 )  at R, > {( T) another term in addition to ( 7 )  

which increases rapidly with decrease of the localization ra- 
dius R, (R, = w at the localization threshold). It is shown 
in Ref. 7 that if Tc remains different from zero at the local- 
ization threshold, the Copper pairing survives with further 
increase of the disorder and with decrease of R, only to val- 
ues R, ) [N(EF ) Tc ] -'I3. This inequality means that the 
energy interval Tc spans many discreate levels whose centers 
are located inside a region with radius R, (see also Ref. 15). 
In addition, it guarantees that the localization radius ex- 
ceeds substantially the characteristic dimension of the coo- 
per pairs. We see now that under the same condition the 
relative variance of A(r) remains at a level on the order of 
unity in the entire tempera1 interval in which superconduc- 
tivity exists in the dielectric phase. 

If the statistical fluctuations of t(r)are caused by ran- 
domly disposed regions with dimensions a, where 
k ; ' g a  46 ,  and with increased values of the electron-pho- 
ton interaction parameter + S/Z,,ph (in view of the 
change of the structure of the dislocations, twinning planes, 
etc), we have for such a model 

where c is the relative total volume of the regions with al- 
tered parameter A,,, . In this case, at c=: l and SA,,,/ 
A,,, -- 1, the regime of strong statistical fluctuations 
T, 2 T, is realized at a$  k , '(EF/Tc ) ' I 3 .  This condition is 
compatible with the restriction a 46 assumed above. Note 
that at a %6 the appearance ofinhomogeneous superconduc- 
tivity is not surprising: on cooling it is formed initially only 
in regions with increased transition "temperature" corre- 
sponding to the parameterile,,, + SA,,, . A much less trivial 
factor is that at a<{ there is likewise no averaging of the 
superconducting properties if the level of the fluctuations of 
t ( r )  [due to the fluctuations of N(r,E,) or of A,,, ( r )  ] is 
high enough. 

II. SUPERCONDUCTING TRANSITION IN SYSTEMS WITH 
STRONG DISORDER 

1. Formulation of problem 

We consider now superconductivity in systems with 
strong spatial statistical Gaussian fluctuations of the local 
transition "temperature" Tc ( r ) .  We shall show that in this 
model, depending on the degree of disorder, i.e., on the ratio 
rD /rG, two types of superconducting transition are possible 
At rD < T; = 2 . 4 9 ~ ~  the superconductivity is a second-or- 
der phase transition at the point Tc. The superconducting 
order parameter is in this case equal to zero at T >  Tc and is 
spatially homogeneous over scales exceeding the correlation 
length {(T) below Tc . Statistical fluctuations lead only to a 
change of the critical exponents in the temperature depend- 
ence of the basic characteristics of the system 6(T) ,  A, ( t ) ,  
and  other^.^^,^^ 

At TD > T; the superconducting state appears in inho- 
mogeneous fashion even if the correlation radius a of the 
disorder-induced fluctuations of the temperature Tc ( r )  is 
small compared with the superconducting correlation 
length 6 (we refer to disorder of this type, with age, as 
microscopic). The first to deduce the possibility of an inho- 
mogeneous superconducting transition for microscopic dis- 
order were Ioffe and Larkin.24. Investigating the case of ex- 
tremely strong disorder (in fact T, ) (T, T) '/'), they have 
shown that as the temperature is lowered the normal phase 
aquires localized superconducting regions (drops) with 
characteristic dimension {(T). Far from Tc their density is 
low, but with further cooling the density and dimensions of 
the drops increase and they begin to overlap. The supercon- 
ducting transition becomes percolative in this case. 

The Ioffe-Larkin transition, valid in the limit of very 
strong disorder, did not take thermodynamic fluctuations 
into account and provided no criterion for the transition 
from the homogeneous superconductivity to the inhomo- 
geneous ones. The corresponding criterion TD > r; 
~ 2 . 4 9 7 ,  will be obtained below for a model with Gaussian 
fluctuations of Tc ( r ) .  

According to the estimates given in Sec. I, if the impuri- 
ties influence only the local density of states N(r,  EF ) in the 
system, the parameter rD/rG increases from a very small 
value to values greater than unity as the disorder increases 
and a transition takes place from the 1 )  k, ' regime to the 
electron localization regime ( I =  k , ' ). An onset of an inho- 
mogeneous superconducting regime is therefore to be ex- 
pected as the localization threshold is approached. In a sys- 
tem that contain regions with increased value of the 
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parameter under conditions 1% k , ',this regime can be 
realized also at parameter values r, (< 1, since r, (< 1 in such 
a system. 

Our treatment of superconductors with large disorder 
will be based on the GL functional (3a) with a Gaussian 
distribution of the temperature t ( r ) .  Given the distribution 
t ( r) ,  the free energy of the system and the order-parameter 
correlator are equal to 

(9b) 
and they must be averaged, assuming that the correlator 

is known. For Gaussian fluctuations with a correlator ( lo),  
the probability of a configuration with a given t ( r )  distribu- 
tion is 

The problem reduces thus to calculation of the functions 
F, {t ( r  )) and ( A  ( r )  A ( r' ) ) (9b) and their subsequent aver- 
aging with the aid of ( 1 1 ). 

We confine ourselves in this article to consideration of 
noninteracting drops. We can then disregard the presence of 
vortices in the sample, and in each drop the phase of the 
order parameter A ( r )  can be regarded as non~ in~u la r .~ '  Fol- 
lowing the gauge transformation 

'4 ( r )  -A ( r )  + (cJrI2e) V q  ( r )  . 
A ( r )  + A  ( r ) c x p [ - i v ( r )  1, 

where p ( r )  is the phase of the order parameter, the quantity 
A(r) in (9b) is real and the GL functional becomes 

FGL {A ( r ) ,  A  (r) )= j dr {= + N (EF) [ (r+t ( r )  ) A 2 ( r )  
8n 

Integration over the phase in (9)  adds to the partition func- 
tion an inessential constant factor which we shall disregard 
hereafter. To calculate the free energy of a system of nonin- 
teracting drops we shall use an approach similar to the fluc- 
tuation theory of nucleation of a new phase in first-order 
transitions, and also the replica method. 

2. Fluctuation theory of drops 

Superconducting drops can appear in a specified t ( r )  
configuration only in regions with locally higher supercon- 
ducting-transition temperatures. We shall number these re- 
gions by the subscript i. The order parameter in each region 
is determined by a nontrivial localized solution Aj;" ( r  ) #Oof 
the GL equation, and the contribution of such a drop to the 
partition function of the system is 

where El;" is the drop energy, and the factor N'" is deter- 
mined by the contribution of the A(r)  configurations that 
are close to the classical solution Al;" ( r ) .  Summing the con- 
tribution of configurations containing an arbitrary number 
of drops and neglecting their interaction with one another, 
we obtain the partition function (9a) of the system, 

+ 4 x N ( ' ) N ( J )  exp ( -  E:"+ E:" ) + a .  . I  
L! 

1 ,J 
T 

HereZ, is the partition function of the system in the absence 
of drops. Substituting ( 13) in (9a) and averaging the free 
energy of the system over the t ( r )  configurations, we get 

where Nis  a normalization factor and Fd assumes the role 
of the free energy of the drop: 

The main contribution to the functional integral ( 14) is 
made by the configurations to(r) that realize an extremum of 
the functional ( 15): 

Note that t,(r) is negative, since the drops appear in regions 
of higher superconducting-transition temperatures. Substi- 
tution of ( 16) in the GL equation that corresponds to the 
functional (3a) leads to a nonlinear equation for the order 
parameter A(r) in the superconducting drop. In dimension- 
less variables, this equation is 

The asymptote of the function ~ ( x )  at x >  1 is determined 
from the linearized form of Eq. ( 18), and ~ ( x )  -x-'e-" . 
The superconducting nuclei are thus localized over a scale of 
the order of the correlation radius l( T). The quantity F,, 
is obtained by substituting ( 16) and ( 17) in ( 15): 

It determines, with exponential accuracy, the free energy 
( 14) of the drops. The constant A in ( 19a) is equal toz5 

'm 

Note that the energy Ed {to(r)) of superconducting drops is 
negative, and their production is energywise favored com- 
pared with the case of the spatially homogeneous solution 
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A(r) = 0. According to ( 19a), superconducting drops can 
exist only in the presence of sufficiently strong statistical 
fluctuations T, > T,; a rigorous restriction will be obtained 
below. 

To determine the pre-exponential factor in (14) one 
must turn to the solution of the complete problem ( 11 ), 
( 13). Neglecting its thermodynamic fluctuations, the order 
parameter can be obtained within the framework of the 
Ioffe-Larkin method.24 We obtain for the free energy of the 
system and for the drop density p, the expressions 

I.', (T) z - T E - ~  (T) ( T ~ / T ~ ) " '  e?tp [-So (T ) ]  , (20a) 

F. (7) z E - 3  ( T ) S o  (T) exp [-So ( T ) ]  . (20b) 

The exponent So (T)  is defined here by Eq. ( 19a) with A = 0. 
Note that the pre-exponential factor in (20a) differs from 
that obtained in Ref. 24, which contains an inaccurate 
expression for the free energy of one drop. It is seen from 
( 19a) that at A <?S, ' (7) we obtain for S0( r )  the result of 
the Ioffe-Larkin theory of weak thermodynamic fluctu- 
ations. This means that their approach is valid if the inequal- 
ity rD < T < T ~ / T ~  holds, and this is possible only if T, % T, . 
It follows from (20) that in the region where these expres- 
sions are valid the average energy Fs /p, of each drop is large 
compared with the temperature, and the two become com- 
parable at A -- TS ; ' (7).  We confine ourselves hereafter to 
the region 1% 7s; ' (T )  i.e., T 9 T~/T, ,  where the contribu- 
tion of the thermal fluctuations becomes substantial. It will 
be shown below that its precisely in this limit that the fluctu- 
ations of the order parameter are small relative to the most 
probable configuration ( 17). This enables us to use standard 
field-theoretical methods to find the free energy of the sys- 
tem and the order-parameter correlator in the region of 
strong thermodynamic fluctuations. 

3. Replica method and instantons 

To average the logarithm of the partition function (9a) 
over t ( r )  with weight ( 1 1 ) we use the replica method, which 
permits the averaging to be carried out in explicit form.26 

We express the average free energy (9a) of the system in 
the form 

1 
F=-T l i ~ n  - [(Zn)-11. 

n+o n 
(21) 

To calculate (Zn ) in accordance with the idea of the replica 
method, we assume first n to be an arbitrary integer. Ex- 
pressing Zn in terms of an n-fold functional integral over the 
the fields of the replicas A, ( r ) ,  A, ( r ) ,  a = 1, ..., n and car- 
rying out exact Gaussian averaging over t ( r ) ,  we get 

Note that the random quantities t ( r )  have already dropped 
out of these expressions, and that the action Sn {A, ,A, } is 

translationally invariant. For the mean value of the order- 
parameter correlator (9b) we get 

<A (r) A (r') > 

(23) 
where we have symmetrized over the replica indices. 

Far from the region of strong fluctuations of the order 
parameter [ T I  >rD ,T, the functional integrals (22) and 
(23) can be calculated by the saddle-point method. The ex- 
ternal trajectories are classical solutions for the action (22), 
and when calculating the functional integrals account must 
be taken of the Gaussian fluctuations about them. The extre- 
ma1 trajectories are defined by 

n 

These equations for A, ( r )  have a spatially homogeneous 
solution and localized (instanton) solutions. The latter cor- 
respond at T > 0 to superconducting drops. We confine our- 
selves in this article to considerations of non-interacting 
drops and consider only instanton solutions above T, (at 
T > 0). We shall be interested hereafter only in those solu- 
tions that admit analytic continuation as n -0. We designate 
them A:'(r), where the superscript i labels the type of solu- 
tion. To find their contribution we must expand the action 
(22) accurate to terms quadratic in the deviations 
pa ( r )  = A, ( r )  - A:) ( r ) .  It is shown in the Appendix that 
the fluctuations of the fields A, ( r )  can be neglected when 
isolated seeds are considered. The action (22) takes then the 
form 

To calculate the functional integral over the fields pa we 
expand themin terms of the normalized eigenfunctions of 
the operator M"' : 

Substitution of (36) in (25) yields for the action the expres- 
sion 

The Gaussian functional integral in (22) is calculated by 
replacing the integration variables 

and its vake is determined by the eigenvalue spectrum of the 
operator M") . 

At A = 0 Eqs. (24) are symmetric with respect to rota- 
tions in replica space, and admit of solutions of the 

 or(" ( r )  = ~d ( r )  ea, ~ ~ ( r ) =  (:)"x[&] 
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where e, is an arbitary unit vector in replica space, and the 
function ~ ( x )  was defined earlier. Such instantons corre- 
sponds to the already considered limiting case of weak ther- 
modynamic fluctuations, and the action on them is given by 
S,(r) from (19a) at R = 0. 

A t 1  $0 this symmetry of the action (22) is violated by 
the termR A: (it plays the role of cubic anisotropy in replica 
space), and there are n types of instanton solutions of Eqs. 
(24) : 

The function A, ( r )  is defined in ( 17) and the index i charac- 
terizes the direction, in replica space, along which spontane- 
ous symmetry breaking takes place.5' A number of impor- 
tant relations between the integrals of the functionx(x) can 
be found by noting that Eq. ( 18) can be obtained from the 
condition that the functional A{x(x)) ( 19b) have an extre- 
mum with respect tox(x) .  To this end, we replacex(x) in it 
by ax (px) . The minimum of the function A (a,/?) with re- 
spect to a and p should be reached at a = p = 1, so that 
m rn ca 

The action (22) on the instanton solution (30) is equal to 
the value of S,(r) given in ( 19a). It follows from (22) that 
the instanton contribution to (2" ) is proportional to n 
exp [ - S,(T) 1, where the factor n is the result of summation 
of contributions of all n types of solutions (30). Substituting 
this expression in (2 1 ), we get for the free energy of the seeds 
the result (14) and (19) of the fluctuation theory. 
Allowance for the fluctuations of the replica fields in the 
vicinity of the classical solution enables us to find the pre- 
exponential factor in ( 14). 

4. Pre-exponential factor in the case of strong 
thermodynamic fluctuations 

The pre-exponential factor in Fs is determined by the 
replica-field configur$ions (26) near the external solution 
(30). The operator M'" on the solutions (30) is equal to 

Its eigenfunctions are 

where the functions q, iVT(r)  are tke solutions of the eigen- 
value equations for the operators ML,. : 

with the potential ULST ( r )  shown schematically in Fig. 1. 
Let us examine the spectrum of these equations. The poten- 
tial UL ( r )  always have a discrete level with zero eigenvalue 
E: = 0. Its presence is connected with the translational sym- 
metry of Eq. (22). A solution of (24), other than (30) and 
having the same action, is the function A:' ( r  + r,) with a 
shift of the localization center by an arbitrary vector r,. The 
corresponding deviation rp, ( r  ) following a translation by an 
infinitely small vector Sr, takes the form 

-1,2 dAd(r) r 
(piL (r) = JL -- - 

d r  r ' 

It can be verified by directly substituting (36) in (33) that 
$e functions q, t,,y,, ( r )  are eigenfunctions of the operator 
M, with zero eigenvalues. In (36) we have expressed with 
the aid of ( 17) and (31), in terms of the action (22), the 
integral that determines JL. Comparison of (35) with the 
general expression (26) yields the differential of the coeffi- 
cient c i L  of the expansion (26): dcf = Jt'2dro. Since the 
eigenvalue is threefold degenerate, J:/* is the Jacobian of the 
transition from the coefficients c: to the collective variables 
r, that determine the position of the superconducting drop. 
The integral with respect to r, yields the volume of the sys- 
tem V. By calculating the remaining Gaussian integrals with 
respect to c, in (27) and (28), we obtain the contribution of 
the instanton configurations (30) to (2" ) (22): 

nV(JL/2;z)"[det11C1.] -"[det @,I ('-n)'2 exp [-So (T)] .  (37) 

the determinant of the operator is equal to the product of all 
its eigenvalues, and the prime denotes exclusion of the zero 
eigenvalues from this product. Substituting (37) in (21 ), we 
obtain the contribution of the superconducting drops to the 
free energy of the system: 

F.=-0. (T) T, 

det $2 '" TSo(r) ]*!+I - 3 e x p - s o ~ .  (38) e. (T) = [ b N  (B,) det ML 

To determine 8, we mtst find the remaining eigenvalues of 
the operators ML and M, (32). 

A 

We consider first the operator M,. The angular de- 
pendence of the eigenfunction (36) obtained above corre- 
sponds top-type state with orbital monmtun I = 1. The min- 

These equations have the form of Schrodinger equations 
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imum eigenvalue E; should cor~spond to a nondegenerate s 
state with I = 0. The operator ML should have thus at least 
one negative eigenvalue e t  < E: = 0. A more rigorous analy- 
sis (Ref. 28) shows that such an eigenvalues is unique. The 
remaining eigenvalues E; with k > 1 are po2itive. The de- 
scribed eigenvalue spectrum of the operator ML is shown in 
Fig. 2 (the continuous section of the spectrum is shaded). 

We consider now the eigenvalue spectrum of the opera- 
A 

tory, .  The quantity p, in (38) is positive only if the opera- 
tor MT has a single negative eigenvalue. We shall show be- 
low that this situation is realized if the condition 
0 <A <A * = 2713, is met, a condition that defines in fact 
that region of existence of superconductkg drops. The spec- 
trum of the eigenvalues of the operator MT is shown in Fig. 
2. 

In the case2 (A * the minimum eigenvalue E: < Ocan be 
obtained by perturbation tkeory in the small parameter A / 
A *. At A = 0 the operator M ,  (32) has a single zero eigen- 
value E: = 0. The corresponding Goldstone mode is con- 
nected with the isotropy of Eqs. (24) in replica space, and 
corresponds to rotation of the unit vector e, (29) in replica 
space 

qa ( r )  =Ad ( r )  6ea= (JT"%ea) cpOT ( r )  , (39) 

where the normalization component J ,  and the function q, : 
are equal to 

-% 
qOT (r) = J A r )  JT = Jdr A.' (r) = So (T) Ti2rN (E,) . 

(40) 
It is easy to verify that the function (40) at A = 0 is indeed a 
solution of Eq. (34) with zero eigenvalue E: = 0. Compar- 
ing (39) with (26) we obtain the relation 

coaT=IT"%ea. (41 

At small A (A * we can ne~lect the change of the eigenfunc- 
tion (40) of the operator M T .  Its minimum eigenvalue &:is 
obtained by multiplying both halves of Eq. (34) for E: and 
by integrating with respect to the coordinate r: 

where we have used relations ( 17 ) and ( 30). The condition 
for the validity of the approach based on the instanton solu- 
tions (30) can be formulated in the form ( (Se, ) 2 ,  ( 1. 
Since, as follows from (27),  the characteristic values (c:) 
are proportional to (&:I-', this condition takes the form 
A & 7s ; '(7). The opposite case of small A was considered 
above using the Ioffe-Larkin approach. If 
Gs;~' (7) (A (A * = 27/3, all the eigenvalues of the opera- 
tor MT except &: can be calculated under the assumption 

that A = 0, and the eigenvalue E: is given by Eq. (42). It is 
?sly s ee~ tha t  in this case all the eigenvalues of the operators 
M ,  and M, except &:and E: are proportional to r N ( E ,  )/T 
and are independent of 7 and A. A dimensional estimate of 
the ratio of their determinants yields therfore 

Substituting (42) and (43 ) in (38) we get 

When calculating the order-parameter correlator (23) 
it suffices to take into account in the pre-exponential factor 
only the fluctuations due to the translational mode with zero 
eigenvalue: 

We obtain as a result 

< A  (r) A (rf) )= e8 (T) j dro Ad(r+r~) ~ d ( r ~ + r o )  (46) 

The integration with respect to the coordinate r, in (46) 
means in fact averaging over different drop-localization po- 
sitions. After averaging, the correlator (46) depends only on 
the coordinate difference. Note that in view of the possible 
scatter of the drop amplitudes the parameter does not deter- 
mine their density. To find the latter we must obtain the 
distribution of the drop amplitudes. At A -- VS ; ' (7) ex- 
pressions (38) and (44) are transformed into (20a) and 
(20b). 

A A 

At A = A *  = 27/3 the operators MT and ML coincide. 
bccordingly, all their eigenvalues are equal and the operator 
M ,  has a single negative eigenvalue E: = 0. At small 
A * - A (A * weobtain theeigenvalue~Fby perturbation the- 
ory with the aid of the corresponding function (36): 

h 

The remaining eigenvalues of the operator M ,  are positive 
at A < A  *. Using the result (47) for E; and setting the re- 
maining E: = E; for k #O, we obtain at A * - A (A * 

AsA +A * the eigenvalueef+Oand account must be taken of 
the non-Gaussian character of the field fluctuations q,, ( r ) .  
These fluctuations can lead to a change of relation (48) in 
the region of small A * - A 5 7s; ' (7). Thus, superconduct- 
ing drops exist only if 7, > 7f,, and their density vanishes as 
A -+A * because the superconductivity is destroyed in the 
drops by thermodynamic fluctuations. 

In the calculation of the order-parameter correlator it is 
necessary, in the case A * - A  (A *, to take into account in 
(23), besides the zeroth translational mode, also the contri- 
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A 

bution of n - 1 modes of the operator M,, with eigenvalues 
&;that tend to zero asA -+A *. Neglecting the contribution of 
the remaining mode, we can, in analogy with the derivation 
of (45), replace in (23) the quantity 

Integrating over all the coefficients c, in (28) and (23), we 
obtain for the order parameter the results (46), where the , 
factor 8, (7) is defined in (38). Note that over large scales 
the function (43) decreases like exp [ - Ir - r' I / ( (  T )  ] and 
does not contain the Ornstein-Zernike factor Ir' - rl - '. 

CONCLUSION 

We have shown here that in the case of sufficiently 
strong statistical fluctuations of the order parameter 
rD > superconductivity is produced in the form of isolat- 
ed seeds-superconducting drops. We found the free energy of 
such an inhomogeneous superconducting state and the cor- 
relator of the order parameter in the temperature region 
r % r D ,  where the function 8, defined in (38) is exponential- 
ly small: 9, -exp[ - A ( T / T ~ ) ' / ~ ] .  The drops can be re- 
garded here as noninteracting. They make an exponentially 
small contribution to the heat capacity of the system, to the 
conductivity, and to the diamagnetic susceptibility. To cal- 
culate the latter, we find the changes induced in the expo- 
nents of ( 19), ( 15), and (20) by a change of the external 
field H: 

4eZEzN ( E p )  
AS, (7, H )  = 

3cZAZT 
H~ J r 2 ~ 2  (r) 

Differentiating the free energy F, (T,H) with respect to H, 
we get 

where @, is the flux quantum. 
The order parameter is locally small inside the drop in 

the region ( ( T )  = ( T - " ~  only to the extent that r'l2 is 
small, and local measurements (for example, with the aid of 
a tunnel-effect microscope) can reveal the appearance of the 
drops. 

The theory predicts thus a strong enhancement of the 
thermodynamic and statistical fluctuations of the supercon- 
ducting order parameter near the localization threshold. 
The thermodynamic fluctuations by themselves leave the 
system spatially homogeneous and therefore do not lead to a 
qualitatively new behavior. Statistical fluctuations alter the 
superconducting transition radically-it becomes percola- 
t i ~ e . ~ ~  Although, there is as yet no quantitative theory of 
such a transition in the temperature region where the drop 
density is large, a number of qualitative conclusions that 
lend themselves to experimental verfication can be drawn. 

A transition in an inhomogeneous superconductivity 
regime should be strongly smeared in temperature, and the 
degree of smearing should depend on the current flow in the 

measurements of R and on the field in the measurements of 
the magnetic susceptibility x,. In view of the strong fluctu- 
ations of A ( r )  there may be no BCS singularity in the density 
of states of the quasiparticles, and at T, 2 1 it will have a 
zero-gap character down to zero temperature (the same re- 
sult is produced also by an increase of the frequency of the 
electron inelastic collisions near the localization threshold, 
owing to the enhancement of the Coulomb repulsion of the 
 electron^^^). Finally, the inhomogeneous characterof the su- 
perconductivity (of the drop) can be observed with the aid 
of local measurements, e.g., by tunnel-effect microscopy. 

A substantial broadening of the superconducting tran- 
sition and a smearing of the singularity in the density of 
states of the quasiparticles was indeed observed in granulat- 
ed aluminum as the conductivity was lowered below 1000 
~ - I . ~ ~ - I  (Ref. 29). These facts offer evidence of the in- 

creasing role of the fluctuations, although the only assump- 
tion made to intepret the zero-gap character of the spectrum 
at a = 10 R-'.cm-' was that the frequency of the electron 
inelastic collisions increases near the localization threshold. 

Similar peculiarities of the superconducting behavior 
should occur also in systems with strong statistical fluctu- 
ations of the pairing interaction, independently of their 
proximity to the localization threshold. Naturally, far from 
the Anderson transition, there are in this case no grounds 
whatever for enhancement of the inelastic scattering of the 
electron, and the zero gap in the quasiparticle spectrum can 
be due only to statistical fluctuations of the superconducting 
order parameter. 

The authors are grateful to B. L. Al'tshuler, S. L. Ginz- 
burg, L. P. Gor'kov, I. A. Korenblit, A. I. Larkin, D. E. 
Khmel'nitskii, and E. F. Shender for a helpful discussion of 
the questions touched upon in the paper. 

APPENDIX 

Let us show that thermodynamic fluctuations of the 
magnetic field in superconducting drops, which we have ne- 
glected above, have no effect in dirty superconductors. 

We expand the action (22) in the vicinity of the instan- 
ton solution (30) in the deviations ofA,, and pa accurate to 
quadratic terms (A,, are the components of the vector A,, 
andp = 1,2,3). The action (25) acquires then an additional 
term that describes the fluctuations of the magnetic field: 

A 

where the quadratic-form operator K is equal to 

1 IcL,,,(r, r') = -Dwv-' (r-r') -I- 8ezN A: (r) 6,. (A.4) 
T cZT 

Here D,, (r)  is the photon Green's function and is equal to 
6,,/r in the Coulomb gauge. Calculating the Gaussian inte- 
grals with respect to pa and A,, , we find that the magnetic- 
field fluctuations lead to the appearance of an additional 
multiplier O in the pre-exponential factor in (38). Regard- 
ing in (A.4) the term containing A: as a perturbation, we 
obtain for the factor O the expression 
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[8e'N(E,)F1 CD,(O) j dr Ar2(r )  0 = osp --- 
cLT II 

The first term in the exponential of (A.5) gives the renor- 
malization of the superconducting-transition temperature. 
It is the same for both the spatially homogeneous state and 
for drops, and can hereafter be regarded as carried out. The 
second term in the exponential of (A.5) describes the influ- 
ence of the screening of the fluctuating magnetic field on the 
form of superconducting seed. Substituting in (A.5) the in- 
stanton solutions for A, ( r )  and integrating with respect t o r  
and r', we obtain the condition under which this term in 
(A.4) is small and the inflence of the magnetic field on the 
drop is negligble, in the form 

This condition is certainly met in type-I1 superconductors 
with A, 2 6,. In type-I superconductors it restricts the value 
of the critical disorder at which the magnetic-field thermo- 
dynamic fluctuations influence the properties of the seeds. 

"The question of the size of the statistical fluctuations in dirty supercon- 
ductors was first raised in Ref. 16. 

"The parameter T; -- T,N(E, ){ ' = (.A'"), wheredZVis the number of 
levels in the system in the energy interval T, in a volume ( 3 .  The a 
condition that the fluctuation region be narrow is (- V) % 1. The param- 
eter rb/'z ((< I'- (.)V))2)/(y,V")2, and determines the fluctuations of 
the relative number of levels. 

-"This result was obtained using the scaling dependence of the correlation 
function ( N ( r , E ,  + w)N(O,E, ) )  near the mobility threshold."' 

"When the drop interaction is evaluated, it is necessary to take into ac- 
count the vortices in the region between the drops; the vortices destroy 
the phase coherence of the different seeds. A similar situation is encoun- 
tered in granulated superconductors. 

51At integer n>2, Eqs. (24) have besides the solution (30) also solutions 

with spontaneously broken symmetry along two and more coordinate 
axes in replica space. Such solutions, however, do not admit analytic 
continuation n -0 and will not be considered further. 
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