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Disordered-SNS-junction properties determined by mesoscopic fluctuations are considered. 
The rms deviations of the superconducting current and of the resistance of the SNS junction 
from their mean values with respect to realizations of a random impurity potential are 
calculated. It is shown that mesoscopic fluctuations can determine the superconducting 
current through the SNS junction if the average current is suppressed. This suppression occurs 
in the presence of a strong magnetic field or in the case when the normal metal is 
ferromagnetic. By varying the magnetic field that penetrates into the sample it is possible to 
reach a condition in which the SNS junction has several stationary states at a given current. 
The mesoscopic fluctuations of the SNS-junction resistance are discussed. It is shown that they 
determine the dependence of this resistance on the phase difference of the superconducting 
order parameter at the junction. The feasibility of experimentally observing the indicated 
phenomena is discussed. 

I. INTRODUCTION AND PRINCIPAL RESULTS 

It is known that in a disordered normal metal the phase 
of the electron wave function remains coherent over dis- 
tances L, much larger than the mean free path I with respect 
to elastic collisions with impurities. The reason is that L, is 
determined by inelastic collisions of the electrons with phon- 
ons or with one another. Inelastic scattering at low tempera- 
tures, on the other hand, is much more effective than elastic 
electron-impurity scattering. Within the framework of clas- 
sical kinetics, which is usually employed when I is much 
longer than the electron wavelength h /p,, this large-scale 
phase coherence does not come into play. As a result, for 
example, the known Drude formula for the residual conduc- 
tivity contains only I. On the other hand, weak-localization 
effects1x2 are wholly determined by this phase memory. 

This phase coherence determines also the properties of 
a disordered superconductor-normal metal-superconductor 
(SNS) junction. Consider the SNS junction shown in Fig. 1, 
whose order-parameter phases on the opposite supercon- 

FIG. 1. SNS junction with normal-region dimensions L, X L, X L, and 
with order-parameter phases X, and x2 on the opposite banks. 

ducting banks are equal to X, and x,. The sensitivity of the 
SNS-junction properties to the phase difference is due to An- 
dreev reflection of the electron from the NS b ~ u n d a r y . ~  In 
this reflection the electron is transformed into a hole and 
acquires a phase ( - x,,, ). The hole, reflected from the NS 
boundary, is transformed into an electron. This is indeed the 
cause of the Josphson effect in an NSN junctiom4 

The existence of another phenomenon sensitive to 
changes of p was demonstrated in Ref. 5. Namely, the SNS 
junction conductivity is also an oscillating function o fp  with 
period T. The subject of Ref. 5 was the conductivity of the 
normal region of the SNS, averaged over realizations of a 
random potential, i.e., over a random disposition of the im- 
purities. It was made clear recently that the properties of an 
actual sample can differ noticeably from their mean val- 
u e ~ ~ - ~  (see also Ref. 11 and the citations therein). For exam- 
ple, the conductance (the inverse of the resistance) of the 
sample fluctuations from sample to sample at a temperature 
T = 0 by an amount on the order of e2/h.9.10 

We consider in the present paper the SNS-junction 
properties determined by a specific realization of a random 
potential in the N region (mesoscopic effects). We do not 
take into account interactions between the electrons in a nor- 
mal metal. 

The superconducting current of an SNS junction aver- 
aged over the samples equals at T < A  [Aexp(ix,,, ) is the 
superconducting order parameter] 

( I .>=(J ,>  sin cp, (1)  

Here J, is the critical current of the junction, ( . . . ) denotes 
averaging over the realizations of the random potential, 
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D is the electron diffusion coefficient in the normal metal, 
and L, is the distance between the superconductors of the 
SNS junction. We assume that the region is a rectangular 
parallelepiped with volume V = L, X L, X L, (see Fig. 1 ) . 

We calculate in the present paper the mean squared de- 
viations of the superconducting current and the conductiv- 
ity of the SNS junction from their mean values. It turns out 
that at T<hD / ~ T L  :, i.e., at {,$L,, we have for 
((SJ, )'> = (Jf > - (JC)* 

15n-'f (5)L,L,/L,', L,<L,,L,, (3a) 
L,BL,, L,. (3b) 

If, however, T$Ec, i.e., L, <{,, we get 

Here, ( ( x )  is the Riemann zeta function: 5(3) -- 1.20, 
((5) z 1.04. 

It can be seen from (3) and (4) that if the transverse 
dimensions L, and L, of the normal region are small com- 
pared with its length L, , the fluctuations of the critical cur- 
rent are determind only by the temperature and by the quan- 
tity Ec = h /T, where r is the characteristic time of diffusion 
of the electron through the N region. 

It follows from ( I ) ,  (3),  and (4) that the fluctuations 
SJc of the critical current are small compared with (J,) 
relative to the parameter S/A, where S = (vV) - I  is the dis- 
tance between the energy levels and v is the density of states 
in the normal metal. 

Equation ( 1 ), however, is valid in the absence of a mag- 
netic field also if the N region does not contain localized 
spins that form a frozen structure (ferromagnetism or spin 
glass). It is known that these factors, by violating the invar- 
iance to time reversal, lead to an exponential decrease of 
(Jc ). In this case {, in ( 1 ) is replaced by a quantity of the 
order of 

E-'= (ET-'+ Lr-'+LH-') "', 
where L, = (hc/2eH) ' I2  is the magnetic length and L, is 
the length ofcoherence loss due to exchange interaction. For 
example, if the normal metal is ferromagnetic we have 
L, - (hD /Tc ) "'), where Tc is the Curie temperature. 

A remarkable property of the fluctuations of Jc is that 
at small L, or L, ({<c,) the value of ((SJ, )') is smaller 
by only a factor of 2 than (3) or (4), whereas (J, ) decreases 
exponentially. A situation can therefore be reached in which 
(J, )' 4 ( J  f ) and the entire critical current through the SNS 
junction is determined by the mesoscopic contribution. It is 
just this situation <<{, that we shall consider in the study of 
the critical current. 

In principle, we can study the correlator of the super- 
fluid currents at different values of the phase difference 
(J, (p)Js (p '1) For example, in the case of a narrow junc- 
tion L, $L, ,L, ,min{L,,L L/Ly) we have 

L. 16(2n)"z--E,2exp 
ET 

x'shsdx ( 5  

d(p-p') '  j ch  x - cos ( q - p f  ) , TKE, ,  

where J, (p) is a periodic function with period 2 ~ .  In the 
interval [ 0 , 2 ~ ]  the function J, (p) is random and different 
in different samples. It is important that at 
L, $min{L, ,L L/L, ) the value of (J, ( p )  J, ( p  ') ) depends 
only on p - p '. Therefore under these condihons, first, the 
extrema of J, (p) in a given sample can have arbitrary proba- 
bility of being located at any point in the interval [0,2?r]. 
Second, J, (p) has no parity whatever, in view of disruption 
of the T-invariance of the SNS junction by the magnetic field 
or by the magnetic structure. 

In a study [ 101 of the dependence of the conductance G 
on the magnetic field H, an ergodicity hypothesis was ad- 
vanced, according to which averaging over the samples (i.e., 
over the realization of a random potential, is equivalent to 
averaging over H, i.e., 

Ho 

This hypothesis was proved in Ref. 12 for metallic samples of 
sufficient size (such that fluctuations of the impurity density 
could be neglected). 

Obviously, there is no relation similar to (6)  for J, ( p ) .  
The point is that the nontrivial interval ofvariation ofp - p ' 
is confined to Ip - p ' 1  ( 4 ~ .  Obviously, using ergodicity with 
respect to the magnetic field, it is possible to replace in (5)  
the averaging over an ensemble of samples by averaging in 
the given sample over the field H directed along thez axis. By 
this procedure, investigation of J, ( p )  in magnetic fields 
from zero to His  equivalent to study ofH /Hc of the samples. 
Here Hc = QO/Ly L,, and Q>, = hc/e is the magnetic-flux 
quantum. 

At high temperatures T$Ec, the J, (p) plot is, accord- 
ing to (5),  a sinusoid with a random phase p0 determined by 
the disposition of the impurities in the sample: 

J ,  ( 9 )  = I ,  sin (cp+po). (7) 

The higher harmonics are exponentially small. This means 
that in the interval [0,277] the function J, ( p )  has two zeros, 
one minimum, and one maximum. 

At low temperatures T 4 E c ,  the J, (p) dependence 
contains also higher harmonics: 

cc, 

Calculations show that 

LZBL,, L,, 
15/nm5, LL,<L,, L,. 

( 9 )  

It can be seen from (8)  that the probability of having several 
minima of J, (p) on the interval [ 0 , 2 ~ ]  is not exponentially 
small. By varying the magnetic field that passes through the 
given samples, it is possible to reach a situation wherein the 
equation J, (p) = J has several solutions, so'that the SNS 
junction has several stationary states at a given current 
through the junction. It is interesting that a system with a 
large number of such bound SNS junctions is equivalent to 
planar spin glass, in view of the random scatter of p, in (7) .  

The effect described above can be qualitatively attribut- 
ed to the fact that in disordered metallic samples of finite size 
the electronic energy levels are randomly distributed in ener- 
gy space, and therefore the density of states on the Fermi 
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level fluctuates from sample to sample. The change of the 
phase difference p in the SNS junction leads to a change of 
the boundary conditions on the NS interface and to a ran- 
dom shift of the levels, by about SE - Ec Sp  (Ref. 13 ). This is 
accompanied by a change of the density of states on the Fer- 
mi level, and with it of the free energy of the SNS junction. 
Recognizing that the number of states in an energy interval 
of the order of Ec fluctuates by a value on the order of uni- 
t ~ , ' ~ , ' ~  we arrive at Eq. (3b). At large L, and L,, each cube 
of side min{L, ,fT) makes an independent additive contri- 
bution to ( (SJ, ) ') and we obtain Eqs. (3a) and (4). 

It was noted in Ref. 5 that at L, $fT,  when the critical 
current of the usual Josephson effect is exponentially small, 
the oscillations of G(p )  with change of p are far from small 
and attenuate exponentially only over the phase-relaxation 
length L, = (Dr, ) ' I 2 ,  where r, is the time of electron 
wave-function phase-relaxation loss due to inelastic colli- 
sions. In Ref. 5, however, was investigated only the quantity 
(G(p) ) ,  whose oscillations had a period T .  It is clear from 
the foregoing that in an actual sample G(p )  is a periodic 
function of p with period 2 ~ .  

A direct analogy exists between this phenomenon and 
the Aronov-Bohm effect. In Refs. 16 and 17 was measured 
the dependence of the conductance G(@) of a non-singly- 
connected conductor as on the magnetic flux @ passing 
through an opening. It was observed that G(@) is a periodic 
function with a period hc/2e in large samples'6 and hc/e in 
mesoscopic samples." A transition between the two indicat- 
ed regimes with change of the magnetic field was observed in 
Ref. 18. 

The conductance of the normal region of an SNS junc- 
tion can be represented in the form 

m 

G ( ~ ) = < G > +  ~ ~ e ~ ~ ~ .  (10) 
m=-m 

In this case (G, ) = 0 and, as will be shown below, in the 
absence of an external magnetic field and of a magnetic 
structure (6, = f )  the following expression holds for the 
correlators (G, ,G,, ) : 

(11) 
where 

If a magnetic field H >  H, is applied, the expression for 
(G, G,, ) will differ from ( 11) by the absence of the first 
term in the square bracket, i.e., it will be proportional to 
a,, - ,. . In the next section we present a brief derivation of 
the expressions for the mesoscopic fluctuations of the super- 
conducting current and for the conductance. 

2. DERIVATION OF PRINCIPAL RESULTS 

The superconducting current J, is connected with the 
free energy R, of the SNS junction by the relation 

To calculate the correlator ( a ,  (q,)R, (q,  ' ))  we must sum 
the diagrams shown in Fig. 2. Important elements of these 

FIG. 2. Diagrams for the calculation of the mean squared fluctuation of 
the thermodynamic potential. The diagram representation for the shaded 
rectangles is shown in Fig. 3. 

diagrams are the so-called cooperons P:, (Fig. 3a) and dif- 
fusons P & (Fig. 3b) : 

P = G ( ,  ) G + ,  r ) ,  pEo=(GeR(r, r') ~ ? + o  (rf, r) ), 
(13) 

where GR'A' (r,rl) is the exact retarded (advanced) Green's 
function of the electron in the coordinate representation. 

The diffusion and the cooperon PC are sums of lad- 
der diagrams, and satisfy the equation 

1 
{-ia+D (acp) '  + -) P;:D (r, r f )  =6 (r-1.1. (14) 

't e 

Here 

a,=-ialar- (2elc) A (r) , do= -id/dr, ( 1 5 )  

and A(r )  is the vector potential of the external magnetic 
field. The triangles in Fig. 3 represent Andreev scattering of 
an electron from the NS boundary, whereby the energy E 

goes over into - E, and E + w into - E - a). The difference 
between the phases of the electron wave functions on oppo- 
site sides of the triangle is equal to the phase x of the order 
parameter of the superconductor. 

The boundary conditions for the diffuson and cooperon 
on the NS boundary are similar to those proposed in Ref. 5 
and take the form 

C D -  C D  P.;, -P-;,-, exp ( ~ x c , D ) ,  (16) 

where n is the normal to the NS boundary, and 
I 

~ C = X ~ , Z + X ~ . Z ~  X ~ " X t , z - X i , z .  (17) 

FIG. 3. Diagram series for the calculation of a cooperon (a) and a diffu- 
son (b)  with allowance for Andreev reflection, corresponding to the trian- 
gles on the diagrams, of the electrons from the NS interface. 
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To calculate (J, ( p  )/J,  ( p  ' ) ) we must know P C s D  in the 
case when one of the electron lines in the ladder diagrams of 
Figs. 2 and 3 corresponds to the normal region of the SNS 
junction, with a phase difference equal to p, and the other 
electron propagator is calculated at a phase difference equal 
to q, '. This is the reason why both the cooperon and the diffu- 
son depend on the SNS junction phase difference: the coo- 
peron depends on p,  = p + p ' and the diffuson on 
pD = q, - p '. Note that in calculations of the mean values 
( G ( p )  ) and (J, ( p )  ) the PC and the appear only with 
identical phases p = p '. In this case only the cooperon PC 
depends on p and contributes to ( G ( p ) )  and (J, ( q ~ ) . ~ , ' ~  
The boundary conditions ( 16) differ from those proposed in 
Ref. 6 just because p + p  '. 

It is simpler to carry out the calculation in the momen- 
tum representation, in which the diffuson takes the form 

where q2 = qf + q j  + ql, and it follows from the boundary 
conditions ( 16) that 

If there is no magnetic field, the cooperon takes likewise the 
form ( 1 8 ) ,  and the quantization conditions for the cooperon 
momentum differ only in that pD is replaced by p,. For the 
strong magnetic field H >  Hc of interest to us, however, the 
contribution of cooperon-containing diagrams can be ne- 
glected. 

An expression for the correlation function of supercon- 
ducting currents, corresponding to the diagrams of Fig. 2, 
takes after integration with respect to E the form 

(1. ( 9 )  1. (rp+rpn) ) 

where 

Since the values significant in (20)  are o - T )  T; ', we have 
neglected 7;' in ( 1 8 ) .  Equation (20)  leads directly to ( 3 ) -  
( 5 ) ,  ( 7 ) ,  and ( 9 ) .  

It makes sense to consider the SNS-junction conduc- 
tance fluctuations only if T >  Ec , i.e., at L, > f ,, otherwise 
the superconducting current will not be small compared 
with the normal one. At temperatures high compared with 
E, one can disregard also the contribution made to G ( p )  by 
the fluctuation of the density of states. The correlator 
(SG(p)SG(p  ' ) )  is thus entirely determined by the sum of 
diagrams of Fig. 4, which takes, as shown in Refs. 15 and 20, 
the form 

Using the quantization conditions (19)  we can write the 

FIG. 4. Diagram for the calculation of the rms fluctuation of an SNS 
junction conductance. 

expression for the correlator of the Fourier coefficients ( 10) 
in the form 

n 

(G,,,Gmf)= - " exp (imq+irnrrp') (SG (rp) 6G > 
-n (2n) 

( 22 )  
where 

This yields readily 

To obtain Eq. ( 1 1  ), which is valid in a zero magnetic 
field and in the absence of a magnetic structure, we must take 
into account also the contribution of cooperon-containing 
diagrams. This contribution differs from (24)  only in that 
S,, - ,, is replaced by S,,,. , a replacement necessitated by 
the difference between p, and p,  . 

3. FEASIBILITY OF EXPERIMENTAL OBSERVATION 

As already noted, observation of mesoscopic effects in a 
study of the superconducting current of an SNS junction 
calls for satisfaction of the condition 

Ls>min { L ,  La"&). 

In addition, as seen from ( 4 )  and ( 5 ) ,  to keep the mesosco- 
pic critical current from being exponentially small it is nec- 
essary to meet the condition L, 5: 6,. It is necessary also that 
the external magnetic field be less than the critical magnetic 
field of the superconductor. 

We shall use for the numerical estimates the parameters 
of the samples investigated in Ref. 17 and 21. Assuming 
L, Ly -- L, =: cm and D - 10' cm2/s, we find that the 
mesoscopic contribution to the superconducting current be- 
comes decisive at H > Hc - 10' Oe. (The samples investigat- 
ed in Refs. 17 and 21 had L,-10-4 cm and 
Ly - L, =:4. loF6 cm. In this case Hc increases to - lo3 Oe) . 
If T5: Ec ~ 0 . 1  K ,  we obtain Jc - lo-' - A, which in 
our opinion can be measured. 

Another method of suppressing (Jc ) is to use a super- 
conductor-ferromagnetic normal metal-superconductor 
(SFS) junction. The condition under which the mesoscopic 
contribution determines Jc can be written in this case in the 
form Tc > Ec . The quantity (Jc ) was studied in Ref. 19, 
where it was shown that if there is no interaction between the 
electrons, we have ( J ,  ) a exp ( - L, /L,  ). Interaction be- 
tween the electons in the normal region at L, < g T ,  L H ,  
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FIG. 5. Experimental set up for the study of the conductance of an SNS- 
junction on the order-parameter phase difference (I-ordinary Josephson 
junction carrying a current J )  (C, and C, are point contacts) 

however, leads to a value of ( J  ) on the order of PeE, / h ,  
where p< 1 is a constant determined by the electron-elec- 
tron interaction. Thus, in terms of the parameter P 4 1 the 
quantity (J, )' is small compared with (J:). In addition, as 
shown in Ref. 19, (J, ) is suppressed by the magnetic field 
and by spin-orbit scattering at L, > min{L, ,L, 

Methods of experimentally investigating the G(p)  de- 
pendences were discussed in Ref. 5. For example, a voltage U 
can be applied to opposite banks of an SNS junction with 
L, 2 L, )<, . In this case 

and the normal current J ( t )  = G[p( t ) ]  U flowing through 
the SNS junction is a periodic function of the time. This 
phenomenon is described by Eq. (25) only at eU< Ec ,' 
when the period of the oscillations turns out to be longer 
than the time required for the electron to diffuse over a dis- 
tance L, . At large U, the oscillation amplitude J ( t )  becomes 
strongly damped. 

It should be noted that the nonstationary Josephson ef- 
fect also contributes in this case to the current at a frequency 
2reU /h .  At L, > <,, however, this contribution is propor- 
tional to exp( - L, /<, ). At the same time, dG /dp atten- 
uates exponentially only over the phase-relaxation length 
L, % 6 T :  

dG/drpmexp (- L,/L,). 

The usual Josephson effect can therefore be neglected in the 
region L, > 5, and the entire current of frequency 2 ~ e U / h  
is determined by the dependence of G on p ( t ) .  

There is also another method of experimentally investi- 
gating the G(p)  dependen~e.~ The experimental setup is 
shown in Fig. 5. A superconducting current J i s  made to flow 
through the Josephson junction I and produces between the 
banks of the SNS junction a phase difference equal to 
p = arcsin(J/J: ), where J: is the critical current of the 

Josephson junction. What is to be measured is the resistance 
of the point junction C,  to spreading, or the resistance be- 
tween the two point junctions C ,  and C,. These resistances 
are oscillating functions ofp. In analogy with Refs. 8 and 10, 
the resistance of such a junction has a nonmonotonic de- 
pendence also on an external magnetic field. 

If the normal metal is a spin glass and the electrons are 
scattered by localized frozen spins, one can expect an analo- 
gy with Ref. 22 low-frequency noise of the critical current, 
due to the long-time relaxations in the spin structure. 

We note in conclusion that samples suitable for the 
study of the effects considered above were already used in 
Ref. 21, where the material of the current junctions to the 
mesoscopic conductors was superconducting. 

We thank D. E. Khmel'nitskii and B. I. Shklovskii for 
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