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The case is considered when an irreducible representation of the symmetry group of the initial 
phase of a crystal does not allow a Lifshitz invariant, but an invariant appears as a result of a 
phase transition into one of the commensurate phases. A phase diagram is obtained, on which 
an incommensurate phase appears between two commensurate ones that are not subgroup 
related. The incommensurate phase borders on the initial phase along a line of second-order 
phase transitions; this line is continued in both directions by lines of phase transitions, likewise 
of second order, between the initial and commensurate phases. The incommensurate phase 
borders on one of the commensurate phases along a line of continuous transitions, and on the 
other along a line of first-order phase transitions. The phase diagram has accordingly two 
different triple points. 

It is known that if the symmetry-group irreducible rep- 
resentation, according to which the order parameter of an 
initial crystal phase is transformed, admits of a Lifshitz 
gauge invariant1 that is linear in the spatial derivatives and 
quadratic in the order-parameter components, an incom- 
mensurate phase appears on the phase diagram of the crys- 
tal. Since the thermodynamic potential contains the Lifshitz 
invariant, the initial phase loses stability relative to a spatial- 
ly inhomogeneous order parameter, so that a phase transi- 
tion takes place from the initial into an incommensurate 
phase. Only later (when the temperature is lowered 
further), a transition takes place to one of the commensurate 
phases with a spatially homogeneous order ~ a r a m e t e r . ~ . ~  
The Lifshitz invariant can exist only for a multicomponent 
order parameter, and in the simplest case of a two-compo- 
nent parameter = p  cos q,, 6 = p sin q, this invariant is of 
the form 

Note that to realize the initial-incommensurate-com- 
mensurate phase transition sequence the coefficient of the 
invariant that is anisotropic in the component space of the 
order parameter (an invariant of the form pn cos n q, for a 
two-component order parameter) must not be too large. 
Otherwise a first order transition takes place directly from 
the initial to the corresponding commensurate phase (see, 
e.g., Refs. 6-8). It is also important in what follows that 
corresponding to a multicomponent order parameter are 
several commensurate phases that are stable in different re- 
gions of the space of the thermodynamic-potential coeffi- 
cients, and when an external parameter, such as temperature 
or pressure, on which these coefficients depend, is altered, 
transitions can occur between different commensurate 
phases. In the case of a two-component order parameter 
there exist three commensurate phases, and the transitions 
between them can be described on a unified basis, using the 
thermodynamic potential of the initial phase (see Ref. 9).  

This leads to another possible appearance of an incom- 
mensurate phase on the phase diagram. Assume that the rep- 
resentation of the initial phase does not allow a Lifshitz in- 
variant, but the representation of one of the commensurate 
phases (which are subgroups of the symmetry group of the 

initial phase) does. This invariant is formed from a gauge 
invariant that is linear in the derivatives; these must be of 
degree not higher than second in the order-parameter com- 
ponents, since definite combinations of the order-parameter 
components acquire spontaneous values in the commensur- 
ate phase. If the commensurate-phase symmetry-group rep- 
resentation that allows a Lifshitz invariant describes a phase 
transition to a neighboring commensurate phase, an incom- 
mensurate phase can appear between them. This is in fact the 
case considered in the present article. 

Obviously, the simplest realization of our case is a 
three-component order parameter. For a two-component 
parameter, transitions between commensurate phases are 
described by one-dimensional representations of the symme- 
try groups of these phases, and no Lifshitz invariant can exist 
for them (see Ref. 9). Three-dimensional representations 
exist in crystal classes of cubic syngony. There are five such 
classes: Oh, 0 ,  Td , Th , T, and eleven representations. These 
representations can be divided into three categories. Out of 
the eleven, three (two of class 0 and one of class T) allow a 
Lifshitz invariant, as do also two-dimensional representa- 
tions of the corresponding subgroups. These subgroups are 
C3 and C4 for the vector representation F, of class 0, D, and 
D3 (different) for the nonvector representation of class 0 ,  
and C3 and C3 for the vector representation of class T. These 
are the most complicated cases because several different in- 
commensurate phases exist on the phase diagram; we do not 
consider them here. 

Five representations, three (F ,, , F ,, , F,, ) of class Oh 
and one (F,) of class Td , and one (F, ) of class Th allow now 
Lifshitz invariant, nor do the two-dimensional representa- 
tions of the subgroups corresponding to them. These cases 
will likewise not be considered here. Note that according to 
several papers (see, e.g., Refs. 10-13) an incommensurate 
phase can exist on the phase diagram. 

Finally three representations, viz., F,, ofclass Oh, Fl of 
class Td , and F, ofclass Th do not allow a Lifshitz invariant, 
but two-dimensional representations of their subgroups do, 
namely the subgroup D, the representation F,, of class Oh,  
and the subgroup C3 for the representation F, of class Td and 
for the representation F, of class Th . We consider below the 
first of these three cases. Note that it was already considered 
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in the l i t e r a t ~ r e . ' ~ , ' ~  In Ref. 13, however, no account was 
taken in fact of the anisotropic invariant, which plays a ma- 
jor role, while the phase diagram was not considered in Ref. 
14. In addition, the principal gauge invariant of third degree 
in the components of the order parameter and linear in the 
derivative was incorrectly written in Refs. 13 and 14 (the 
expression given there is not an invariant). We note also that 
arguments similar to those used here, with respect to the 
possible appearance of a Lifshitz invariant induced by a 
phase transition, have already been advanced in Ref. 15, but 
were applied to four-dimensional representations, and the 
phase diagram, which judging from the text was not calcu- 
lated, differs in principle from the diagram of the present 
paper. 

The three-dimensional representation F,, of the crystal 
class 0, allows three independent invariants1? 

where the number superscript denotes here and elsewhere 
the degree of the corresponding invariant with respect to the 
components u, v, and w of the basis of theF,, representation. 
These are components of a third-rank tensor (see, e.g., Ref. 
17):  

The subgroups of the symmetry group 0, in the representa- 
tion F,, and the corresponding types of solutions for the 
order parameter u,  u, w are (see, e.g., Ref. 17): 

1) D, (IL=u=w), 2) DZd (u=v=o), 
3 )  C2" (u,=u, w=O), 4) C, (u=v), 

5) C,(w=O), 6) C,. (2) 

We set up, for the F,, representation, gauge invariants 
that are linear in the derivatives, and confine ourselves to the 
lowest-third-degree in the order-parameter components. 
There are two such invariants: 

T3=u,(u2-wZ) + U " ( W ~ - U ~ ) + W ~ ( U ~ - ~ ~ ) ,  

T3!= (uz-wy) uw+ (wx-ur) wu+ (uy-vx) UV, 
(3)  

where the subscripts x ,  y, and z denote here and elsewhere 
the derivatives with respect to the corresponding coordi- 
nates. The second invariant, however, differs from the first 
by a total derivative 

and we need therefore consider only one invariant j3, which 
leads in the D, phase to a Lifshitz invariant. 

The gauge invariants quadratic in the derivatives and in 
the order-parameter components are of the form'' 

~L=-~L,Z+V~~+U?.~-  ( U % U ~ +  W ~ U ~ + U ~ I U ~ )  ) 

T i =  (~ ,+u~+w, )~ ,  

T : ~ " ~ '  = ( u : ~ l ~ ~ ) ~ +  (wz*LIr) 2 +  ( u ~ * v ~ ) ~ .  (4)  

They are linearly related by the total derivative: 

and we need consider only three of them. 
Since a Lifshitz invariant exists for a two-dimensional 

representation of the symmetry group D, of the commensur- 
ate phase 1, it is convenient to change from the variables u, v, 
w into new ones that transform respectively in accordance 
with the two-dimensional and one-dimensional representa- 
tions of the group D,, and replace similarly the variablesx, y, 
z by X, Y, Z.  The relations between the old and new variables 
are 

1 1 1 
q = - -= (u+v-2w), 5 = y (u-v), g = = ( u f  v+w), 

1/6 1/2 13 

1 1 1 X = - , (z+y-2z), Y = (x- y), Z = -= (x+y+z), 
1'6 1'2 1/3 

meaning rotations of the coordinates in the corresponding 
spaces. It is convenient also to replace and by an amplitude 
and a phase 

q=p cos cp, E=p sin cp. ( 6 )  

In the new variables, the invariants ( 1 ) become 

Z2=tZ+p2, 611=2t6+1252p2+3p6+4~~~p3 cos 3q, (7)  

The invariant j3 [Eq. (3 ) ]  takes the form 

where we have discarded the total derivatives with respect to 
X, Y, and 2. We disregard hereafter terms with derivatives 
with respect to X and Y, since we are interested only in the 
term with the derivative with respect to Z,  a term that takes 
in the commensurate phase 1, where g = gs, the form of a 
Lifshitz invariant: 

~,=-2g~"~11'3. 

The invariants (4)  are then given by 

2 ~ 2 = ~ z ~ ~ z " p ~ 2 + p Z c p ~ 2 ,  T2'=9z2, 
(9 )  

3T2"=2T2+4TZ1, TZr"=2T2, 

where the derivatives with respect to X and Y were also dis- 
carded. 

We represent the thermodynamic potential of the initial 
phase 0, in the form 

m =  j m ( z ) a z / j a z ,  
(10) 

Q (2) =a1,+p1~~+3~'1,+1/~T~/2+26T~+6'T~~. 

To make this potential finite, we must assume coefficients 
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B >  0, B + 38 ' > 0, 6 > 0, 6' > 0. The minimum number of 
invariants was taken into account in ( 10). If homogeneous 
invariants of higher degrees are included, e.g., 
y1; + y1ZJ4 + yt1I6 + S"I:, the phase diagram can have 
besides the commensurate phases 1 and 2 also other com- 
mensurate phases, phase 3 (at y" > 0)  and phase 5 (at S" > 0, 
or more accurately at 6" " > yt2/40). These phases, however, 
will be stable only at relatively large values of la \ ,  and the 
phase diagram does not change in the region of small values 
of lal. 

The phase diagram corresponding to the thermody- 
namic potential ( 10) is shown in the figure. 

Substituting expressions (7)-(9) in ( lo ) ,  we get 

(D (2) =af2+ap2+ (B+P1) f4+2(P+3P') fZpZf (P+3/2P') F 4  

+21'5~'gp3 cos 3q-of p2rpz+ 6pzrpzz+6pZ2+ 6'fz2. ( 1 1 ) 

Varying the thermodynamic potential @ ( 10) with 
@ ( z )  ( 1 1 ) with respect to the variables f, p, and p we get a 
system of three nonlinear equations for f, p, and p: 

af+2(B+P') b3+2(P+SP') Z;p2 

+$&'p3 cos 3q-i/zopzrpz-6'fzz=0, 

ap+2 (P+3fi1) f2p+ ( 2 ~ + 3 ~ ' ) ~ ~ + 3 f & ' f p ~  cos 3rp 
-of pqz+6pqzz-6pzz=0, 

312g'fp3 sin 3~-'l,opzfz-ofppz+26ppzrpz+6p2rpz~=0. 

(12) 

The initial phase corresponds to a trivial solution of 
Eqs. (12): g = p  = 0 or u = v = w = 0. Corresponding to 
the commensurate phases 1 and 2 are respectively the solu- 
tions: 

The solution in phase 1 is for two out of the eight possible 
domains that correspond to the diagonals of the cube made 
up of u, v, and w [see Eq. (2)  1 .  We consider hereafter only 
one domain, assuming 5 > 0. In phase 2 there are six domains 
corresponding to the edges of the cube [see (2)] .  In the 
incommensurate phase there will be only 24 domains if the 
domains are understood here in the same sense as in the 
commensurate phases. If, however, a distinction is made 
only between regions with different direction (but not sign) 
of the wave vector of the incommensurate superstructure, 
there will be four such regions (corresponding to the four 
diagonals of the cube). 

For the incommensurate phase, we seek the solution of 
the system (12) in an approximation with constant 5 andp, 
when only the phase e, varies with Z: 5, = 0, p, = 0 (cf. 
Refs. 3, 19, and 20). We shall determine the conditions for 
the validity of this approximation below. 

The third equation of ( 12) is then reduced to the equa- 
tion of a mathematical pendulum: 

6pzcptz+3l '~~ '~p3 sin %=0, (14) 

first integral of this equation is the sum of the "kinetic" and 
"potential" energies [see ( 1 1) 1 : 

6p2vz2-2Y~p'fp3 cos 3q1=c. (15) 

The solution oof ( l5),  and hence also of ( 14), is 

where am (z, k)  is an elliptic Jacobi function with modulus k 
(O<k< 1 ). Since the origin Zo of the coordinate Z is arbi- 
trary, the second integration constant Zo (the first is c or k )  
can be set equal to zero. 

Substituting the solution ( 16) in the thermodynamic 
potential ( 11 ) and integrating with respect to Z, we obtain 

cD=afZ+apZ+ (i3+B1)f' 

where K and E are complete elliptic integrals of the first and 
second kind, with modulus k, k " = 1 - k 2, and we intro- 
duce for brevity the notation 

Varying (17) with respect to k we get 

Since the period of the functions 7 (2) and 6 (Z) ,  as 
follows from ( 16), is 1 = 4K /p ,  the wave number of the in- 
commensurate superstructure is 

The constants 5 and p can be determined, just as, from 
the condition that the thermodynamic potential ( 17) be an 
extremum: d@/df = 0, d@/Jp = 0. As a result, using ( 19), 
we get the expressions 

Eliminating 5 and p from ( 19) and (2 1 ) , we obtain an 
equation that relates the modulus of the elliptic functions k 
with the coefficients of the thermodynamic potential ( 10): 

where the role of the time is played by the coordinate Z.  The 
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Analysis of (22) shows that the function k (P ' ) has two 
branches. One exists in thep ' interval from 2p O top  O/2, and 
at k values from 1 to 1 [sic!] and goes through a minimum 
k ~ 0 . 9 4 a t B  ' z 1.038 O. Thisbranch does not correspond to 
a minimum of the thermodynamic potential ( lo),  and will 
therefore not be considered. The other branch exists in the0 ' 
intervals from& to - fl O and fork from 0 to 1, respectively. 
The values of for this branch first increase from 0 a t p  ' = Po, 
reach a maximum k ~ 0 . 6 1  a t 0  ' z 0.82&, decrease again to 
0 a t p  ' = 0, and then increase to 1 a t p  ' = p O. This branch of 
the function k (Bf )  corresponds to an incommensurate 
phase, i.e., to the minimum of the thermodynamic potential 
(10). 

In the regionp' = fl,, expanding ( 17) and ( 19)-(21) 
in powers of the small dimensionless quantities (Do -PI)/ 
Do and k and retaining only the leading terms, we get 

The solution (23) goes over continuously at 0 ' = Po 
into the solution ( 13) for the commensurate phase 1, so that 
the phase transition from the commensurate phase 1 to an 
incommensurate phase behaves, in the approximation con- 
sidered, as a second-order transition. However, analysis of 
the exact equations ( 12) and of the thermodynamic poten- 
tial ( 11 ) shows that this transition is of first order. Thus, the 
approximation used here, with constant l and p, does not 
permit a correct identification of the order of the transition 
from the commensurate phase 1 to an incommensurate 
phase. We shall not dwell further on this problem, since its 
consistent solution calls for taking invariants of higher de- 
grees into account in the thermodynamic potential ( 10). 

In the region 0 ' = 0, expanding expressions ( 17) and 
(19)-(21) in powers of the small dimensionless quantities 

I/&, and k and retaining only theleading terms, we obtain 

Solutions (23) and (24) can be called single-harmonic, 
since 

q=po cos qoZ, E=po sin qoZ, S=So, (25) 

where go, p, and q, are determined from (23) or (24), and 
the forms of the solutions for u, u, and w in terms of the 
variables x ,  y, and z can be deduced from Eq. (5). 

To estimate the region of values o f 0  ' at which the sin- 
gle-harmonic solution (24) is valid, we obtain for this solu- 
tion, using the exact equations ( 12), corrections in the form 
of higher harmonics: 

For brevity we have neglected herep '/p compared with0 '/ 
Po.  

It follows from ( 16) that the relative corrections to the 
solution (24) are small if 

P ' q o .  (27) 

It must also be taken into account that the numerical coeffi- 
cient of the ratio p '/Po is small [see (26) 1. The single-har- 
monic solution ( 14) is therefore valid in fact up to values of k 
that are close to its maximum limit k = 1, which corre- 
sponds to the limit of the existence of the solution ( 16), and 
hence of an incommensurate phase. 

Puttingk = l,wegetP1 =pofrom (17), (19) and (21) 
and the same values for f, p, and @ as in the commensurate 
phase 2 at 0 ' = - fl O [see ( 13) 1. Nonetheless, the transi- 
tion from the incommensurate phase to the commensurate 2 
is not of second order in the approximation considered, but a 
very weak first-order transition. If the constants < andp are 
determined not from the condition that the thermodynamic 
potential be a minimum, as was done above, but are chosen 
to be the same as in the commensurate phase 2 [Eq. ( 13 ) I ,  
the transition from the incommensurate into the commen- 
surate phase 2 will be continuous. This means that the terms 
which determine the first-order transition are outside the 
scope of the considered approximation. 

The situation here is apparently the same as in the usual 
case, i.e., when a Lifshitz invariant is present in the thermo- 
dynamic potential of the initial phase (see Refs. 3, 19, and 
20). In Refs. 21 and 22 were obtained, for particular cases, 
exact solutions for the distribution of the order parameter in 
an incommensurate phase near the transition into a com- 
mensurate phase, and the phase transition described by these 
solutions turned out to be continuous. 

Note that the transition considered differs from the usu- 
al in the Landau theory of second-order transitions. It is 
therefore called here a continuous rather than a second-or- 
der transition. The specific features of the continuous phase 
transitions are illustrated, for example, by the anomalies of 
the heat capacity C = Td2@/dT2 in an incommensurate 
phase near the transition. If it is assumed that only one coef- 
ficient p' has a linear dependence on the temperature, 
p ' = 0 > ( T - 0) , we obtain approximately from ( 17) and 
(19), taking 6 andp in the incommensurate phase to be the 
same as in the commensurate phase 2 [Eq. ( 13 ) ] (cf. Ref. 
23 

where T2 is obviously determined from the relation 
p O = 6 (8  - T2) . It follows from (28) that C increases 
abruptly, almost in inverse proportion to (T  - T2), when 
the continuous-transition point T = T2 is approached. In the 
commensurate phase 2 the value of C is small compared with 
(28) and can be assumed to be zero. We note also that the 
single-harmonic approximation is not valid in the vicinity of 
the continuous phase transition and the solution for the spa- 
tial distribution of the order parameter in the incommensu- 
rate phase is determined by an aggregate of harmonics of any 
order. 

In the vicinity of the continuous transition, the condi- 
tion for validity of the approximation of constant f and p 
(variation of only the phase e, with change of Z )  can be 
shown to be, using the set of equations ( 12), the inequality 
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FIG. 1. Phase diagram on the plane of the thermodynamic-potential coef- 
ficients a andp' .  Notation: C,,,--commensurate phases, Z-incommen- 
surate phase, P-initial (progenitor) phase. The dashed lines correspond 
to second-order phase transitions, the solid line to a first-order transition, 
and the dash-dot line to a continuous transition. 

This inequality suffices for the approximation of constant g 
andp to be valid also in the entire region of existence of the 
incommensurate phase (provided, of course, that 5 andp are 
relatively small, i.e., that la\ is not too large). 

We emphasize that on the phase diagram shown in the 
figure there are three triple points,24 of which the left-hand 
one differs by being the junction of two second-order transi- 
tion lines and one continuous-transition line. 

We emphasize also that the commensurate-incommen- 
surate-commensurate sequence of phase transitions consid- 
ered here is unusual because the commensurate phases are 
not connected by subgroup relations. Such a sequence of 
transitions through an incommensurate phase can be de- 
scribed within the framework of a phenomenological ap- 
proach only by using the concept of a "progenitor" of the 
initial phase (cf. Ref. 9-for phase transitions via an inter- 
mediate commensurate phase). 

An incommensurate phase is usually observed between 
two commensurate phases whose symmetry groups are sub- 
groups of one another (see, e.g., Ref. 25 ) .  This, so to speak, 
is a classical situation corresponding, in particular, to the 
presence of a Lifshitz invariant in the thermodynamic poten- 
tia1.4*5 An incommensurate phase, however, was observed 
also between two not-subgroup-related commensurate 
phases (see, e.g., Refs. 25-27). It is still to early to identify 

these cases with those considered above, in view of the lack 
of suficient experimental data. The present paper does re- 
veal the characteristic properties of incommensurate phase 
transitions of the considered type and facilitates by the same 
token an experimental search for such transihons. 
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