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Generators of the auxiliary Hamiltonian symmetry group, which are strictly of quantum origin 
and vanish in the classical limit, are found for a spin magnetic system with uniaxial anisotropy 
of the easy-plane type. It is shown that a latent symmetry of isolated spins exists for selected 
values of the longitudinal magnetic field, and in a definite field region for a macroscopic 
system of interacting spins. A connection is established between the obtained quantum 
integrals of motion and the degenerate energy levels of the system, and the possibility of 
suitably classifying the stationary state is indicated. 

The total-spin component S, along a chosen axis of a 
uniaxial magnet is known to be conserved in a longitudinal 
external magnetic field. This property is possessed by both 
classical and quantum systems. In an easy-plane classical 
magnet, in fields weaker than critical, when the component 
of each spin along the z axis is smaller in the equilibrium 
configuration than the maximum, the system is degenerate 
in the azimuth angle. This degeneracy vanishes if the field 
reaches the critical value at which all the spins at equilibrium 
are directed along the z axis. The fact that the azimuth angle 
is meaningless for quantum spins raises the question whether 
an additional quantum-system symmetry exists if the field is 
weaker than critical. 

We show in this paper that for a magnetically dilute 
system with uniaxial anisotropy, at a finite field-value num- 
ber that depends on the spin, the symmetry is higher than 
that corresponding to rotations about the z axis. For such 
fields, part of the energy levels is doubly degenerate in the 
spin component S, . Given the value of the spin, the number 
of such levels is determined by the value of the field. We have 
found, for a corresponding symmetry group, generators that 
are of pure quantum origin (they vanish as S- cu ). This 
additional symmetry is absent in fields stronger than critical. 

If the system consists of N interacting spins and has 
easy-plane anisotropy, most magnetic-field values at which 
the energy levels are degenerate are determined both by the 
individual spins and by their number N. With increase of the 
number of spins, the permissible values of the field come 
closer together and in the limit as N they fill a finite interval 
whose boundaries are determined by the system parameters. 
If the field is stronger than critical, the ground ferromagne- 
tic state is separated by a gap, and the corresponding addi- 
tional integrals of motion vanish. Just as in the case of one 
spin, these integrals are entirely of quantum origin and are 
absent in the classical limit. 

1. We consider a magnetically dilute crystal in which 
each magnetic ion is in a crystal field described by the anisot- 
ropy energy. Allowing for the Zeeman energy, the spin 
Hamiltonian of an individual magnetic ion takes in an exter- 
nal field H applied along the chosen axis the form 

where S, is the operator of the spin z-component, a > 0 is the 
magnetic anisotropy constant, and p is the magneton. The 
presence of a symmetry axis is manifested by the conserva- 

tion of S,. We shall show, however, that at some definite 
field values the system ( 1) has a higher symmetry that leads 
to the existence of additional integrals of motion. 

The determination of all the conserved quantities of a 
spin system can be reduced to solution of a differential equa- 
tion by using the representation of the spin coherent 
states.''2 In the case of system ( l ) ,  this equation, which ex- 
presses the commutativity of a certain quantity with the 
Hamiltonian, is of the form 

where 

Jz) is the vector of the spin coherent state numbered by the 
complex parameter z, while S is the value of the spin at the 
site. The change of variable2 = lzIexp(ip) recasts the equa- 
tion for F i n  the form 

The solutions of ( 3 )  are 

The quantities z and z* are connected with the spin projec- 
tions averaged over the coherent state by the relations 

These relations allow us, given a function of z and z*, to 
reconstruct the corresponding operator. Since any operator 
that depends on spin components reduces for any finite spin 
to a polynomial, its mean value will be a polynomial in the 
mean values of the components, of degree not higher than 
2s. The function F will then be a polynomial in z and z* of 
degree not higher than 2 s  in each argument. 

The first of the solutions of ( 3 ) ,  as seen from (4), corre- 
sponds to a function (polynomial) of the operator S, for any 
field, i.e., this solution yields nothing new. The second solu- 
tion leads, apart from a factor, to the function 
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where the following conditions must be met: 

l+r/2<2S, -l+r/2>0, *l+r/2 - integer. ( 6 )  

It follows hence that r must be an integer, and 21 must have 
the same parity as r. In addition it is seen that at r > 4 s  and 
r < 0 these conditions are not met and there is no solution F,. 
The last inequalities define the field region in which degener- 
acy exists: 

The inequalities ( 6 )  determine the number of integrals of 
motion, which are numbered 1 for a given value of r (of the 
field H )  . 

In accord with (2)  and (4),  we seek the operator 7; 
that corresponds to the function (5 )  in the form 

where the coefficients a, are the solutions of a system of 
2S - 21 + 1 equations 

and are expressed in terms of Vandermonde determinants. 
The sought polynomial can be obtained also directly if it is 
recognized that, according to Eqs. (8), the eigenvalues 
S - p of the operator S, are the roots of the polynomial at 
p = 21, 21 + 1 ,..., 2S, with exception of p = I + r/2. We 
therefore have 

The operator ( 7 ) ,  as follows from (3),  commutes with 
the spin Hamiltonian ( 1). This means that the system has an 
additional symmetry. It can be verified that, given nonzero r 
and I, the normalized operators 

satisfy the commutation relations 

[ I ,  I -  1 = 2 1 Z  [ I ," ,  I,+] =I,+, [IIZ, I,-] =-IL-, 

which coincide with the commutation rules for the angular- 
momentum components. Thus, the operators I ; , I  ,+ ,I; are 
generators of the group S0 (3 ) ,  the invariance group of the 
Hamiltonian. Generators with different values of I com- 
mute, and their number is equal to the number of degenerate 
energy levels. 

The stationary states of the spin Hamiltonian ( 1 ) can 
be classified in accordance with the projection of the spin on 
the z axis. The operators I, , I  ,+ ,I; act in the following 
manner on the corresponding sationary states of the Hamil- 
tonian: 

i. e., the nonzero matrix elements of these operators are 

Consequently, the transformations of the Hamiltonian in- 
variance groups I ,* change states with I + r/2 excitations 
into states with I f r/2 excitations. The latter means, in par- 
ticular, that the system has one and the same energy in the 
states IS - I - r/2) and IS + I - r/2). 

Each of the Hermitian integrals of motion 

has a common complete set of eigenvectors with the Hamil- 
tonians. It is easy to verify by starting from (10) that only 
the vectors IS- I - r/2) f IS+ I - r/2) and IS- I - r/ 
2) + ilS + I - r/2) correspond to nonzero eigenvalues, 
+ 1/2, of the operators I; and 1';. 

A situation similar to that considered above obtains for 
an anharmonic oscillator with a Hamiltonian" 

%'=pa+a- (afa)', [a, a+] = I .  

For arbitraryp, the only conserved quantity isa+a. I f p  = n 
(n = 1,2, .... ), there exist additional integrals of motion that 
are of purely quantum origin: 

(21 has the same parity as 21<n ), where 10) (01 is a projector 
on the "vacuum" and alO) = 0. The additional symmetry is 
due here to the degeneracy of the energy levels for the states 
I - I + n/2) and 11 + n/2), so that the number ofsuch pairs 
increases with increase of n. 

2. We consider now a system of interacting spins consti- 
tuting a uniaxial ferrodielectric described by the Heisenberg 
model. In the presence of an external field H applied along 
the chosen axis, the spin-Hamiltonian of the system takes, 
with allowance for the one-ion anisotropy, the form 

where J >  0 is the exchange integral, a the anisotropy con- 
stant, O<y< 1, n the vector number of the site, and 6 a vector 
joining nearest neighbors. 

The system ( 11 ), just as ( 1 ), has axial symmetry that 
manifests itself in conservation of the z-component of the 
total spin S, = 8, S ', . This system, however, also has a high- 
er symmetry, and furthermore not at individual points but in 
the entire range of values of the external field. The boundar- 
ies of this region are determined by the system parameters. 
As in the case of a single spin, the determination of all the 
integrals of motion can be reduced to solution of a differen- 
tial equation in the coherent-states representation. For the 
spin system ( 11 ) this equation, which expresses the commu- 
tativity of a certain quantity I with the Hamiltonian, is of the 
form 
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( K - K )  F ( z ,  z') =0, (12) 

where 

J d2 

n b 
azndzn+a 

a a2 
n 

a a 
nd 

(13) 

q is the number of nearewt neighbors, K * is obtained from K 
by replacing all thez, by z, *, while the function Pis  propor- 
tional to the integral of motion averaged over the coherent 
state 

n m 

Equation ( 12) is a second-order differential equation 
for a function of many variables zn and z:. It is easily seen 
that the operator K is homogeneous: it is invariant to a simi- 
larity transformation for the variablesz, and z:. This is con- 
sequence of that axial symmetry of the Hamiltonian ( 1 1 ) 
and permits the solutions of (12) to be regarded as homo- 
geneous polynomials. 

The simplest solutions are functions linear in z, and z,*: 

m m 

Substituting ( 15) and ( 12) we get 

+ *] A.] - C.C. = 0. 
J S q  

Hence 

A normalized solution of this finite-difference equation is 

An = (2S/N1/z) erp [iz (n6) q ~ ]  , 
b 

where 

cos rp=y + [ 2 ~ H - a  (S-'1,) ]/21Sq, (17) 

and N is the number of spins. This solution exists at field 
values meeting the condition 

This inequality coincides with the condition for the absence 
of a gap in the spectrum of states with one flipped spin above 
the ferromagntic state. For fields outside the region (16), 
the solution (16) is unbounded in the case of an infinite 
change, and in the presence of boundaries it will not satisfy 
the boundary conditions. 

In the one-dimensional case the solution ( 16) becomes 

For a closed finite chain (N + 1 = 1 ), the periodicity re- 
quirement singles out the admissible set of values of the 
phase p: 

cp,=2nllN (l=O, I ,  .. . , N - I ) .  (19) 

In appropriate fields, the functions ( 15) satisfy Eq. ( 12), 
meaning that they determine an integral of the motion. In 
the multidimensional case the periodicity requirements in 
the different dimensions can be compatible only for a crystal 
of cubic form. 

If the condition ( 19) is not met, the nonconservation of 
I is due only to edge effects. It can therefore be assumed for a 
one-dimensional chain with N ,  1 that the solution obtained 
yields an integral in the entire interval of subcritical fields 
(18). 

The operators I - and I + corresponding to the func- 
tions ( 15) have according to (4)  and ( 14) the form 

nl a+m 

Here 
2s -1  2 s  

Q2.-. ( S m Z )  = C a. (s,')., p 2  ( )  = bn , (20) 
n = O  n=O 

and the coefficients a, ( n  = 0, 1 ,..., 2 s  - 1 ) and 6 ,  ( n  = 0, 
1, ..., 2s)  are respectively solutions of the following systems 
of linear equations: 

28 -1  

Just as for the system (8 ), the polynomials Q ,, - , ( S  ", and 
P ,, (S ', ) can be written in the form 

The obtained integrals of motion are generators of the group 
of the additional symmetry of the Hamiltonian ( 11 ), a sym- 
metry due to the degeneracy of the energy of the "ferromag- 
netic" state: at field values given by ( 17) and ( 19), the same 
energy is possessed by the one-magnon state. The operators 
I +,I and P = + [ I  +,I - ] satisfy, just as in the one-spin 
case considered above, the commutation relations for the 
angular momentum. The corresponding symmetry group is 
thereforeSO(3) with generators I +,I  -, and P . It is easy to 
verify that the eigenvalues of each of the components I", IY , 
and P are equal to zero in all stationary cases, except the 
"ferromagnetic" and one-magnon state having the same en- 
ergy. The operators I + and I - transform these states into 
each other, and the eigenvalues of each of the projections are 
equal to + 1/2. The properties of the operator I f  follow 
from the fact that the polynomials P,,(S;) and 
Q ,, _ , (Sf )  are respectively projectors on a state with pro- 

341 Sov. Phys. JETP 65 (2), February 1987 E. V. Gol'dshteln and M. V. Tsukernik 341 



jection S and on a two-dimensional subspace of states with 
spin components S and S - 1 along the z axis in the site j.  

The integrals ofmotion, which are polynomials of high- 
er degrees in z in the coherent-states representation, are gen- 
erators of a symmetry group that corresponds to equality of 
the energy level of the "ferromagnetic" state to one of the 
levels of the r-magnon state ( r  is the power of the polynomi- 
al). Finally, polynomials with specified powers ofz and z* in 
each term define generators that correspond to overlap of 
the bands of the r-magnon and I-magnon states ( r  is the pow- 
er ofz and 1 the power ofz*. In the general case of the Hamil- 
tonian ( 1 1 ) , the determination of the "higher" integrals 
calls for the solution of a system of differential equations, 
which reduces in the simplest cases = 1/2 to the equation of 
the Bethe Ansatz. In the particular case of an XY chain 
( y  = 0) one can obtain for S = 1/2 explicit expressions for 
all the integrals of motion, as well as relations that determine 
the regions of their existence. By way of example, we present 
the expression for the generators of the symmetry group gen- 
erated by equality of the energies of the ferrormagnetic and 
two-magnon states: 

where 

A,,= {exp [i(kim+kzn) ] -exp [i(k,n+k2m) ])sgn (n-m) , 

and the wave numbers k, and k, are connected by the equa- 
tion 

which means equality of the energies of the ferromagnetic 
and two-magnon states. In the case of a finite closed chain, 
both wave numbers satisfy the condition exp(ikN) = - 1, 
so that (24) determines the field in which (23) is an integral 
of the motion. Clearly, just as in the case of one-magnon 
states, the integral (23) vanishes at 2pH> 1. 

An integral of motion of another type corresponds to 
overlap of the magnon bands. For example, if r = 2 and 
1 = 1 we have 

where 

,t; , = { ~ x P  [i(klm+kzn) I-exp [i(k,n+k,m) I} 

X erp (iksp) sgn (n- m), 

and the wave numbers k,, k,, and k, are connected by the 
condition that the energies of the one-magnon and two-mag- 
non states be equal: 

If r = I, the field drops out of the condition that the 
energies be equal, so that there are no constraints whatever 
on the field strength. Since there is no band overlap at 2 
pH > J, the existence of an integral in this field region is not 
connected with an additional symmetry of the quantum sys- 
tem. This means that integrals of this type are of classical 
origin and at S) 1 their classical Poisson bracket with the 
Hamiltonian is zero. 

Thus, a quantum spin system with Hamiltonian ( 11 ) 
has in the field region (18) a set of integrals of motion 
I;, I:, I:, that correspond to overlap of r-magnon and I- 
magnon bands ( r#  I) and vanish in the classical limit. These 
integrals of motion can be used to classify stationary states 
with overlap of the magnetic-excitation bands. If on knows 
the set of quantum numbers that number the states in a sub- 
space with specified value of the projection S, of the total 
spin, the eigenvalues ( + 1/2) of the projection I:, or I;, 
define a linear combination of vectors with I and r excitations 
that have equal energies. 

'' Note that this Hamiltonian is obtained from ( 1 ) is the Holstein-Prima- 
koff approximation4 S, = S - a+a is used for the operator S, . 

'A. M. Perelomov, Usp 
703 (1977)]. 
'0. B. Zaslavaskii, Ukr. 

. Fiz. Nauk 121,23 (1977) [Sov. Phys. Usp. 20, 

Fiz. Zh. 29,419 ( 1984), 
3A. G. Kurosh, cdurse of Higher Algebra {in Russian}, 1 Gostekhizdat, 
1955, p. 92. 

4D. C. Mattis, The TheoryofMagnetism, Harper and Row, 1965, Chap. 5. 

Translated by J. G. Adashko 
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