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The density-density correlator in a model of a disordered granulated metal on a Bethe lattice is 
calculated by the method of supersymmetry. In the limit of large distances and low frequencies 
general expressions are obtained for this correlator both in the insulating and in the metallic 
region. In the insulating region an explicit expression for the localization length is obtained. 
Near the transition point this length is inversely proportional to the distance from the 
transition point. In the metallic region the diffusion coefficient D is calculated. As the 
transition point is approached D decreases sharply in accordance with an exponential law, 
making it possible to speak of the existence of a "quasijump." A comparison is made with 
other models. The role of the noncompactness of the symmetry group of the supersymmetric 
a-model used is discussed. 

1. INTRODUCTION 

In recent years a large number of papers have been de- 
voted to the study of the Anderson metal-insulator transi- 
tion. The systematic solution of this problem for realistic 
physical models presents considerable difficulties. One of 
the few models that can be investigated analytically is the 
model of a disordered metal on a Bethe lattice ( Cayley tree). 
However, even on such a simplified lattice, the solution of 
the problem is not simple. The Anderson transition on a 
Bethe lattice has been studied by many authors. The Ander- 
son model on a Bethe lattice was studied in Refs. 1-3. In Ref. 
4, Shapiro proposed a certain model of one-dimensional 
scatterers, which was studied by means of the resistance- 
composition hypothesis proposed in Ref. 5 for the investiga- 
tion of the conductivity of wires. A model of a granulated 
metal on a Bethe lattice was studied in Refs. 6-8. In all these 
papers certain averaged quantities were calculated, knowl- 
edge of which made it possible to make definite statements 
about the properties of the models that had been studied. 
The investigation carried out in these papers has made it 
possible, e.g., to establish firmly the existence of the transi- 
tion. 

Complete information on the kinetics can be obtained 
by calculating the density-density correlator. This correla- 
tor at coinciding points was calculated in Refs. 6 and 7. 
However, to calculate such quantities as the diffusion coeffi- 
cient or permittivity, it is necessary to know the density- 
density correlator at large distances. In a recent paper8 a 
certain correlator at noncoinciding points was investigated. 
The correlator calculated in Ref. 8 differs from the density- 
density correlator, but coincides with the latter in the region 
of localization in the low-frequency limit. This did not per- 
mit the author of Ref. 8 to calculate the diffusion coefficient 
in the metallic region, although the localization length in the 
insulating region was obtained. 

Below we calculate directly the density-density correla- 
tor at noncoinciding points. The form obtained for this cor- 
relator makes it possible to determine the behavior of the 
diffusion coefficient in the metallic region and of the dielec- 
tric permittivity and localization length in the insulating re- 
gion. It is shown that as the transition point is approached 
the diffusion coefficient falls off very rapidly (in accordance 

with an exponential law). This rapid decrease should give a 
"quasijump" on the curve of the dependence of the diffusion 
coefficient on the disorder, although in the strict sense there 
is no jump in the diffusion coefficient. In the insulating re- 
gion the localization length near the transition point is in- 
versely proportional to the distance from this point. It is 
shown that the unusual critical behavior is a consequence of 
the noncompactness of the symmetry group of the super- 
symmetric a-model. A comparison is made with the results 
of Refs. 2-4. 

2. THE BASIC EQUATIONS 

The kineticts of a system of metallic granules is de- 
scribed by the supersymmetric c~-model on a lattice. The ef- 
fective Lagrangian F in such a model is written in the formh 

The first term in ( 1 ) describes the interaction of the gran- 
ules, and the second term is the effective Lagrangian of the 
isolated granules. The letters w and v denote the frequency 
and the density of states in the granules, V denotes the vol- 
ume of the granules, and the symbol STr denotes the super- 
trace. The supermatrices Q and A in ( 1 ) have dimensions 
8 x 8 and are equal to 

case i s in  0 
Q =  U Q O ~ ,  Y O =  =( - 

- i sin 0 - cos 8, 

The form of the matrices u, u, and 8 depends on the 
presence of time-reversal symmetry and central symmetry. 
A bar above a supermatrix denotes charge conjugation. The 
corresponding formulas can be found in the review Ref. 9. 
We note only that uii = uE = 1. 

The calculation of the density-density correlator 
K(r, ,r , )  in the model described reduces to the calculation of 
the following correlator: 
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where F[Q] is determined by the expression ( 1 ) . The super- 
scripts in (3)  label the blocks distinguished explicitly in ( 2 ) ,  
and the subscripts label the elements in these blocks. 

Below we shall calculate the density-density correlator 
(3) for a speical type of lattice-the Bethe lattice (Cayley 
tree). As in Ref. 6, we consider the case of an arbitrary 
branching ratio m. We assume that the only interactions are 
between nearest neighbors, for which all Ju are the same and 
equal to J.  

The structure of the Cayley tree makes it possible to 
reduce the calculation of the integral (3 )  for arbitrary r,  and 
r, to the calculation of a definite integral of the solution of 
certain integral equations. To obtain these equations, as in 
Ref. 6 we introduce the function 

where 

The symbols 2' and n' denote sums and products over all 
sites of one of the m + 1 branches entering the site with in- 
dex 0. Here, in n; and Z; the index j cannot take the value 0, 
while in 2; it can. It is assumed that the jth site is closer than 
the ith site to the base of the branch. The function Y (Q,) 
depends only on Q,. Considering the function Y(Q,) at a 
neighboring site, it is not difficult to set up the equation 

B Y ( Q )  = exp [a  ST^ Q ~ '  + -  ST^ AQ'] Y1"(Q') dQ', 
4 4 

In ( 5) the integration is over supermatrices of the form ( 2 ) .  
Knowledge of the function Y(Q) makes it possible to 

calculate the correlator K(r,,r,) at coinciding points, and 
this was done in Refs. 6 and 7. However, the information 
that can be obtained from the form of this function is not 
complete. To calculate such quantities as the diffusion coef- 
ficient, localization length, etc., it is necessary to calculate 
the correlator K(r,,r,), the asymptotic form of this correla- 
tor at large distances being the most interesting. 

Using the definition (4)  of the function Y (Q), we write 
the correlator K(r,,r,) in the form 

Xmp (E 2 STr QIQ1) Z ( ~ ~ ) d Q i ,  (6)  
4 i , j  

B z (q)  - yrn-l (Q) exp (T STC AQ ) . (6a) 

In the integral (6) in the product fl and the sum 5 the labels 
are those of the sites lying on the path between the sites r, 
and r, (including the points r ,  and r,). In the sum Zu the 
indices i and j denote, as before, nearest neighbors, the jth 
site being closer to r,, and the ith site closer to r,. 

To calculate K(r,,r,) we shall make use of the scheme 
proposed in Refs. 9 and 10 for the calculation of this same 
correlator in wires. We introduce the function 
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where in the product hi the sites are those on the path be- 
tween r, and r,, excluding the site r,, r is the distance between 
the sites r, and r,, and N(r )  = (m + I )mr-  ' is the number 
of sites situated at a distance r from any fixed site. 

The function P(r,Q) (7)  is defined for all r>  1. We shall 
complete the definition of this function by setting 

P (0, Q) =QZiY (Q) ; P(r, Q) =0, r<O. (8  

Using the definitions ( 7 )  and (8) ,  it is not difficult to 
obtain the following equation for P(r,Q): 

X Z(Q1)P(r-l,Q')dQ1 

= 15 (r) Y (Q) pi. (9)  

Correspondingly, for the density-density correlator we ob- 
tain 

K(r)== N(r) K (rl, r2) =-2Pv2 I Q ~ ~ ~ ~ P ~ ~  (r, Q)Z(Q) ly (Q) dQ. 

In principle, the formulas (5),  (6a), ( 9 ) ,  and (10) 
solve the posed problem of the calculation of the density- 
density correlator. The correlator K(r )  differs from K(r,,r,) 
by the factor N(r ) .  To be precise, K(r )  characterizes the 
rapidity of the decay of the correlations, since K(r,,r,) al- 
ways decays exponentially because of the exponential 
growth of the number of sites situated at a distance r from a 
specified site. 

Of course, all the formulas written out above are appli- 
cable for systems with any type of symmetry, irrespective of 
whether or not magnetic and spin-orbit interactions are 
present. The subsequent calculations must be carried out for 
each model separately. In this paper we shall consider only 
the case of a system with broken time-reversal symmetry (a  
unitary ensemble). In this case (m_odel I1 in the classifica- 
tion proposed in Ref. 7 1, the matrix 0 determining Q has the 
form 

The equations (5), (9), and ( 10) can be simplified con- 
siderably if we make use of the invariance of the original 
Lagrangian (1 ), (2)  to the replacement U+ U,U, where U, 
is any matrix of the form (2)  satisfying the condition 
uouo = 1. 

Because of this invariance the solution Y of Eq. (5)  can 
depend only on the variables 8 and 8,. Integrating over the 
other variables in (5) ,  we bring this equation to the form6 

' (')- '= Jr (nnr, n,n,~) 
Y ( L 1 ) Z ( h ' )  - 1 dn' dn,' 

A,'-A' (2nI2 ' l"i-A 
(11) 

where 

, a'[ d 
r(nnf ,  nini ) = - exp (-anin,')- exp (arm') 2 da 
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n and n' are vectors on a sphere, and n, and n; are vectors on 
a hyperboloid. Correspondingly, nn' ( rn-n ' )  is an ordinary 
scalar product, and n,n: = n,,n;, - n,,n;, - n,,n;, is a 
scalar product on a hyperboloid. The components of the vec- 
tors n and n, are equal to 

n= (sin 8 cos cp, sin 0 sin cp,  cos 8 ) ,  

nl=(sh 8, cos cp,, sh sin c p l ,  ch e l ) .  (12)  

The same expressions define the vectors n' aand n;. if we 
makethereplacement8-8', 8,-8;,p-q, ' ,  andq7,-q,;. 

The function Z ( A )  is defined by the expression (6a)  
and can be rewritten in the form 

Z( l )=Ym- ' (a)  e x p  [p(h-At)].  (13)  

In Eq. ( 1 1  ) we can immediately integrate over q, ' and p ; . 
This makes it possible to obtain an equation in which the 
integration is performed only over the two variables A ' nd 
2 ; :  

1 ca 

Xi-h 
Y (I,) = I Lo(h, P1)-Z(I,')lY (I,')dhf dhlr 

- 1  1 
hi -A 

where 

Ldh, h')=1/2a2 exp[a(x-x,)] [Zo(ayl)Zo(ay) (xl+x) 
- I 1 ( a ~ i ) Z o ( a ~ ) ~ l f  l l ( a ~ ) I O ( a ~ l ) ~ l ,  (14)  

in which I, and I ,  are Bessel functions of imaginary argu- 
ment, and 

~ t=h~h l ' ,  x=s).iln, pi=[ (hi2-I) (hir2-I) ] I h ,  

We note an important property of the kernel L,(A,A ') 
and of the function Y ( A )  : 

1 m 

1 for h=(l ,  1).  ( 1 5 )  

The invariance of the Lagrangian ( 1 ) under the replacement 
U-+ UoU makes it possible to simplify Eq. ( 9 )  as well. As in 
the problem of we seek a solution P in the form 

Substituting ( 16) into ( 9 )  and integrating over all the vari- 
ables except A ' and A ; , we obtain 

f (r, A)  - [m+G (r-I) ] 

where f = (; is a two-component vector. The matrix 
L (A,  A') has the form 

Lit (h, k') Liz (h, A') 
L (I,,  A') = ( 

L21 (5, A') Lzz(5, 5') 1 
and acts on the vector f i n  the usual way: 

Lll(h,  h')='12aZ exp [a(x-x,)  I { I l ( a ~ ) I o ( a ~ l )  
x(x+xl) + I o ( a y ) Z o ( a ~ l )  y-I l (ay)I~ (ayl)yl  

+[a(hl-h)  (hi1-h') l - l [ ~ o ( a ~ ) ~ o ( a ~ l ) ~ - ~ ~ ( a ~ ) ~ ~ ( ~ ~ i ) ~ ~ l ~ ,  
LZ2 (h, h')='lza2 exp[a(x-xi) lZl(ayi)Z0(ay) (x+xi) 

-Io (ayl)Zo (ay)  yi+Il (ayJ {Ii ( ay )  Y+ [a(hl-h) (L ' -h f )  I-' 
x [ I ~ ( ~ Y ) ~ ~ ( ~ Y ~ ) Y ~ - ~ I ( ~ Y ~ ) ~ ~ ( ~ Y ) Y ~ ) ,  

L,,(h, 5') ='/,a e x p  [a (x - x i ) ]  [(hi-h) (hir-h') I- '  
~ [ I ~ ( a y ) Z ~ ( a y ~ )  (l-h~~(hl'LI)"+~l(a~)~l(a~l) 

~ ( l - h ' ~ ) ' ~ ~ ( h i 2 - 1 ) ' ~ ] ,  Lzl(h, hr )  =L1Z(hr, h).  

The variables x ,  x , ,  y, and y ,  are defined by the expressions 
(14a). 

Substituting (16)  and (17)  into ( l o ) ,  we bring the 
expression for the correlator K ( r )  to the form 

1 m 

K (r)  = 2n2v2 I j (I-h2)'"f (r, 5)  + (h12-l)'"fl (r, h )  

- I  I (hi-h)z 

x z (5) Y ( I v )  dli. ahl. (19)  

The equations ( 14) and (16)-(18)  and the integral (19)  
solve completely the posed problem of the calculation of the 
density-density correlator K ( r ) .  We note that up to now we 
have not made any approximations. Of course, an exact ana- 
lytical calculation of the correlator K ( r )  is impossible. How- 
ever, we can investigate the most interesting asymptotic 
forms-in particular, the asymptotic form at large distances 
r. Introducing the new function 

we bring Eq. ( 17) to the form 

Y (I,)  [Z (h)  1'" 
= s ( r )  

hl-h ( (hi2-1)'" (l-hz)'iz 1 * (20)  

A 

In (20)  the action of the operator M on an arbitrary function 
cp(A) is specified by the integral 

h 

The expressions ( 18) and (20a) show that the operator M is 
real and symmetric. The eigenfunctions cp,  ( A ) ,  satisfying 
the equation 

are orthogonal to each other and form a complete set. The 
eigenvalues E are real. 

By expanding thz function p(A) in (20)  in eigenfunc- 
tions of the operator M, we can find the solution of Eq. (20) .  
Substituting this solution into (19 ) ,  we bring the expression 
for the correlator K ( r )  to the form 

362 Sov. Phys. JETP 65 (2), February 1987 K. B. Efetov 362 



2nZvZ (m+ 1) 
K ( r )  = 

m 
-x B Z ( ~ E ) ' .  

E 

1 m 

BE= [ I  I ( I -a2)  'Ir ( P E ~  (h )  + (alz-l) 'h ( P E ~  (h )  

-1 1 
a1-a 

where the sum~a t ion  is performed over all the eigenvalues 
of the operator M; p, and p, are the components of the vec- 
tor function Q. For r = 0 the summation can be performed 
immediately, if we make use of the completeness of the set of 
eigenfunctions. In this case we obtain 

Of course, this formula can also be written directly using the 
integral (3).  It was the quantity K(0)  that was studied in 
Ref. 6. 

The subsequent calculation in (22) can be carried out in 
the low-frequency limit for the metallic and insulating re- 
gions separately. The critical value a, separating these re- 
gions is determined by the equation6 

where K, (a) and I,, (a) are Bessel functions of imaginary 
argument. For a > a, the conductivity is nonzero, while for 
a <a, the system does not conduct. 

3. THE INSULATING REGION 

In the region of localized states in the limit of low fre- 
quencies P all the equations are simplified considerably. 
This is connected with the fact that the main contribution is 
made by valued, - 1/P) 1 (Refs. 6,7,9, lo) .  Passing to the 
limit A,)1 and making the change of variables 
2P/2, = exp t, we bring Eq. ( 14) to the form 

- a:" 
~ ( t j  = - exp (-a ch t )  [ sx cht +--- 

(2n) '/a a a sha I  201" 

In the derivation of (25) it was assumed that for smallg the 
solution of Eq. ( 14) is a function only ofPA ,, and this made 
it possible to perform the integration over A. From the equa- 
lity ( 15) it follows that 

The equality (26) can also be obtained by direct integration 
ofE( t )  (25). 

Passing to the limit of small P and large A , ,  in place of 
(20) we obtain 

- m 

= Y ( t )  [ Z ( t )  1'" e-'", (27) 

where 

@(t ,  7 )  =E(t-r) [Z ( t )Z ( r ) ] " ' ,  

andp is the second component of the vector pfl ' I 2  exp( - t / 
2). The first component is small in the limit P-0, 
PA, = const. This can be seen directly from the right-hand 
side of (20). The first formula in (22) for the correlator 
K( r )  preserves its form. For the coefficients BE in (22) we 
obtain 

m 

Here the functions p, are eigenfunctions of the symmetric 
operator M: 

and satisfy the orthogonality and completeness properties. 
Using these properties, we can obtain K(0)  in the localized 
region: 

rn 

This formula can also be easily obtained directly from (23). 
An investigation of the dependence of K(0)  on a was carried 
out in Refs. 6 and 7. It was shown that PK(0) decreases 
monotonically with increase of a ,  reaching a certain critical 
value at a = a,. More interesting is the behavior or K( r )  at 
large r, since this correlator describes the decay of the wave- 
functions. 

To elucidate the asymptotic form of the correlator K( r )  
at large r we shall consider the properties of the eigenfunc- 
tions p, ( t )  of the operator a. First of all, we shall deter- 
mine the asymptotic form as t- - UJ . In this limit the func- 
tion V ( t )  satisfying Eq. (25) tends to Therefore, for 
the determination of the asymptotic form as t- - UJ ,  in 
place of (29) we have 

From Eq. ( 3 1 ) we obtain 

q ~ ( t )  = (2ln)"' sin [-pt+S(p)], t+-m, (32) 

where the parameterp is a certain function of E, and S (p)  is 
a phase that depends on p. As t - UJ the function p, ( t )  
should decay to zero for all E > 0, because of the presence in 
M(t,.r) of the factor [Z(t)Z( .r)  ] ' I 2  which decays in this 
region. Therefore, the eigenvalue spectrum of the operator 
%(t,r) is continuous. The general factor multiplying the 
sine ensures that the functions p, ( t )  are orthonormal: 
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Substituting (32) into (3  1 ), we can determine the depend- 
ence E(p):  

where Fop is determined by the expression (24). 
We now elucidate the behavior of the function p, as 

p--0. In this limit, for t )  1 the function approaches the 
asymptotic form 

cps(t)=c(p)u(t), twl.  (34) 

The function u ( t )  in (34) no longer depends onp. The coef- 
ficient c(p) is determined by matching with the solution as 
t- - co. Equating theasymptotic forms (32) and (34), and 
also their derivatives, at t- 1, we obtain c(p)  -p, S(p)  -pro, 
to-1. 

This reasoning makes it possible to write the function 
p, ( t )  forp-0 and all t i n  the form 

We note that v(t) tends to a finite limit vo(t) as a --+a,. This 
follows from the fact that the function Y ( t )  (Refs. 6,7) and, 
consequently, the kernel B ( t , r )  (27) tend to a finite limit 
Yo(t). 

Owing to the continuity of the spectrum of the kernel 
%(t,r), the sum over the energies E in (22) must be replaced 
by an integral over p. At large r the main contribution is 
made by the region of smallp. Substituting (35) into (28), 
and then (28) into (22), and expanding E(p)  for smallp, we 
obtain 

2nZv2 (,+I) 
K (r) = J pze-.w a& 

mS o (36) 

where 

A convenient characteristic of the wave functions is the 
long-time limit of the density-density correlation function in 
the time representation. Denoting this limit byp, ( r) ,  cal- 
culating the integral overp in (36), and going over to the 
time representation K(r,t) with the aid of ( S ) ,  we obtain 

n"v m+l 
g ( r , t - + o o ) ~ ~ ~ ( r ) = - -  a2 (br) (37) 

2V m 

The formula (37) is applicable for r$1, and the coefficients 
a and b remain finite as the transition point a, is ap- 
proached. The only quantity that has singular behavior near 
the transition point is the localization length I. Comparing 
(36) with (24), we obtain the asymptotic behavior of I as 
a--'ac: 

We note that the quantity mFoo(a)  decreases mono- 
tonically with decrease of a. It follows from this that the 
localization length 1 decreases monotonically. The expres- 
sion (37) has the same form as the corresponding expression 

for one-dimensional ~ystems.~-'' Formula (37) is also appli- 
cable for m = 1, which corresponds to a one-dimensional 
chain of granules. Of course, in the one-dimensional case 
there are no singularities for finite a ,  since the function 
roo (a) decreases monotonically from 1 to 0 as a varies from 
oo to 0. For m = 1 and a% 1 the localization length 1 is pro- 
portional to a .  In this limit the model on a lattice can be 
replaced by a continuum model, for which the formulas ob- 
tained in Refs. 9 and 10 are applicable. The diffusion coeffi- 
cient D to which the localization length in the continuum 
model is proportional (we have in mind the classical diffu- 
sion coefficient) coincides, to within a numerical factor, 
with the parameter a .  

Knowledge of the function p ,  ( r )  makes it possible to 
calculate the response to an external electric field 8 of the 
following symmetry: We select a particular site and let the 
potential at each point situated at a distance r from this site 
be equal to gr. We shall calculate the polarizability x: in this 
field. It is not difficult to see that it is equal to 

where e is the electron charge. Near the transition point, 
when I is large, the main contribution to the sum (39) is 
made by large r. In this limit we can use the expression (37). 
Calculating the sum in (39), we obtain 

Naturally, for large values of lc the dielectric permittivity is 
proportional to x .  

In Ref. 6 the correlator K(0)  was investigated. The 
quantity p i  ' (0) was called an integral permittivity, and it 
was shown that this quantity tends to a finite value as the 
transition point is approached. Although the expressions 
given by formulas (39) and (40) correspond to the real di- 
electric permittivity, the quantityp, (0)  also has an impor- 
tant physical meaning. This quantity is proportional to the 
average probability that a quantum particle that was at some 
particular point at time t = 0 will be found at the same point 
after an infinite time. The fact that this probability does not 
vanish as the transition point is approached seems to be not 
at all trivial. It was this fact which stimulated the assertion in 
Ref. 6 that the physical dielectric constant is finite at the 
transition point. 

In real physical systems, evidently, the response to a 
spatially uniform field should grow as the transition point is 
approached. At the same time, it can be postulated that the 
response to some particular field localized in a small region 
of space can remain finite. 

The expression (37) and (38) were obtained near the 
transition point in the presently considered model on a Cay- 
ley tree by Zirnbauer8 in a calculation of a certain correlator 
K"' differing from the density-density correlator. The fact 
that in the insulating region these two correlators become 
equal as the frequency w + O  enabled him to obtain the for- 
mulas (37), (38) for the density-density correlator as well. 

In principle, the equations ( 14), ( 18 ), (2 1 ) and (22) 
derived here make it possible to calculate the density-density 
correlator for all frequencies; it is evident, however, that this 
can only be done numerically. 
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4. THE METALLIC REGION 

Before calculating the density-density correlator, we 
shall consider the classical diffusion of a particle on a Bethe 
lattice. We shall find the probability WN ( r )  that a particle 
executing a random walk on a Bethe lattice will be found 
after N steps at a distance r from the point from which it 
started. This probability coincides, to within a normaliza- 
tion factor, with the density-density correlator. Let the prob- 
abilities of the moves from some site to the neighboring sites 
be equal. Then each such probability is equal to l/(m + 1 ). 
It is not difficult to write a recursion equation for WN ( r ) :  

Equation (41 ) is linear, and can be solved by means of Four- 
ier transformations. 

Let the number of steps per unit time be equal to n. In 
real physical processes the number n is determined by inter- 
nal characteristics of the system. In the limit of low physical 
frequencies w the solution of Eq. (41) gives 

HereD=n/(m + 1). 
Ifwe go over from the frequency representation W(w,r) 

to the time representation, we immediately obtain the proba- 
bility of finding the particle at a distance r at time t. The 
coefficient D in (42) is proportional to the probability of a 
move from a particular site to a neighboring site per unit 
time. It can be identified with the diffusion coefficient. Con- 
sequently, if for some model on a Bethe lattice one can obtain 
the law (42), one can make definite statements about the 
diffusion coefficient. Below it will be shown that in the mod- 
el ( 1 )-(3)  under consideration the density-density correla- 
tor K(w,r) in the metallic region is indeed described, to with- 
in a normalization factor, by formula (42), and this makes it 
possible to calculate the diffusion coefficient D. 

In the limit a $. 1 the correlator K(r )  ( 3 ) ,  ( 10) with the 
Lagrangian ( 1 ) was calculated in Ref. 6. At low frequencies 
this correlator has the form 

The expression (43) differs from (42) only in the normaliza- 
tion. Recalling the connection between 0 and the physical 
frequency w (5), we obtain for the diffusion coefficient 

We now show that for all a > a, the correlator K( r )  has 
the form (43), if the frequency is small and r is greater than a 
certain characteristic length that depends, forp-0, only on 
a .  For this we shall make use of the eigenfunction expansion 
(22). First of all we note that the spectrum of the eigenfunc- 
tions pE of the operator [see (20a) and (21)] in the 
metallic region a > a ,  is discrete. This is connected with the 
fact that the function *(A)  and, consequently, Z ( h )  fall off 

to zero with increase ofA, (Refs. 6,8).  Therefore, the kernel 
in the integrand of (20a) differs substantially from zero only 
in a finite range of variation of its arguments, and this region 
also remains finite as B-0. Correspondingly, the spectrum 
also remains discrete in this limit. The character of the de- 
crease of the function \y(h) will be discussed in more detail 
later. The discreteness of the spectrum makes it possible to 
calculate the sum (22) at large distances r$. ( (a), where 
((a) is a certain characteristic length. In this limit, only one 
term, with the larget value E,(fl), remains. The length ((a) 
is inversely proportional to the difference of the logarithms 
of this eigenvalue and of the next eigenvalue, and remains 
finite as 8- 0. 

For p= 0 the largest eigenvalue E,(O) and the corre- 
sponding eigenfunction p,(h) of the operator a can be 
found exactly: 

where c ,  (p) is a normalization factor, equal to 

We note ihat @,, (A ) for P # 0 is not an eigenfunction of the 
operaor M. In (46) we have used the equality ( 13). 

In order to see that E,(O) and p,(h) aAe indeed an 
eigenvalue and eigenfunction of the operator M, we substi- 
tute (45) into (21), (20a), and ( 18). In the left-hand side of 
(21 ) we integrate by parts. After this we can convince our- 
selves that forp  = 0 the first of the equations obtained coin- 
cides with the derivative of the two sides of Eq. ( 14) with 
respect to A, multiplied by - ( 1 - il 2,  'I2, while the second 
coincides with the derivative with respect to A ,, multiplied 
by (2 - 1) ' I 2 .  This proves that the expressionk(45) are an 
eigenvalue and eigenfunction of the operator M (20a) for 
p=o. 

I f p  is nonzero but small, the eigenfunctions and eigen- 
values are close to the corresponding quantities forp = 0. In 
the expression (22) for BE we can simply setp = 0. For the 
coefficient B, corresponding to the eigenvalue (45) we ob- 
tain 

i a 

d Y  dh dh ' 
( I )  -1 - 1  . (47) 

dh (kt-h) 

The subsequent calculation of the coefficient B, can be car- 
ried out by integrating by parts in (47). Here we must exer- 
cise some care, since for il = A ,  = 1 the integrand is not de- 
fined. In order to circumvent this difficulty, we can calculate 
the integral over the region - 1 <A < 1 - 6, 1 + S, <A,, 
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and then in the final answer take the limit S -, 0, S, - 0. After 
straightforward calculations, we obtain 

In the derivation of (48) we used the equality ( 15 ) for the 
function Y ( A ) .  

For the calculation of E,(fl) for small but nonzero val- 
ues ofp we multiply both sides of Eqs. (2 1 ) and (20a) by the 
vector <Pg ( A )  (45) andintegrateboth sides overA andA,. In 
the left-hand side, as in the case with fl = 0, we again inte- 
grate by parts and use the derivatives of both sides of Eq. 
( 14), but now w$hfl # 0. For smallp the eigenfunction p, 
of the operator M (2 1 ), (20a) coincides with p,, (45 ). Per- 
forming the necessary transformations, we obtain in the lim- 
itfl-0 

1 -  

In (49) and everywhere below we understand by Y(A) the 
solution of Eq. ( 14) with P = 0. Substituting (5), (46), 
(48), and (49) into (22), we obtain 

4nv 
K ( r )  = 

V ( m - l ) D  

where the diffusion coefficient is equal to 

The expression (50) corresponds to formula (42) for 
classical random walks on a Bethe lattice, and, as already 
discussed, the diffusion coefficient D is proportional to the 
probability of a move from one side to a neighboring site per 
unit time. In the derivation of the expressions (50), (5 1 ) we 
have used only the smallness of the quantitiesoand r- I .  The 
frequency fl should be smaller than c ,  (0) (46), in order to 
ensure that the correction is small in comparison with the 
perturbed eigenvalue (45). The relative magnitudes ofb  and 
r-' can be arbitrary. 

Solving Eq. ( 14) forP = 0 and using (5 1 ), we can con- 
struct, at least numerically, the entire curve of the depend- 
ence D ( a )  for a > a,. We can calculate D ( a )  analytically in 
the limits a - a, 4ac and a) 1. For a ) 1 values ofA and A ,  
close to unity are important. In this limit the function Y is 
equal to6 

where 

c = a  ( m -  1)  lm. (52a) 

Substituting this solution into (50), (5 1 ) , we arrive at the 

expressions (43), (44) already obtained in this limit. 
We turn to the investigation of the behavior of the diffu- 

sion coefficient B in the neighborhood of the transition 
point. A scheme for the analytical investigation of the func- 
tion Y ( A )  was proposed in Ref. 6. Following this scheme, we 
rewrite Eq. ( 1 1 ) in the form 

dn' dn,' t~ (L) = J r ( n n f ,  n , n ~  @(M - (53) 
(2n)' ' 

where 

We shall study the solutions that decay as A ,  - a. The solu- 
tion Y = 1 corresponds only to the insulating region a < a c .  
As A, A ,  - 1, Uapproaches a constant. For functions Y of the 
form described, F [  U] >O. 

First ofall we can write the asymptotic form of the solu- 
tion Y for A ,  - ccr . For such A ,  the function Y does not de- 
pend on A, and in place of Eq. ( 11 ) we can write Eq. (25), 
having set Z = Y m  - ' in the latter, since we are considering 
the limit fl = 0. In Ref. 6 the asymptotic form of the solution 
Y was obtained: 

Ymexp [ - b i  (0,'"+y) exp (bzO,'") 1, (54) 

where b, and b, are numerical coefficients and 
8, = In ( W ,  ) . The parameter y in (54) is arbitrary; this cor- 
responds to the invariance of the kernel in Eq. (25) under a 
scale change A ,  -AA ,. If Y, is a particular solution, e.g., that 
corresponding to the asymptotic form (54) with y = 0, then 
for the functions Y and U for A ,  ) 1 we have 

y ( I , )  =Y. ( A h , ) ,  ~ ( h l )  =AU,  ( A h l )  7 (55) 

whereA is a number determined by matching with the region 
A ,  - 1. For the calculation of A we multiply both sides of 
(53) by P- ,,, + ip (A,)P, ( A )  and integrate over A ,  and A. 
The product P - ,,, + ip ( A  ,)P, ( A )  of Legendre functions is 
an eigenfunction of the operator T. Therefore, we obtain 

[rnP-'  (a)  - m  I UaP=-Fnpl 
1 m 

Un. = I up-vz+ip ( A , )  Pn(h) dh dh,, 

where r, is given by the expression (24). 
If we assume that A - 0 as a -ac ,  then the important 

region in the integrals in (56) is the region A ,  > 1. In this 
limit the solution does not depend on2  and it is necessary to 
set n = 0. We also set p = 0 and estimate the integrals ob- 
tained. Using the asymptotic form P - ,,, (2) -In z/zl/* for 
z )  1, substituting (55) into (56), and making the replace- 
ment A,A = z, we bring (56) to the form 
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Strictly speaking, the form of the integrands is applicable 
only for z4A (A, 4 1 ) . However, the region A ,  - 1 makes a 
small contribution. The function Us ( t ) ,  like Ys (z), varies 
over scales z - 1. 

At first sight, it appears that integrals in both sides of 
the equation are of order ln(l/A). But the integral in the 
left-hand side is multiplied by the quantity m - T, ' ( a ) ,  
which tends to zero as a -a,. This leads to a contradiction, 
on the basis of which it was stated in Ref. 6 that A remains 
finite at the transition point. Then the diffusion coefficient 
need not tend to zero either. 

However, as shown by Zirnbauer,' this crude estimate 
of the integral in the left-hand side of Eq. (57) is not exact, 
since, although the counting of the powers of the parameter 
A is correct, extra powers of In( 1/A) arise. To convince our- 
selves of this, we shall consider the asymptotic forms of the 
function Us (z). For z, 1 the function Us -A /z, as can be 
seen directly from the relationship (53) between U and Y 
and from the decay of Y at infinity. For small A &z( 1 the 
quantity U is small and the asymptotic form of Us can be 
found by neglecting the right-hand side F[  U ]  in (53 ) , which 
for small U is proportional to U  2. In this limit we obtain 

U.(z) =a(e)e-'2-'" sin [-e In z+6(e) I, (58) 

where a (&)  and S ( E )  are unknown parameters to be deter- 
mined from the condition for matching at z 4  1 with the 
asymptotic form (54), in which we must set y = 0 and 
19, = ln(2z), and E is determined from the equation 

roa-l (a )  -m=O. (58a) 

For a - a, &a,  we have E- (a - a, 'I2. 

For E + O  the asymptotic form (54) has no singularities. 
Joining of the asymptotic forms (54) and (58) for z- 1 in 
the limit E-0 gives the limiting expressions a (&)  -a and 
S(E) /E-S~ for E-0. 

For z 4 1 the functional F [ U  ] - U  ,Z (z)z. Recalling the 
asymptotic form for 2% 1, we convince ourselves that in the 
right-hand side of (57) the regions z &  1 and z)  1 make a 
small contribution. The main contribution is made by the 
region z- 1, and this contribution is of order 

1 
In-dz - ln-. 

A 
A A 

This estimate was obtained in Ref. 6. The region z- 1 also 
gives the same in the integral in the left-hand side of (57). 
However, the region A &z< 1 gives an extra logarithmic fac- 
tor. Assuming that E- ' -In( 1/A) (this will be seen from the 
final result ), we have 

The logarithmic contribution from the regionz < 1 was omit- 
ted in Ref. 6. 

Substituting the estimates obtained into (57), we obtain 

wherep and q are numerical coefficients that depend on m. 
The formulas (55) and (59) show that the function Y(A,) 
falls off slowly in the region A ,  5 1/A, and then, according to 
the asymptotic fwm (44), the decay becomes sharp. As the 
transition poin<&ipproached the boundary of the region of 
slow decay tends to infinity. The expression (59) was ob- 
tained by Zirnbauer,' who arrived at it by combining the 
results of a numerical and an analytical investigation. 

It is possible to propose a simpler way of obtaining 
(59), which makes it possible, in particular, to find the coef- 
ficient q in explicit form. For this we write the function U in 
the region A ,  4 1/A. Neglecting the right-hand side in (53), 
we have 

Using the asymptotic form for A ,  ) 1, 

P-#+c,(hl) - (2/ne)h,-'" sin [E  ln(2h1) 1, 
and matching with (58), we obtain with the aid of (55) for 
E + O  

Solving Eq. (58a) in the limit of small a - a, ,  we obtain 

where b ( a )  is defined in (36). Of course, this analysis does 
not enable us to determinep. 

The results obtained for the function Y make it possible, 
using (5 1 ), to calculate the diffusion coefficient D. The main 
contribution to the integral (51) is made by the region 
1 < A ,  & 1/A. Using (53), (55), and (58), we have for Y in 
this region 

Y (A,)  =I-a (Ahi)'" 1n(2hi). 

Substituting this expression into (5 1 ), we obtain 

D=[m(m+l)aZ/12nvV(m-I) ]A ln3 (I/A). 

Using the expression (60) for A,  we finally obtain 

paZm (mf l )  exp[-q (a-a,) -'"I 
D =  

12nvV(m-1) (a-a,)" (61) 

The formula (61) completely solves the problem of the cal- 
culation of the diffusion coefficient in the critical region. 
Although a minimum metallic conductivity, the existence of 
which was predicted erroneously in Ref. 6, is absent, the very 
sharp decrease of (61 ) as the transition point is approached 
makes it possible to speak of the existence of a quasijump 
near the critical point. 

5. DISCUSSION OF THE RESULTS. THE ROLE OF THE 
NONCOMPACTNESS 

1. The density-density correlator calculated in the pre- 
ceding sections makes it possible to give a complete descrip- 
tion of the kinetics of the system under consideration. In the 
insulating region of a - a, this correlator decays exponen- 
tially at large distances [see (37) 1 ,  and for a, - a <a, the 
localization length 1 (38) is inversely proportional to the 
distance a, - a from the transition point. This behavior of 
the localization length near the transition point coincides 
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with the characteristic-length behavior predicted in Ref. 3. 
The form of the correlator (37) is exactly the same as in the 
one-dimensional models of Refs. 9-1 1. The dependence of I 
on a is specified by the exact expressions (36), (24), which 
are applicable for all a <a , .  It is interesting to note that the 
authors of Ref. 3 considered an entirely different model of a 
disordered metal on a Bethe lattice, in which, in particular, 
time-reversal symmetry was not broken. This agreement of 
the results is characteristic for the one-dimensional case. In 
Ref. 11 disordered chains were studied, while in Ref. 9 and 
10 wires were investigated. The coincidence of the results in 
all these cases implies that the model ( 1 ) of a granulated 
metal correctly describes the kinetics. However, this is also 
clear without calculations. The model ( 1 ) differs from, say, 
the Anderson model in that the density of states in ( 1 ) is 
fixed. But fluctuations of this quantity should not have a 
qualitative effect on the phenomenon of localization. 

The dependence (38) of I on a is very similar to the 
corresponding dependences of the characteristic lengths in 
the theory of second-order phase transitions (it has a power- 
law form). However, this length, diverging at the transition 
point, occurs only in the exponent in the correlator (37), 
despite the presence of a power of a distance in the pre-expo- 
nential factor. This leads to the result that the application of 
the traditional scaling relations for the calculation of phys- 
ical quantities does not give correct results. For example, the 
polarizability tt (40) is proportional to 1 312, and not to I as 
would follow from ordinary scaling. The probability that a 
quantum particle remains at its original site after an infinite 
time does not tend to zero as the transition point is ap- 
proached, and has a discontinuity at the transition point. 
This probability is determined by the density-density corre- 
lator at coinciding points, which was calculated in Ref. 6. On 
the basis of this property, it was postulated in Ref. 6 that 
there exists a maximum dielectric permittivity. It is evident 
that the correctness of this assertion depends on what form 
the applied external field takes. If we examine the response 
to a spatially uniform electric field, this response should di- 
verge, as can be conjectured by looking at the expression 
(40). However, we cannot exclude the possibility that the 
response to a field that is nonzero only in some particular 
small region of space will remain finite, since it is determined 
by the correlator at coinciding points. 

The exponential behavior of the diffusion coefficient 
(61) seems very interesting. The assertion in Ref. 6 that 
there exists a minimum metallic conductivity in the model 
under consideration was the result of an insufficiently accu- 
rate investigation of the integral equation. The correct for- 
mula (61) shows that the transition is continuous. Never- 
theless, the decrease of the diffusion coefficient near the 
transition point is sharp, making is possible to speak of the 
existence of a quasijump near the transition point. If we as- 
sume that the exponential decrease also applies for real sys- 
tems, this could explain the very sharp conductivity decrease 
that has been observed in many experiments and has led 
people to suspect the existence of a minimum metallic con- 
ductivity. 

The conductivity in the Anderson model on a Cayley 
tree was studied numerically in Ref. 2. The authors of Ref. 2 
obtained a very sharp decrease of the conductivity near the 
transition point and concluded that a minimum metallic 
conductivity exists. The sharp decrease is in agreement with 

(61). However, for an exact comparison of the results of 
Ref. 2 with (61) we need a larger number of calculated 
points near the transition. 

In no way can the formula (61 ) be obtain9 by means of 
the scaling hypothesis of Ref. 12. Of course, it may be doubt- 
ed whether models on a Bethe lattice bear any relation to real 
systems. However, such doubts seem strange, since the the- 
ory proposed in Ref. 12 is very similar to the usual theories of 
second-order phase transitions, for which the Bethe lattice 
has simply yielded mean-field theory. Moreover, an attempt 
has already been made4 to obtain the conductivity on a Bethe 
lattice using ideas expressed in Refs. 12 and 5. Application of 
all these ideas in a certain rather general model on a Bethe 
lattice has led to the conclusion that the conductivity de- 
creases linearly as the transition point is appr~ached ,~  which 
is natural from the point of view of scaling but contradicts 
the exact result (61 ). In a recent paper13 scaling relations 
were used to investigate localization in a space of high di- 
mensionality d. It was concluded that the dielectric permit- 
tivity for d-+ co (corresponding to the Bethe lattice) should 
remain finite as the transition point is approached. As al- 
ready discussed above, the result can depend on how the 
applied field varies in space. However, the author of Ref. 13 
calculated the dielectric permittivity at zero momentum, 
which, it would seem, corresponds to x (39). But the quanti- 
ty tt diverges as the transition point is approached [see 
(40) 1, contradicting Ref. 13. One may doubt the possibility 
of describing a localized region by means of only one length. 

2. The entire investigation carried out above is based in 
an essential way on the noncompactness of the symmetry 
group of the order paramter Q. In paticular, in the derivation 
of (37) the important contribution is made by the region 
A ,  = cosh 8, - l/w, and in the derivation of (61 ) it is made 
by the region A,  a exp[q(a - a, ) -'"I. In the usual theor- 
ies of phase transitions, however, the group of the order pa- 
rameter has always been compact. We shall show that in the 
present case too the replacement of the noncompact group 
by any compact group quickly leads to scaling. We stress 
that the compact symmetry group proposed below has no 
physical meaning and is used only to illustrate the role of the 
noncompactness. 

We shall assume that the new model is described, as 
before, by the formulas ( 1 ) and (2),  but make th t  following 
change for 6 in (2) .  We suppose, as bnefore, that 6 is a diag- 
onal matrix, in which the component O,, corresponds to the 
compact sector. We change only the component O,,. We 
write the results of this change in the form of the following 
change of Q,,,: 

where the variables z and x are related by the equation 

If f(z) = 1, we return to the noncompact model already 
considered, since then x = sinh 8,. To construct the com- 
pact model we choose f(z) in such a way that Eq. (62a) 
describes a closed curve. As f(z) we can take, e.g., the func- 
tion 

where R is a number 
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Having changed the original model in this way, we can, 
as before, obtain Eq. ( 1 1 ). Now, however, n, is a vector not 
on a hyperboloid but on the closed surface obtained from the 
curve (62a) by rotation about the z axis. Correspondingly, 
by the scalar product of the vectors n and n; we understand 
the expression 

nlni1=f(z) f(zf)zz'-xx', ni=(z, x).  (64) 

The vectors n, and n; in ( 11 ) are now unit vectors in the 
sense of the scalar product (64), and A ,  = f(z)z. In the re- 
gion a% 1, as before, the main contribution is given by values 
o f 2  and A ,  close to unity, and this gives the solution (52). 
Moreover, the entire perturbation theory in the limit a s  1 in 
the presently considered compact model with f(z) (63) co- 
incides with the perturbation theory for the correct noncom- 
pact model that was studied in the preceding sections, since 
for values of z close to unity f(z) differs from unity by an 
exponentially small amount. Despite the coincidence of the 
perturbation-theory results, the critical behavior of these 
two models is entirely different. 

To elucidate the critical behavior it is necessary to find 
the eigenfunctions of the kernel T. In the previous case the 
eigenfunction was the product P,, (A ) P - ,,, +. (A, ). Be- 
cause of the noncompactness the set of eigenvalues was con- 
tinuous. However, in the general case too, it is not difficult to 
construct the eigenfunctions of the changed operator T. 
Naturally, the variables are again separable and the function 
is written in the form of a product P, (A)p, (z). The function 
p, (z) is a generalized spherical harmonic, corresponding to 
transformations g that carry the set of unit [in the sense of 
the scalar product (64)]  vectors into themselves, so that 
n; =gn,. The procedure for constructing such spherical 
harmonics by means of representations T ' ( g )  of the group of 
g is described in the book by Vilenkin.I4 Any function on a 
compact set ofg can be expanded in a Fourier series in these 
spherical harmonics (on a noncompact set, a Fourier inte- 
gral is necessary). 

We seek solutions of Eq. ( 1 1 ) in the form (52), assum- 
ing that c is a function of A and z. We expand c in a Fourier 
series: 

and substitute (52) and ( 65 ) into ( 1 1 ) . After this we trans- 
form ( 11) to the form (56), in which we must replace 
P- ,,, + ip by p,. In the critical region, as usual, only the 
zeroth harmonic is important. The corresponding coeffi- 
cient coo (65) is small. Expanding (65) in coo and discarding 
the other harmonics, we obtain 

where a,, a,, and a, are numerical factors of order unity. 
Equation (66) coincides in form with the equation for 

the mean field in standard theories of phase transitions (in 
spin models, the term c& is absent and it is necessary to write 
c& ). This means that all the nonstandard results obtained in 
the preceding sections are a consequence only of the non- 
compactness of the group of the order parameter. 

If in addition we assume that c in (52) foril, z -+  1, and, 
consequently, coo are proportional to the diffusion coeffi- 
cient D, which in any case is true in the region a 1, then Eq. 

(66) can be interpreted as an equation for the diffusion coef- 
ficient. For a > a, and 0- 0 we have coo - a - a, . Precisely 
this result was obtained in Ref. 4. For a < a ,  the quantity 
coo -0 /(a, - a ) .  Comparing with (SO), for the localiza- 
tion length we obtain I -  (a, - a ) - ' ,  which unexpectedly 
coincides with ( 3 8 ) . 

Equation (66) has also been obtainedI5 with the aid of a 
self-consistent approximation. The coincidence of the equa- 
tions obtained in Refs. 4 and 15 with Eq. (66), which was 
derived with the aid of specially made incorrect distortions 
of the correct noncompact u-model, compels us to think that 
the approximations used in Refs. 4 and 15 are incorrect. To 
check this assertion it would be interesting to use the method 
of Ref. 15 to investigate the transition on a Bethe lattice. We 
note that almost any change of the correct model leads to 
(66). For example, it is possible in the original model to 
calculate the integrals over A ,  not from 1 to ccr but from 1 to 
some A,,, . Then we again obtain Eq. (66). Evidently, re- 
placement of the noncompact model by any compact model 
corresponds to replacement of certain strongly fluctuating 
quantities by their average values. Near the transition, when 
the averages themselves (e.g., the conductivity) become 
small, neglect of their fluctuations can lead to incorrect re- 
sults. 

3. The form of the diffusion coefficient (61 ) also con- 
tradicts the predictions of the renormalization-group meth- 
od in a space of 2 + E  dimension^,'^." if this method is ap- 
plied to the supersymmetric model ( 1 ) . While in no way 
doubting the correctness of Refs. 16 and 17, we must note 
that the analysis was performed only for compact models. 
All the proofs of Refs. 16 and 17 were based on the invar- 
iance of the integration measure. For example, in the matrix 
case it is necessary to integrate over all matrices Q satisfying 
the conditions Q = 1 and Tr Q = 0. Such invariance guar- 
antees that, after the renormalizations, only terms of the 
type Tr(VQ)' appear in the Lagrangian. In noncompact 
models, specifying the matrices with the aid of only these 
restrictions leads to the necessity of integration over both 
sheets of the hyperboloid, and this gives divergent integrals. 
A way of integration over supermatrices Q is described in 
Ref. 9, but this method cannot be called invariant, since it 
assume that the matrix A = (A -: ) is distinct. Therefore, 
there is in advance no guarantee that terms other than 
Tr ( VQ) are forbidden. 

An attempt to discover the existence of particular new 
terms in the Lagrangian was undertaken in Ref. 18. The exis- 
tence of such terms could be manifested in nonuniversality 
of the coefficients of the logarithms. In Ref. 18 it was stated 
that this nonuniversality is already apparent in perturbation 
theory. However, the calculational result presented in Ref. 
18 is erroneous, as a consequence of the loss of the contribu- 
tion of one of the diagrams. Correct allowance for all the 
diagrams leads to a universal coefficient in the order under 
consideration. It is evident that if the conjectured new terms 
in the Lagrangian do exist, they are exponentially small and 
a calculation in the framework of perturbation theory will 
not make it possible to find them. 

At the same time, it is important to go beyond the 
framework of perturbation theory, since the critical proper- 
ties are determined not by perturbation theory but by the 
global symmetry of the order parameter. For example, the 
compact model defined by means of (63) has the same per- 
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turbation theory as the correct noncompact model, although 
the critical behavior of these models is entirely different. 

In conclusion the author thanks A. I. Larkin for a dis- 
cussion of the results. 
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