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A theoretical analysis is made of the correlation functions of periodic structures formed as a 
result of interaction of laser radiation with metal and semiconductor surfaces. Explicit 
expressions for the correlation functions are obtained for the linear stage of the interaction. A 
nonlinear stage is also considered. It is shown that nonlinear effects result in freezing of the 
correlation structure formed in the linear stage. The degenerate case is considered in detail for 
angles of incidence B > ~ / 4 .  

1. INTRODUCTION 

Over twenty years have passed since the discovery of 
formation of periodic structures on the surfaces of solids as a 
result of interaction with laser radiation, but the flood of 
work on this subject continues to grow (for a review and a 
bibliography see Ref. 1 ). A considerable quickening of the 
research has resulted from recognition of the fact that in 
most cases the process is due to resonant excitation of sur- 
face electrodynamic waves. An important consequence is 
that the period and orientation of the structures formed on 
metal and semiconductor surfaces are independent of the 
properties of the target material but are governed by the 
parameters of laser radiation such as the wavelength, polar- 
ization, and angle of incidence. 

In spite of the common nature of the amplification of an 
electromagnetic field by the excitation of surface electrody- 
namic waves, the actual mechanism of formation of periodic 
structures may vary with the energy and time characteristics 
of the radiation and with the properties of the target materi- 
al. We shall not specify this mechanism and consider the 
stage of the process which is linear for a given mechanism of 
formation of periodic structures. 

Our aim will be to determine the spatial and time char- 
acteristics of periodic structures. We shall first consider the 
linear stage of the process and then discuss nonlinear effects 
due to the interaction of surface electrodynamic waves as 
they are scattered by the newly formed periodic structure. 
Following Ref. 2, we shall consider the specific case when 
the formation of periodic structures is due to evaporation. 
Similar results can also be obtained readily for other mecha- 
nisms of formation of periodic structures. 

We shall specify the equation for the profile of a solid 
dependent on time t in the form z = z. (r,t) on the assump- 
tion that z = 0 describes a plane obtained by averaging the 
real surface. The coordinatez is directed along the normal to 
this plane into the semiconductor and r is a two-dimensional 
vector in the plane. 

A model of discrete modes (MDM) is adopted in Ref. 
2: in this model the function z. (r,t) is reduced to a finite 
number of harmonics with wave vectors satisfying the condi- 
tion of a resonance in respect of surface electrodynamic 
waves, which is Iq + gi I z k , .  Here, q is the tangential com- 
ponent (in thez = 0 plane) of the wave vector of the incident 
radiation; /ql = k ,  sine; k,  = w/c; B is the angle of inci- 
dence; w is the frequency and c is the velocity of light. 

Among all the modes we shall consider separately a degener- 
ate mode with a wave vector g+ satisfying the condition 
q.g+ = 0, which ensures a simultaneous resonance of 
g = g+ and g = g- = - g+.  The basis for this model is a 
strong time dependence of unstable modes resulting in their 
selection at extrema of the growth increment considered as a 
function of the wave vector g. However, the MDM in fact 
corresponds to an approximation of a real system with an 
infinite number of degrees of freedom by a system with a 
finite number. The question then arises of the accuracy of the 
results obtained in the MDM. There are many series of prob- 
lems the solution of which cannot be obtained within the 
MDM framework and they include, for example, the prob- 
lem of spatial characteristics of periodic structures. There- 
fore, there is a need to develop a more general approach 
which allows for the spatial degrees of freedom of the struc- 
tures. This will be our main task. 

Dropping the MDM, we shall write down the expres- 
sions for the function of the surface profile z, (r,t) allowing 
not only for the discrete vectors gi but also for the contribu- 
tions of their vicinities, which is equivalent to an allowance 
for a slow coordinate dependence of the amplitudes of dis- 
crete modes. We then obtain the following expansion for the 
function z, (r,t) : 

z. (I, t) = z bi (r, t )  exp (igir) +z b i j  (r, t) exp (ig,,r) + C.C. 
i>j 

(1.1) 

A prime indicates, as in the corresponding MDM f ~ r m u l a , ~  
that the term corresponding to a degenerate mode is taken 
with half the weight gu = gi - g,. Strictly speaking, Eq. 
( 1.1 ) is multivalued in the sense that the wings of the spec- 
tral expansion in terms of the wave vectors overlap. How- 
ever, during the linear stage we can assume that z. (r,t) can 
be expanded as a Fourier integral, which alters only slightly 
the later analysis. Before the nonlinear stage, for which the 
expansion ( 1.1 ) is important, the overlap of the spectral ex- 
pansions is exponentially small and this justifies the adopted 
approach. 

The main equations describing the evolution of periodic 
structures in the continuum approach are obtained from the 
corresponding MDM equations if we assume that the ampli- 
tudes of the profiles bi and bo and of the  field^^ are functions 
of the spatial variables and if in every case where the vectorg 
occurs explicitly we replace it by the vector 
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g, -g, = g, - id /dr, where I = i or i j .  Consequently, these 
equations become 

B ( q f  gi)  ~i ( r ,  t )  

a,, 
= i ~  (&,) kobi(r ,  t )  -iz c , ( r ,  t )  sinZT kob i j ( r ,  t ) ,  

2 
(1.2) 

dh, (r. t )  
-=- F i r ,  i + + . - .  (1.3) 

dt lgil 

&I (r, t )  - y) c2 ( r ,  t )  E ~ *  ( r ,  t )  cos &ii. 
d t  2 I gu I 

Here, 

B ( ~ + & )  = c + [ l -  (q+g , )2 /koZ] ' i2 .  ( 1 . 6 )  

A (k,) = ( 1  h'1,,12+I E O P 1 2 ) - ' h [ E O P ( ~ ~ ~  &,-sin 0) 

-Eon sin;, cos 01 ,  (1.7) 

c = 5 ' + i{ " is the surface impedance (c ' and { " are real 
quantities), where I f  14 1; the incident radiation seemed to 
be a plane linearly polarized wave; Eop and E,, are the pro- 
jections of the amplitude of the intensity of the electromag- 
netic field on the plane of incidence and at right-angles to it; 
K is the thermal conductivity; To is the time-dependent value 
of the temperature of the interface averaged over the whole 
of its area; c,  is a constant of the order of the velocity of 
sound; Uis a constant of the order of the energy of the intera- 
tomic interaction in the target conductor. The functions of 
the operators are understood to be expansions in powers of 
the operator is/Sr and the asterisk is used to denote the Her- 
mitian conjugate. 

2. LINEAR STAGE OF THE PROCESS 

Separation of degenerate and nondegenerate modes is 
meaningful only for angles of incidence 8 >{ ' 15 " I .  When 
these angles are low, the degenerate and nondegenerate 
modes merge, but this case requires a separate analysis; 
therefore, we shall begin by considering the angles of inci- 
dence obeying 8>f '1c " I .  We shall consider in greater detail 
the case of an s-polarized incident wave (Ep = 0) .  The re- 
sults obtained can be generalized to the case of an arbitrarily 
polarized incident wave. 

In this section we shall consider the linear stage of the 
process of formation of periodic structures when the follow- 
ing inequality is obeyed: 

so that on the right-hand side of Eq. ( 1.2) we can ignore the 
second term. It then follows from Eqs. ( 1.2)-( 1.4) subject 
to Eqs. (1.7) and (1.8) that 

dbi ('' ') = iFH (4 ,2i) B-' (q  + 13 bi ( r ,  i), i += + , --. dt  

-- db+(r'  ' )  - iF cos3 O [ k i  (q+i+) ti-'' (q-i+) ] b+ ( r ,  f), 
dt 

where 

H (a) = cos2 0 sin% (1 4- s i ~ i ~  R - 2 sin O cos a)-' 2, 

aq_; -- arccos [(q2 -t- qC)/qko] , 

and in Eq. (2.L) we retain the spatial dependence only for 
the quantities B because for 8 % f  ' I f  " / it is these quantities 
that determine the spatial dependence b+ (r, t) .  

Since bi (r,t) are amplitudes of periodic harmonics 
varying slowly with the coordinates and corresponding to 
the wave vectors g,, the initial conditions for b, (r , t)  are 

Here, b "(r )  = z. (r,t = 0 )  is the function describing the pro- 
file of the surface at the very first moments of the interaction 
with the incident radiation, describing the real structure of 
the surface roughness of the target. 

The formal solution of Eqs. (2.2) and (2.3) subject to 
the initial conditions (2.4) is 

where 

r, r', and x are two-dimensional vectors and the quantity s 
introduced by Eq. (2.9) represents dimensionless time. 
Since the vectors g, correspond to harmonics with the maxi- 
mum value of the instability increment (see Ref. 2), they are 
subject to the condition 

Equation (2.5) and the function I, (r,t) are of interest 
at those times when the amplitudes of the periodic structures 
are large compared with their initial values. In this case the 
real part of the argument of the exponential function for a 
large part of the integration domain in Eq. (2.6) is consider- 
ably greater than unity, so that we can use the steepest-des- 
cent method. We then obtain the following expressions for 
the functions I, (r, t)  which are valid in a wide range of vari- 
ables: 
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We will introduce here the notation 

where the angle ai corresponds to a maximum of the func- 
tion H(a) and pi is the angle between r and q + gl . 

We shall now consider the range of angles of incidence 
8 < / f  "16'. Equations (1.2), (1.4),and (1.5) remainvalidif 
b+ and b- are understood to represent a mode obtained as a 
result of merging of degenerate and nondegenerate modes in 
the limit 8 - 0 and if the angle a, is between the vector g and 
the plane in which the incident wave is polarized at right 
angles. In Eqs. (2.5) and (2.6) we have to substitute A,(%) 
in the form 

A formula similar to Eqs. (2.11 ) and (2.12) can now be 
written as follows: 

An analysis of Eqs. (2.11), (2.12), and (2.15) leads to the 
following conclusions. In the range of angles of incidence 
8% 16 " 16 'an instability resulting in the formation ofperiodic 
structures is of convective nature: the rise of the g, th Fourier 
component of the initial perturbation b '(r) is accompanied 
by a simultaneous displacement on the ~u r f ace .~  For a non- 
degenerate mode (i# + , - ) this displacement occurs in 
the direction of the vector q + g, and for a degenerate mode 
it occurs in the direction of the vector q. The absolute dimen- 
sionless velocities obtained from the formula V, = k&rl /ds, 
where rl is the spatial coordinate of the maximum of a per- 
turbation packet, are given by 

When the angle of incidence obeys 84 (f " (f ', the instability 
is ab~olute .~ 

Perturbation packets spread with time in accordance 
with diffusion laws. The order of magnitude of the dimen- 
sionless diffusion constant is given by Eq. (2.14). The shape 
of a two-dimensional packet depends strongly on the case 

FIG. 1. Shapes of the packets I,  (r,s) for the degenerate ( a )  and nonde- 
generate (b)  cases with s-polarized incident waves; 8% /{ "I{ '. 

under discussion. For example, in the degenerate case the 
packet is an ellipse with the axes 

a-cos 0 ( D s  cos3 0)"/k, ,  b-sin B(Ds cos3 O)"' /ko ,  

where a is directed at right-angles to the vector q and b along 
the vector q (Fig. la) .  In the nondegenerate case a packet is 
a circular sector of radius R - ( H , D s ) " ~ / ~ ,  with a vertex 
angle p - (26 '/H,h ,s) ' I2  and inside these packets the 
"memory" of the initial conditions decays with distance in 
accordance with the law (kolrl) -'I2 (Fig. lb) .  This is the 
shapeofa packet for angles ofincidence satisfying 8 4 I l "  16 ', 
but the radius of the circular sector is now - (+DS) ' '~/~, ,  
whereas the vertex angle is - (6 '/s) 'I2. 

Since the initial conditions during the formation of sur- 
face structures are of random nature, it is desirable to consid- 
er the correlation functions of the amplitudes of the profile of 
the new surface structure: 

Gij(r-r', t, t ' )  = ( b i ( r ,  t )  bj*(r', t ')  >, (2.16) 

where the angular brackets denote averaging over the real- 
izations of the initial state b '(r) and, because of the statisti- 
cal homogeneity of the system, the function GV depends on 
the difference between the coordinates r - r'. We shall re- 
write Go in terms of the solutions of the linear problem (2.5) 
given above. We shall bear in mind that the correlation 
length of the initial surface irregularities is usually 
lo- 10-2-10-5 cm (Ref. 4) and much less than the spatial 
scale of the functions Ii (r,t), which is 

After substitution of Eq. (2.5) in Eq. (2.16), and appropri- 
ate calculations, we find that 

Using the form of the functions I, , we can readily obtain the 
following expression for GV (r,t,t ') : 

[k, I r  I -vH,  ( s - s f )  I' - 21 D H i [ s ( l - i ) + s l ( l + i )  ] 
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k,2Go 
G++ (r, S, s f )  = --- 1 

4 sin 20 D cos3 0 I s/ ( l+ i )  +sf/  (1-i) I 

We must mention one further consequence of the fact that 
the initial condition length I ,  is much less than the spatial 
scale L. Irrespective of the statistics which is obeyed by the 
initial conditions b '(r), the functions bi (r,t) have the Gaus- 
sian statistics. Therefore, the correlation functions deter- 
mine fully the functional of the distribution of the probabil- 
ity for a random field bi (r,t). 

3. NONLINEAR STAGE OF THE PROCESS 

In this section we shall consider in detail the nonlinear 
stage for a degenerate mode. We shall assume that an s-po- 
larized wave isincident at an angle 8) 15 " (f '. As before, only 
the operators B determine the spatial dependences of all the 
functions. The system ( 1.2), ( 1.4), and ( 1.5) then becomes 

[%'(I-i)t-B-]e-(r, s)/cosZ 0=9-(r, s) -6,-'(r, s) e+(r, s), 
(3.2) 

dF+(r, S) /~S=COS O[E-* (r, S) -e+(r, s) 1, F-=6+*, (3.3) 

db+-(r3 s, = - (cos 20/2 cos 0) e+ (r, s) E-• (r, s) ,  (3.4) 
as 

A 

*re we have sepfrated from B, the operator term 
B , = 5 ( 1 - i) + and introduced the notation 
b, = k,b,. 

The system (3.1 )-(3.4) differs from the corresponding 
system for the MDM by the presence of the operators repre- 
senting differentiation with respect to the spatial coordi- 
nates B, . We shall consider the solution obtained for 
16, (s) I in the MDM. As shown in Ref. 2, when the angles of 
incidence obey 8 > r/4, the quantity 16, (s) 1 rises without 
limit with time. We shall consider this specific case. During 
the initial stage of the process the nonlinear effects can be 
ignored and (6, (s) ( revolves in accordance with the law 

IF+(s)I=16+(0) I exp (scos3 0/%'). (3.5) 

When (6, - (s) I becomes of the order of 25 '/cos26, we can 
no longer ignore the nonlinear effects. From this condition 
we find the times, when the nonlinear terms begin to play an 
important role: 

5' bo so = -1n --- . 0 ,  = 
4%' 

cos 0 I cos 20 1 "' . (3.6) 
cos" IF+(O) / 

If 16, - (s) / rises sufficiently to satisfy (6, - (s) ( > 2[ '/ 
cos28, we can ignore the left-hand side in Eqs. (3.1)-(3.2); 
we then find that 16, (s) I is described by 

Since the derivative d (6,  (s) I/ds rises with time and by the 
moment s z s ,  becomes of the order of 2/cos26, the addi- 
tional time As necessary for the transition from the regime of 
Eq. (3.5) to that of Eq. (3.7) is much shorter than so: 

The dependence of 16, (s)  I on s obtained above is plotted in 
Fig. 2. 

We shall now find the approximate solution of the sys- 
tem (3.1 )-(3.4). The solution 6, (r,s) for the linear stage is 
given by Eq. (2.15). We shall denote it by ?+ (r,s). It then 
follows from Eqs. (3.1 )-(3.4) that since s lies within a re- 
gion As near so, the smallness of the region allows us to ig- 
nore the spatial evolution of the packets to within [ln(b,/ 
(6 ('+ (0) 1 ) ] - ' I 2  4 1. When s leaves this region, then-as in 
the case of the MDM-we can ignore the left-hand sides of 
Eqs. (3.1 ) and (3.2) so that the solution analogous to Eq. 
( 3.7) becomes 
6+(rr s)=E+"(r, so) (s-so)4 cos2 0115+o(r, so) I Icos 201"'. 

(3.8) 

We note that since the terms containing the derivatives can 
be ignored in Eqs. (3.1) and (3.2), the spatial structure is 
"frozen" and this is expressed by Eq. (3.8). 

We thus find that the solution 6, (r,s) can be written in 
the form 

S<So, 

(s-s,), ~ > S O .  
(3.9) 

I cos 20 1 ''. / & + ' I  (r, so) 1 

Similarly the solution 6, - (r,s) is found to be as follows: 

r 0, S<So, 

E n ( r s )  ' 5,-(r.s)=[ ( + * O  ) (3.10) 
2 cos 0 (s-so), s>SJ. 

I6+"r, s,,) j 

We can determine the correlation functions during the linear 
stage if we average Eqs. (3.9) and (3.10). Bearing in mind 
that the random field b ('+ (r,s) obeys the Gaussian statistics 
with the correlation function G+ + (r,s,sl), which is given by 
Eq. (2.32), and carrying out standard calculations, we find 
that for s,sl >so, we have 

16 cod 0 G 
G++ (r, S, s') = (s-so) (sf-so)-- 

k,Z I cos 20 1 IGl' 

KIG. 2. Dependence of Eq. (3.7)  representing the amplitude of a grating 
Ib, (s)  / as a function of times. 

351 Sov. Phys. JETP 65 ( Z ) ,  February 1987 P. S. Kondratenko and Yu. N. Orlov 351 



4 cosZ 0 G 
G+-, +- (r, S, s ' )  = - y ( ~ - ~ , )  ( s r -so )  -; 

k ,  IG I  
perimental generation of regular gratings. It is clear from 
Fig. la and from Eq. (3.6) that the area of a correlation . , 
packet at the end ofthe linear stage is an ellipse with the 

X { I G I ~ +  (1-IGI"ln(1-IG12))y parameters 
(3.12) 

a b - [21n(bo/18+(0)l)l'" 
-=___ _ 

where G = G+ + (r,so,so)/G+ + (O,so,so); K and E are com- sin 0 cos 0 2nb' 1 C'' I k ,  

plete elliptic integrals of the first and second kind, respec- 
tively. It follows from Eq. (3.11 ) that the spatial dimensions 
of a packet formed during the linear stage remain unaltered 
(Fig. la) .  The shape of the packet changes in the nonlinear 
stage and the change becomes greater on approach to the 
center of the packet ( r  = 0), whereas at the edges the shape 
of the packet is the same as that of G+ + (r,so,so). We can say 
qualitatively that a packet becomes flatter as a result of non- 
linear interactions, but its spatial dimensions are not affect- 
ed. It should be noted that during the nonlinear stage the 
instability becomes absolute. 

These conclusions are valid also, though only qualita- 
tively, in the nondegenerate case which can be considered in 
a similar manner. 

4. CONCLUSIONS 

We shall now consider how well the above theory de- 
scribes the experimental results. Gratings observed in ex- 
periments do not usually have a perfect regular spatial struc- 
ture. Quite the opposite, in many cases such gratings are so 
distorted that even their very existence is in doubt.' The de- 
gree of distortion of the gratings can be described by correla- 
tion functions (b, ( r , t )  b r(r ' t  ') ), which have the form of 
packets that depend strongly on the parameters of the prob- 
lem and the nature of the grating. Therefore, the spatial 
structure of the distortions of the gratings varies within wide 
limits. 

It follows from our discussion that in the degenerate 
case the area of a correlation packet represents an ellipse 
(Fig. la)  and s grows linearly with time. At the end of the 
linear stage the parameters of the ellipse may become 
a - b - ( 10'-103)11, where II is the wavelength of the inci- 
dent radiation. Therefore, in this case we can speak of the 
formation of a "good" grating. It follows from the results of 
Sec. 3 that when nonlinear effects become important, this 
correlation structure is frozen and subsequently only the 
amplitude of the grating increases with time. In our opinion, 
this conclusion is interesting from the point of view of ex- 

which depends strongly on the properties of the target mate- 
rial: the smaller the product of the real and imaginary parts 
of the surface impedance, the better the correlation of the 
resultant gratings. It should be noted that the parameters of 
surface irregularities before irradiation occur in Eq. (4.1 ) in 
the form [ ln(bd(b+ (0) 1 )  ] ' I 2  and have practically no influ- 
ence on the correlation length. 

In the nondegenerate case two gratings are formed dur- 
ing the linear stage and they are well correlated along the 
vector q + g, , but in the perpendicular direction the correla- 
tion length is q, - (2c ' / sH,h , )  ' I 2  times less. It follows from 
Fig. lb that the transverse correlation length varies slowly 
with time and has the value -A (a\< "IS ') -'. The correla- 
tion length along the vector q + g, increases with time as s'I2 
and at the end of the linear stage it has a value of the order of 
that given by Eq. (4.1 ) . Therefore, nondegenerate gratings 
in the direction perpendicular to the vector q + gi are corre- 
lated much less, in agreement with qualitative consider- 
ations put forward in Ref. 5. 

A more detailed comparison of the theory and experi- 
ment becomes possible when quantitative results on the cor- 
relation properties of the structures found experimentally 
are obtained. 

The authors are deeply grateful to I. E. Dzyaloshinskir 
for valuable comments. 
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