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Degenerate ferromagnetic semiconductors exhibit singularities of the electrical resistivity p 
near the Curie point Tc (peak ofp or an insulator-metal transition), which cannot be 
explained by critical scattering of carriers on magnetization fluctuations. However, such 
singularities can be explained by an inhomogeneous magnetoelectric effect due to the electric 
field or randomly distributed ionized donors. A strong fall of the effective permittivity E,, of a 
crystal near Tc due to the magnetoelectric effect enhances the scattering of carriers by donors 
and reduces the number of electrons in the current states, which gives rise to a peak ofp. This 
reduction in E,, may be so large that the Mott condition for the delocalization of the donor 
electrons is no longer satisfied near T, and these electrons become localized. The 
magnetoelectric response functions are found for ferromagnetic semiconductors and metals 
near Tc . 

INTRODUCTION 

Almost all degenerate n-type ferromagnetic semicon- 
ductors exhibit singularities of the resistivity p near the Cu- 
rie point Tc .  However, the temperature dependence of the 
resistivity of these materials is quite different from that ex- 
hibited by ferromagnetic metals. Instead of a kink of p (T) 
typical of metals, n-type semiconductors exhibit a peak ofp 
in the region of Tc and the relative amplitude of this peak 
rises on reduction in the impurity concentration n. When n is 
sufficiently low, the amplitude of the peak may be several 
orders of magnitude higher thanp ( w ). At even lower values 
of n, ferromagnetic semiconductors of the EUO type with 
oxygen vacancies behave as degenerate materials only below 
T, ; above Tc they act as insulators. The abrupt change in the 
resistivity at a metal-insulator transition, which occurs 
slightly below Tc has the record value of 17 orders of magni- 
tude. This transition is observed only in a narrow range of 
carrier densities ( 1-2) X 1019 cmP3. At lower values of n the 
ferromagnetic semiconductor EuO is nondegenerate. Ali the 
n-type ferromagnetic semiconductors also exhibit a giant 
negative magnetoresistance near Tc (see Ref. 1 ). 

Generally speaking, p-type ferromagnetic semiconduc- 
tors exhibit no singularities ofp near Tc . The hole mobility is 
normally several orders of magnitude higher than the elec- 
tron mobility, the magnetoresistance of p-type samples is 
small, and sometimes, as in the case of nonmagnetic semi- 
conductors, it is positive (for example, this is true ofp-type 
CdCr,Se,). Moreover, in the case of somep-type materials a 
peak ofp is replaced by a shallow minimum at temperatures 
comparable with T, (see, for example, Ref. 2). 

These major differences between the behavior of n- and 
p-type semiconductors have a simple physical explanation. 
In practically all the magnetic semiconductors the magnetic 
ions with partly filled d or f shells are cations, whereas an- 
ions are nonmagnetic. The conduction electrons usually 
move between cations and the holes between anions. Since 
holes and magnetic cations are spatially separated, the ex- 
change interaction between them is several orders of magni- 
tude weaker than between the conduction electrons and ca- 
tions. Consequently, the scattering of holes by 
magnetization fluctuations is very weak and it is masked by 
other (nonmagnetic) scattering mechanisms." If a p-type 

ferromagnetic semiconductor exhibits a minimum ofp, this 
may be explained by the competition between two nonmag- 
netic scattering mechanisms with opposite temperature de- 
pendences (for example, impurity and phonon mechanisms, 
the former of which becomes weaker on increase in tempera- 
ture and the latter is enhanced). The correlation between Tc 
and the temperature of a minimum ofp is then only appar- 
ent. 

On the other hand, there is no doubt about the magnetic 
origin of the peak ofp in the case of degenerate n-type semi- 
conductors. However, it cannot be explained by critical scat- 
tering of electrons on magnetization fluctuations. Firstly, at 
moderately high values of n the amplitude of this peak is far 
too high and, secondly, lowering of n transforms this peak 
into a resistivity discontinuity corresponding to an insula- 
tor-metal transition. However, the appearance of a gap in the 
electron spectrum as a result of such a transition cannot be 
due to critical scattering. 

The same conclusion follows from a direct analysis of 
the critical scattering of carriers in semiconductors. The na- 
ture of the peak ofp exhibited by semiconductors and char- 
acterized by an amplitude which increases on reduction in 
the Fermi momentum was first determined in Ref. 4 on the 
basis of a calculation carried in the Born approximation for 
the s-fexchange. The Born approximation has been used in 
the subsequent numerous investigations of this topic and the 
treatment of Ref. 4 has been refined by replacing the Orn- 
stein-Zernike spin correlation function with more rigorous 
scaling expressions. An analysis of the damping of the elec- 
tron states, carried out to the fourth order (inclusive) of 
perturbation theory in respect of the s-f exchange, shows 
that in the case of n-type semiconductors it has a giant mag- 
nitude even far from Tc , which demonstrates that the Born 
approximation is totally invalid near T, (Ref. 1 ). Conse- 
qently, the results of the theories predicting very high peaks 
ofp for semiconductors due to critical scattering are unrelia- 
ble. In fact, if such peaks had existed, they would have been 
manifest also in p-type samples: near Tc the magnetic scat- 
tering in these semiconductors would have predominated 
over the nonmagnetic contribution, which is not confirmed 
by the experimental results. 

A method developed in Refs. 1 and 5 has made it possi- 
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ble to avoid the description of electron states near Tc by 
perturbation theory in terms of the s-f exchange. In this 
method the interaction of an electron with long-wavelength 
magnetization fluctuations is included even in the zeroth ap- 
proximation. It is based on the physical idea that in the case 
of electrons, characterized by a low kinetic energy compared 
with the s-fexchange energy AS, the direction of spin is not 
fixed in space. As an electron moves in a crystal, this direc- 
tion follows that of the local magnetic moment which varies 
slowly from one atom to another (these are precisely the 
exact eigenstates of long-wavelength electrons in the case of 
large-period helicoidal ordering). In the case of such states 
with a fluctuating direction of the spin the contribution of 
long-wavelength magnetization fluctuations to the scatter- 
ing of electrons practically disappears and the electron mo- 
bility near Tc becomes comparable with its high-tempera- 
ture value.' 

A more self-consistent explanation of the anomalies ofp 
near Tc is based on the fact that the influence of defects 
passed through a maximum near the Curie point because of 
the magnetoelectric effect. This effect represents the appear- 
ance of a magnetization in a crystal under the influence of an 
electric field or an elecric polarization under the influence of 
a magnetic field. In homogeneous fields the effect is possible 
only in magnetic insulators with specific lattice symmetry 
proper tie^.^ Physically, such behavior originates from rela- 
tivistic effects. 

In magnetic conductors the appearance of a magnetiza- 
tion under the influence of a homogeneous electric field is 
impossible because of the screening. However, the magne- 
toelectric effect should occur in these materials when fields 
are inhomogeneous.' This is due to the fact that an electric 
field then redistributes the conduction electron density in a 
crystal and thus alters the intensity of the indirect exchange, 
reducing it in some parts of a crystal and enhancing it else- 
where. There are corresponding changes in the local magne- 
tization. Since the inhomogeneous magnetoelectric effect is 
not of relativistic origin, it is much stronger than the homo- 
geneous effects and it can occur in crystals of any symmetry. 

The specific influence of the magnetoelectric effect on 
the resistivity of dengenerate ferromagnetic semiconductors 
is manifested as follows. Spatial fluctuations of the electric 
field of randomly distributed donors in a crystal create simi- 
lar fluctuations of the static magnetization and the effect of 
the latter fluctuations on the conduction electrons has to be 
added to the effect of the electric field. The magnetization 
fluctuations induced by this electric fields are maximal near 
Tc .  Enhancement of the influence of defects near T, en- 
hances also the impurity scattering of carriers and their par- 
tial Anderson localization, which gives rise to a peak ofp. If 
the increase in the influence of defects is very great, electrons 
may be transferred from delocalized to localized states and a 
crystal may be converted to an insulator. 

Essentially the same idea was put forward in the very 
first theory of the insulator-metal transition in degenerate 
ferromagnetic semiconductors.7 The inhomogeneous mag- 
netoelectric effect had been investigated earlier only in the 
spin-wave region.' The method of Ref. 5 makes it possible to 
calculate this effect also in the most interesting range of tem- 
peratures where there are singularities ofp. The present pa- 
per is devoted mainly to this topic. We shall find the magne- 

electron mobility near Tc and we shall then formulate a se- 
miquantitative criterion for the transfer of electrons from 
delocalized to localized states. 

We shall also find the magnetoelectric response func- 
tions for p-type semiconductors and for metals. In contrast 
to n-type semiconductors, in the latter case the inequality is 
reversed, i.e., we now havep %As, werep is the energy of the 
Fermi carriers. This inequality allows us to describe these 
carriers by the usual Bloch waves with a fixed direction of 
the spin almost right up to the Curie point T, . Although the 
magnetoelectric effect inp-type semiconductors and metals 
has little influence on the carrier kinetics, it may be of inter- 
est for its own sake. 

1. INDIRECT EXCHANGE IN FERROMAGNETIC 
SEMICONDUCTORS EXHIBITING S-f EXCHANGE 

In this section we shall consider the energy spectrum of 
the conduction electrons and the indirect exchange via these 
electrons in semiconductors with a strong s-fexchange when 
theinequalityp (ASis satisfied. The idea ofalignment of the 
electron spin along the direction of the local magnetic mo- 
ment, which is the basis of the analysis given below, can be 
expressed mathematically by the variational principle.'v5 It 
is assumed that a conduction electron migrating from atom 
to atom exhibits changes in its spin which are such that the 
spin is always directed along the net magnetic moment of 
atoms in a region of radius R centered on that atom where 
the investigated electron is at a given moment. The radius R 
is the variational parameter. 

In the process of calculations based on such a program 
the energy of an electron with a fluctuating spin direction is 
expressed in terms of binary correlation functions of the 
spins of magnetic atoms (fspins in accordance with the ter- 
minology of thes-fmodel). In the nearest-neighbor approxi- 
mation, this expression has the following from for a simple 
cubic lattice if W$AS (Refs. 1 and 5 )  : 

Here, k is the analog of the quasimomentum; A = * 112 is 
the projection of the electron spin along the direction of the 
local magnetic moment M, in a region centered on an atom 
g; W is the width of the conduction band; A is the s-fex- 
change integral; A is the vector linking this atom with its 
nearest neighbors; z = 6 is the number of such neighbors; the 
angular brackets denote thermodynamic averaging. Equa- 
tion ( l ) is derived on the assumption that the angles between 
the directions of the moments M, and M, + A of the neigh- 
bors regions are small, which corresponds to the condition 
R $a, where a is the lattice constant. 

We shall assume that the influence of the indirect ex- 
change on the magnetic properties of a crystal is much 
weaker than that of the direct exchange. In thecase if a bina- 
ry correlation function at distances f considerably greater 
than the direct-exchange radius, we can use the following 
expressions (a  small critical exponent 7 is ignored): 

- 
toelectric response functions and use them to determine the (Sozs,z> =AZ+p<S ( S - t l )  erp ( - g , f ) / f ,  (2a) 

323 Sov. Phys. JETP 65 (2), February 1987 E. L. Nagaev 323 



(So"S;>=(So~~u)=p<S(S+ I ) / !  for T<T,, 
(2b) 

<SoaSfa>=p,S(S+ I )  exp (-E,f)lf for T>T,, 

where S  is the f spin andp is a characteristic constant of the 
dimensions of length which- if the direct-exchange radius 
is -a-is of the same order of magnitude. The magnetiza- 
tion A and the reciprocal of the correlation length depend 
on temperature and on the electron density: 

~=1-TIT , (n ) ,  T ,  ( n )  =T,O+GT,(n), 

where T: is the Curie point of an undoped semiconductor 
and ST, is the shift of this point because of the indirect ex- 
change via the conduction electron. Under our conditions 
we have b a a - '  and c a S  and the dependences of these 
quantities on n are much weaker than Tc (n) .  Therefore, we 
shall ignore these dependences and assume that the magne- 
toelectric effect is entirely due to the dependence of Tc on n. 

It follows from the scaling relations that if 7 = 0, then 
we should have 2P= v (Ref. 8).  The following equality then 
applies in the ordered region: 

If T is not too small, then instead of p = 0.38 derived for a 
Heisenberg magnetic material by a series expansion,' we can 
use the valuefl,,, = 0.5, which is obtained in the self-con- 
sistent field approximation. In the case of& which occurs in 
further calculations this approximation for P is justified if 
I(flSFF -P)ln 7141, i.e., it isjustifiedifr>O.Ol. 

If we calculate the correlation functions in Eq. ( 1 ) with 
the aid of Eqs. (2a) and (4)  accurate to terms of the order of 
d2 inclusive and if we minimize go, with respect to R, we 
find that if gR 4 1 then the following expression describes 
the energy of an electron which is in the lowest of the spin 
subbands (characterized by R = 1/2 when A > 0)  : 

where the equilibrium value of the radius R at T = T, is 
given by the expression 

In the adopted order with respect to .& the result given by 
the system (5) differs from the results in Ref. 5 by the pres- 
ence of a factorp- 1 in the expression for gL2'. This factor 
allows in fact for the influence of the temperature-dependent 
part of fluctuations of the static magnetization on the carrier 
energy. The factor p includes phenomenological constants 
and, therefore, the exact expression for this factor cannot be 
given. However, in any case we can say that it is positive. 
This follows from the observation that the correlation func- 
tion ( S g S f )  rises as a result of cooling for all values off. 

It is worth noting that the electron energy ( 5 ) depends 

on the magnetization quadratically rather than linearly. 
This is a consequence of the fact that if A = 0, then the 
average projection of the electron spin is zero because it be- 
comes aligned to the fluctuating local mom:nt. However, 
the magnetization is an analog of the external field which 
polarizes this system and, therefore, an electron acquires a 
spin projection which is proportional to d. 

Using the system (5)  we can find the total energy of 
degenerate electrons and then the shift ST,. If we assume 
that the free energy of an undoped crystal is described by a 
Landau expansion, we can write down the free energy of a 
degenerate ferromagnetic semiconductor in the form 

3N Az 
F = -(T-TC0)- + n8i2' A2 

2 S (SS 1) 
9NT: 

+-[I+ 20 2s  (SS 1) ( 7 )  

Renormalization of the term proportional to d4 by the indi- 
rect exchange will be ignored. 

It therefore follows from Eq. (7)  that 
2 n 

6T, = - - 8 : 2 ' ~ ( ~ + 1 ) - =  an. 
3 N 

Equations (7 )  and (8) yield the following expression valid 
in the adopted approximation (P = 0.5) : 

which is a special case of Eq. (3) .  

2. RESPONSE FUNCTIONS OF A DEGENERATE 
FERROMAGNETIC SEMICONDUCTOR CHARACTERIZED BY 
W A S  

In describing the influence of an external electric field 
with the potential @(q,w) on the conduction electrons in 
degenerate ferromagnetic semiconductors we must bear in 
mind that this field not only induces an internal potential 
p(q,w),  but also alters the magnetization d (q,w), (q  is the 
wave vector and w is the field frequency). Therefore, in addi- 
tion to the usual permittivity described by the expression 

we have to introduce also a magnetoelectric response func- 
tion. In view of the quadratic dependence of the electron 
energy on the magnetization near T, given by Eq. ( 5 ) ,  it is 
convenient to define this function as the coefficient of pro- 
portionality between d2 and @: 

We shall calculate the magnetoelectric response func- 
tions only in the static case when q 4 min(R ;- 'n - "'), 
where Ro is the radius of the local ordering region given by 
Eq. (6) .  Then, we can employ the semiclassical approxima- 
tion. According to Eq. ( 5 ) ,  an electron experiences an effec- 
tive potential 

e g  (r) = ecp (r) + 8:'' [A2 (r) - dlo'], (12) 

where A, = .&(no) and no is the average density of the 
conduction electrons. Using the quadratic approximation 
for the electron dispersion law, we obtair. the following con- 
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dition for the constancy of the electrochemical potential of 
electrons in a crystal 

p  (r) = [6n2n (r) ]i13/2m' = po-erp ( r )  - 8,"' [A2 (r) - Ag2], 

Linearization of Eq. (13) and application of Eqs. (8)  and 
(9),  yields the following relationships between the Fourier 
components of dl2, n, and p: 

On the other hand, using Eq. (10) and the Poisson 
equation, we obtain 

where E~ is the permittivity of an undoped crystal. A com- 
parison of Eqs. ( 15) and ( 17) shows that the permittivity of 
a degenerate ferromagnetic semiconductor is given by 

e  (q) = e p ( l + X Z / q Z ) ,  ~ ~ = ~ ~ ~ ( 1 - r )  -', (18) 

where x: is the reciprocal of the screening length for a non- 
magnetic semiconductor with the same values of m* and no. 

We can find the magnetoelectric response function 
fromEqs. (14), (17), and (10): 

Finally, introducing the effective permittivity i(q), relating 
the effective potential &(q) of Eq. ( 12) to the external field 
by a relationship of the Eq. (10) type, we find from Eqs. 
( 14)-( 19) that this permittivity is described by 

If T>  Tc, a similar calculation can be carried out ex- 
pressing the electron energy of Eq. ( 1 ) in terms {, of Eq. 
(2b). The resultant expression has the structure of Eq. ( 5) 
withp = 1: 

The self-consistency off the approach is retained if {rl, is 
described using the critical exponent v = 1 instead of 0.7: 

The influence of the field on the short-range order can 
be described by a two-index magnetoelectric function which 
is the coefficient in the linear realtionship between (S, S -, ) 
and @(q). However, in the case under discussion, when the 
correlation functions can be described by Eq. (2b) and their 
behavior when r,R, and r > k ,  ' is unimportant, we can 
introduce a slowly varying function {(r) and relate its Four- 
ier components of the field by 

Repeating the operations described above and using Eqs. 
(20)-(23), we find that Eqs. (19) and (20) are valid as 

before. The quantity r which occurs in these formalus and is 
defined by Eq. ( 16) should be modified by replacing K with 
B, and in Z?F' we have to substitutep = 1. The condition of 
continuity of ~ ( q )  at the Curie point Tc is then given by the 
relationship between B and K. The quantity ~ ( q )  is de- 
scribed by Eq. ( 19) withp = 1. 

We can check whether these results are reasonable by 
comparing them with those obtained in the spin-wave ap- 
proximation in Ref. 1. Employing the diagram method for 
the thermal Green functions, an expression for r was found 
in Ref. 1 subject to the condition Tc /S& T& Tc and extrapo- 
lation of this expression to T, yielded an estimate differing 
from Eqs. ( 16) and (5)-(9) only by an additional factor - (AS/W)"6. For all the physically reasonable values of 
AS/W this factor is - 1, which shows that the approach 
adopted above is reasonable. 

3. RESPONSE FUNCTIONS OF A FERROMAGNETIC METAL 
AND OF Ap-TYPE SEMICONDUCTOR 

For the sake of comparison, we shall now calculate the 
response functions near Tc in the opposite limit p$AS 
which corresponds to a metal or to a degeneratep-type semi- 
conductor. We shall consider only an ordered state. In this 
limit we can use perturbation theory in respect ofAS / W (see 
Introduction). This means that the projection of the elec- 
tron spin a along the direction of the magnetic moment .d of 
a crystal is a good quantum number. In the first approxima- 
tion the electron energy depends only on the long-range or- 
der. The dependence on the short-range order appears in the 
second approximation. However, in view of almost equal 
occupancy of the electron subbands characterized by 
a = _+ 1/2, the total conduction electron energy depends on 
the magnetization in the second order in AM/  W. Therefore, 
the contributions to its temperature dependence made by the 
long- and short-range magnetic orders are comparable. The 
short-range order can be allowed for semiphenomenologi- 
cally in the same way as is done in the preceding section. 
However, for the sake of simplicity we shall consider here 
only the long-range order bearing in mind that this does not 
alter the order of magnitude of the magnetoelectric effect. 
We shall therefore describe the electron energy by the 
expression 

i.e., we shall write down the condition of constancy of the 
electrochemical potential for electrons with both spin pro- 
jections in the form 

The average values of the Fermi energiespo, = p (no, ) 
are found from the conditions 

which in the first order in do give 

no,= (no /2)  [ i + 3 A A o a ] ,  p o o = p o ( l + A ~ o o ) ,  (27) 

Linearization of Eq. (25) subject to Eq. (27) gives an equa- 
tion relating the Fourier component of the electron density 
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n,  = n,, + n,, to the electrostatic potential p, of the medi- 
um: 

The relationship between the Fourier components of the 
magnetization and density can be established from Eq. (9) 
bearing in mind that the results of the RKKY theory are 
valid in the limit under consideration; according to these 
results (see, for example, Ref. I ) ,  we have 

[it follows from Eq. (28) that il is independent of n o ] .  Lin- 
earization of Eqs. (9)  and (30) gives 

Using Eqs. (29 )-( 3 1 ), we obtain the expression of Eq. ( 15) 
type with a feedback function r given by the expression 

The permittivity of the system is described by Eqs. ( 18) and 
(32). In this case the magnetoelectric response function can 
be described conveniently by 

Using Eqs. (30), (31), (17), and ( lo) ,  we obtain 

In contrast to {(q) of Eq. ( 11 ), the response function il (q) 
diverges at T,.  This divergence is formal: it reflects that, 
according to Eq. (9) ,  the region of linear dependence of 
d ( r )  on Sn ( r )  located near T, is very narrow. It vanishes 
in the limit T+ T, . 

In the disordered state the simplified approach adopted 
in Sec. 2 is invalid, because if p )AS, the electron spins are 
not aligned along slowly varying directions of the moment of 
a crystal. Therefore, the response function should be calcu- 
lated allowing for more distant correlations, i.e., the relevant 
theory is strongly nonlocal. 

4. SlNGULARlTlES OF THE RESISTIVITY OF DEGENERATE 
FERROMAGNETIC SEMICONDUCTORS EXHIBITING A 
STRONG S-f EXCHANGE 

The results of Sec. 2 allow us to account for the singular- 
ities of the resistivity exhibited by degenerate ferromagnetic 
semiconductors in the case whenp <AS: this applies to both 
a peak of the resistivity near T, and to a metal-insulator 
transition that occurs at lower electron densities. The mag- 
netoelectric effect responsible for these singularities is mani- 
fested by a reduction in the quantity c,, = c, ( 1 - r) near 
T, which, according to Eq. (20), plays formally the role of 
the permittivity of a crystal. Therefore, an analysis of the 
dependence of the resistivity p on both T and n must begin 
with an analysis of the corresponding dependences of r. 

At T = 0 there is no magnetoelectric effect, since the 
magnetization of a crystal is then maximal for any strength 
of the exchange and the modification of the intensity of the 
indirect exchange by an electric field cannot influence the 

magnetization. The magnetoelectric effect disappears also in 
the limit T+ a,, because in this limit even the long-range 
order is destroyed and it is not restored by enhancement of 
the strength of the indirect exchange because of a finite in- 
crease in the electron density. Hence, it is clear that the feed- 
back function r passes through a maximum near Tc . 

When we consider the dependence of r on the electron 
density, we find from Eq. (16) that if p <AS, then in- 
creases on increase in the density n proportionally to n1I3. 
On the other hand, i f p  )AS, it follows from Eq. (32) that 
this qunatity decreases on increase in n as n-I .  Therefore, 
r ( Tc ) considered as a function of n should have a maximum 
at p -AS. Extrapolation to such values n in Eqs. ( 16) and 
(32) provides an estimate of the maximum value of r, which 
is a quantity of the order of ST, /Tc [this is accurate to with- 
in a factor - ( W/AS) ' I 3 ] .  This result is obtained on the 
assumption that Tc < T, and it shows that even on this as- 
sumption the quantity r may be comparable with unity. 
Therefore, in the vicinity of Tc the effective permittivity E,, 

can be several times smaller than E~ attained at T = 0 or at 
T+ a, (the case when E , ~  < 1 is discussed in Ref. 1 ). 

We shall now consider how precisely the reduction in 
E,, near T, gives rise to a singularity ofp. At relativity high 
electron densities n a peak ofp can be explained by a simulta- 
neous reduction in the mobility and density of carriers in the 
current-carrying states. In degenerate semiconductors the 
mobility is determined by the scattering of carriers on ran- 
domly distributed ionized donors the electric field of which 
is screened by carriers. Bearing in mind that in the unrenor- 
malized field of defects @(q) the scattering potential de- 
duced from Eq. (20) is @(q)/ i (q) ,  we find that the relaxa- 
tion time rk obtained in the Born approximation is described 
by a modified Brooks-Herring formula: 

It is clear from Eq. (35) that the minimum of c, near T, 
gives rise to a mobility minimum in the same range of tem- 
peratures. 

On the other hand, the random distribution of the im- 
purities gives rise to density-of-states tails in the energy spec- 
trum of a degenerate semiconductor. Electrons in these 
states do not carry the current. The density of levels in the 
tails decreases exponentially on increase in the separation 
from the bottom of the conduction band g, and the expo- 
nential law is a generalization of the familair relationship for 
nonmagnetic semiconductors (see, for example, Ref. 1 ) : 

Therefore, the number of the current-free states passes 
through a maximum at Tc . Since these states lie below the 
current-carrying states, it follows that for a given total elec- 
tron density in the conduction band the number of electrons 
in the current-carrying states passes through a minimum at 
T,. In other words, at Tc the gap between the mobility edge 
and the Fermi level is minimal. 

As n descreases, the number of conduction electrons in 
the current-carrying states decreases and finally the Fermi 
level shifts below the mobitlity edge, i.e., a crystal becomes 
an insulator. In nonmagnetic semiconductors the type of 
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conduction is independent of temperature. In ferromagnetic 
semiconductors the temperature dependence of E,, may give 
rise to a situation in which the Fermi level at T = 0 lies above 
the mobility edge, but drops below it on increase in T. This 
implies a transition from the metallic to the insulating state. 

A metal-insulator transition may result not only from 
the temperature-dependent Anderson localization described 
above, but also from the Mott localization of carriers. 

Roughly speaking the transfer of electrons from deloca- 
lized to localized states which then occurs can be explained 
as follows. Electron delocalization at T = 0 is due to the fact 
that the electrostatic potential of a donor, which is screened 
by delocalized electrons, is insufficiently strong to capture 
an electron. However, at finite temperatures an electron is 
attracted to a donor also by the exchange forces. The origin 
of these forces is as follows: since near a donor the electron 
density is higher, it follows that the local magnetization A, 
is also higher compared with the average value do. Conse- 
quently, the electrostatic potential must be enhanced by the 
additional exchange potential - A ( A ,  - d o )  /2. The dif- 
ference A, - do rises on increase in T. Therefore, begin- 
ning from a certain temperature the total potential of the 
electrostatic and exchange forces is sufficient for the local- 
ization of an elelctron at a donor. A criterion of the metal- 
insulator transition in a ferromagnetic semiconductor may 
be expressed in the form of a relationship which is a natural 
generalization of the usual Mott criterion: 

This analysis refines the earlier theory of such a transi- 
tion given in Ref. 1. In particular, it follows from Eq. (37) 
that the maximum electron density at which an insulator- 
metal transition is still possible is 8 times higher than the 
density n ,  beginning from which electron delocalization oc- 
curs at T = 0. This result is readily obtained if, in accordance 
with Eq. ( 16), we make the substitution T(T, ) oc n1I3. The 
same dependence of r on n is obtained also in the spin-wave 
range.' Consequently, the carrier density is related to the 
temperature of a metal-insulator transition by 

According to Eq. (38), the highest temperature at 
which such a transition is possible, if it is lower than T,, is 
found from the condition r ( n ,  ,T) = 0.25 and hence we can 
deduce the above conclusion on the maximum carrier den- 
sity n, . If T (n, ,T, ) < 0.25, then n, is even less. This result 
shows that a metal-insulator transition is possible only in a 
relatively narrow range of carrier densities and it is in quali- 
tative agreement with the experimental data on degenerate 
EuO in which this transition is observed at n - ( 1-2) x 1019 
~ m - ~ ,  but disappears already for n = 3 x 1019 cm-3 (Ref. 
9 ) .  

"Gurevich (see, for example, Ref. 3)  has stated that doping of CdCr,Se, 
with an acceptor or a donor impurity gives rise to Cr4+ or CrZ+ ions, 
respectivley, instead of the regular Cr3+ ions. However, the model of 
Gurevich is clearly unsatisfactory. First of all, as explained in detail in 
Ref. 1, even if carriers move between Cr ions, we should not speak of the 
coexistence of Cr ions of different valences in a crystal, but of the exis- 
tence of all the Cr ions in a crystal in a state of mixed valence. Secondly, 
the ideas of Gurevich according to which holes in CdCr,Se, move 
between magnetic Cr ions are in conflict with the observation that the 
hole mobility is very high and practically insensitive to the magnetiza- 
tion fluctuations. 
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