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We investigate stationary spatially periodic and weakly supercritical structures produced in a 
convective layer and in related problems (instability of the surface of a dielectric liquid in an 
external electric field, dissipative structure in reaction-diffusive systems, etc. ) . The regions of 
instability to small perturbations are found for each of three possible types of such structures, 
viz., rolls forming a one-parameter family of solutions, and rhombs and hexagons forming 
three-parameter families. It is shown that besides the previously known quadratic cellular 
structures, there can exist structures made up of rhombic cells with vertex angle differing 
substantially from ~ / 2 .  The existence of a critical vertex angle of such rhombic cells is 
discussed. 

1. INTRODUCTION 

To study the motion of a liquid in weakly supercritical 
convection, we start with the evolution equation.' 

where Uk is the Fourier transform of the real scalar function 
u (r,t) that describes the distribution of the velocity field and 
of the liquid temperature in the horizontal plane. Here r is a 
two-dimensional radius vector and U-, = U,*; the coeffi- 
cients a,y, and p are real (the coefficients akktk2 rIpkk,k2,1 
are frequently called matrix elements). 

The right-hand side of ( 1 ) is in fact a Landau expansion 
in powers of U. A liquid at rest corresponds in this case to the 
trivial solution U, = 0. 

An important characteristic of the convection problem 
is the presence or absence of symmetry of the physical condi- 
tions of the problem relative to a horizontal plane passing 
through the middle of the convective layer. The presence of 
such a symmetry corresponds formally to invariance of ( 1 ) 
to reversal of the sign of U. The presence, however, of even 
powers of Uin ( 1) violates this invariance. It is important in 
this case that the symmetry breaking is due as a rule to rela- 
tively weak effects, such as the temperature dependence of 
the viscosity, the thermocapillary effect, and others; this 
leads to numerical smallness of the coefficients of the even 
powers of U, particularly of the characteristic values of 

compared with ,u,,,,~,, ; this explains why a term pro- 
portional to U%s taken into account in ( 1 ) besides the term 
proportional to U (Refs. 1 and 2) .  

The stability growth rate y,, which determines the lin- 
ear stage of the development of convective motion, usually 
reaches a maximum at a certain finite value k = k,, which 
we set equal to unity. In a weakly supercritical situation, yk 
in the vicinity of this point can be represented in the form1.' 

where E &  1 is a parameter that determines the supercritica- 
lity. 

According to (2) ,  modes with wave vectors k located 
outside the narrow ring (k  - 1 )' S E  attenuate rapidly. In 
investigations of stationary solutions of ( I ) ,  the matrix ele- 
ments akkIkz and ,u,,,,~,, which describe the nonlinear 
interaction of the modes, therefore can be expanded in a se- 
ries in the vicinity of the points /k, I = 1. In view of the condi- 

tion 1 k, = k the first term of this expansion for a is a con- 

stant; while for ,u it is a function of a single argument 8, 
which is the vertex angle of the rhomb made up of the vectors 
k,k,,k,,k,.' We note further that the function p (8) must 
satisfy the obvious conditions p ( 8 )  > 0 and 
p ( n  - 8 )  = ,u (8 ) .  We shall find it also convenient to put 
p(8) = 1 at 8 = 0, something always attainable by a scale 
transformation. In this case the requirements that a be small 
compared with p means that Oga < 1 (if a < 0 the problem 
reduces to the preceding reversal of the sign of U). 

In individual cases it is possible to obtain for the func- 
tion u ( t , r )  a local equation in coordinate space. An example 
is the problem of convection between boundaries with poor 
thermal conductivity, with allowance for the capillary ef- 
fect, where the corresponding equations is3 

It is easily seen that (3)  is reduced to (1)  by Fourier trans- 
formation. In that case 

The matrix elements for some other formulation of the prob- 
lem were calculated in Ref. 1. In each specific case such a 
calculation is a problem in itself. Our present results will 
therefore be formulated without specifying the p (8) depen- 
dence, to illustrate the general laws that govern the phenom- 
enon. 

We shall assume that the convective layer is infinite in 
the horizontal plane, so that the linearized equation ( 1) has 
a continuous eigenvalue spectrum. We are interested in the 
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present paper in stationary solutions ( 1 ), which correspond 
in coordinate space to structures that form periodic lattices 
( BCnard cells). 

The most complete analysis of the stability of such 
structures to small perturbations is contained in Ref. 1. This 
analysis, however, pertains only to structures with Ikl = 1. 
Yet besides these solutions there exist also continuously ad- 
jacent families of solutions for which Ikl can take on arbi- 
trary values from the region (k  - 1 ) 2  5 I&[, see Eq. (2). 
Some of these solutions can also be stable to small perturba- 
tions. Attention to these circumstances was drawn by Refs. 4 
and 5, where the light was cast on this question for the case 
when the only stable structures are quasi-one-dimensional 
lattices of ( 1 ) in the form of rolls (a = 0). 

The case a # 0 differs qualitatively from that considered 
in Refs. 4 and 5 in that at a #O there can exist, besides stable 
rolls, also stable stationary solutions of ( 1 ), having hexagon- 
al ~ymmetry.'.'.~ Rigid transitions of the type of first-order 
phase transitions can take place between these rolls and the 
hexagons. 

The present paper is devoted to a generalization of the 
approach developed in Refs. 1,4, and 5 to include the case 
Ikl# 1,O < I E ~ <  1,0<a< 1; this generalization yields stabil- 
ity criteria for the stationary periodic solutions of ( 1 ), simi- 
lar to the Eckhaus criterion9 which is valid in the one-dimen- 
sional situation. 

We proceed to investigate the stationary solutions of 
Eq. (I) . '  The wave vectors of the investigated stationary 
structure will be denoted by q, with the symbol k retained for 
the wave vectors of the perturbations. 

2. STABLE ROLLS 

At E>O Eq. ( 1 ) has a stationary solution that describes 
quasi-one-dimensional rolls and corresponds, in coordinate 
representation, to 

u(r)=Aq cos qx+O(ay)+O(y"), ( 5  

where q lies in the interval 

within which y, 20, see (2 ) ,  and the x axis is directed along 
9. 

Investigation of the stability of the solution (5 )  to small 
perturbations leads to a standard eigenvalue problem. An 
approximate solution of this problem, with the same accura- 
cy as (5),  has shown that the solution (5) is stable to small 
perturbations if the three following three inequalities 
h o i d ~ . ~ . ~ :  

where the condition (9) should be met for all values of 8 
(here and elsewherep without an argument stands forp(?r/ 
3). 

The reason for three different criteria is that in the ap- 
proximation considered there exist three different types of 
"dangerous" perturbations, which will be called below, fol- 

lowing Ref. 1, internal, external, and resonant. For internal 
perturbations, the criterion of stability to which is given by 
(8),  the proper mode is a superposition of two plane waves 
with wave vectors k = q ,t p, where p is an arbitrary small 
vector (p2 5 E )  . For external perturbations, the stability to 
which is ensured by satisfaction of condition ( 9 ) ,  the proper 
mode is - exp(Tt + ikr) where (k - 1 ) 2  5 E and the angle 
between the vectors k and q is not close to rr/3 and 2a/3. 
Finally, the proper mode of the resonant perturbations is a 
superposition of plane waves with wave vectors k,,, that 
form a resonant triad with the vector q, i.e., they satisfy the 
conditionsk, + k,+q=Oand (k:,, - 1 ) , 5 ~ .  

It can be seen from (8)-( 10) that the most stable struc- 
tures are those with q = 1, having the maximum (for the 
given E )  value of A , ,  see (2)  and (6) .  For such structures, 
(8) is satisfied identically, (9) goes over into the condition 

and ( 10) to the condition 

3. RHOMBIC STRUCTURES 

The general form of the stationary solution of Eq. ( I ) ,  
describing in coordinate representation a lattice of rhombic 
cells, is 

u=A, cos (qir)+Az cos (q2r)+Bi sin (qir) 

+B, sin (qzr) 3- . . . , (13) 

where (q:,, - 1 ) 2  5 E, the ellipsis stands for discarded terms 
of higher order of smallness, cf. (5 ) , and in the case a # 0 the 
angle 8, between the vectors q, and q, is not close to ?r/3 (the 
case 8, ~ 5 - / 3  will be discussed in the next section). We note 
next that both coefficients B, and B, can be made equal to 
zero by translation along q, and q,. Putting the Fourier 
transform ( 13) in ( 1 ) we find that in this case 

where we have introduced the notation 
Y1,z =yq 1 , 2 , ~ o = ~ ( e o ) .  

Investigation of the stability of the solution ( 13), (14) 
to nonresonant perturbations leads to the criterion 

cf. (9).  Here p , ,  =p ( e l ,  ), where 8 are the angles 
between the perturbation wave vector k and the vectors 
41.2 (61 + 02 = 60). 

The proper mode of the resonant perturbation is of the 
same form as in the case of rolls. The difference is that now 
the vectors k , ,  can form resonant triads with either q, or q,. 
Each such triad leads to a separate stability criterion, so that 
stability of the investigated solution to resonant perturba- 
tion calls for simultaneous satisfaction of both criteria. This 
leads to the condition 

and to a second condition obtained from ( 16) by interchang- 
ing the subscripts 1 and 2. Here pii r p  (Oii ), where Oii is the 
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angle between the vectors q, and k, 
(e l ,  +e I2=e2 ,  +e , ,=1~/3 ) .  

The most cumbersome is an investigation of the stabil- 
ity of (13) and (14) to internal perturbations whose wave 
vectors are close to q,,,. In this case it is convenient to write 
the perturbed solution in the form 

2 

E = (Aj+%) oos (.r) + bj sin ( a r ) ,  (17) 

where p is a small wave vector (p2 5 E )  . 
The dispersion equation obtained for r after substitut- 

ing the Fourier transform of ( 17) in ( 1 ) is deferred to Ap- 
pendix 1. For its investigation it is expedient to represent r 
as a series in powers ofp2 (Ref. 10). Atp2 = 0 it has two zero 
roots r, = r2 = 0 and two other roots given by 

It can be seen from ( 19), the criterion of stability to in-phase 
perturbations (p2 = 0 )  takes the simple form 

Comparing (12) with (20), we conclude that rolls and 
rhombs have mutually exclusive stability criteria, i.e., coex- 
istence of rolls and of rhombic cells is impossible for a given 
p(8) dependence. For the particular case of square cells 
with q ,  = q2 = 1 and rolls with q = 1 this result was ob- 
tained previously in Refs. 11 and 6. 

Allowance for the first nonvanishing corrections in p2 
leads to stability criteria that are in general quite elaborate. 
We therefore present them only for a few cases of greatest 
interest. Thus, at q,  = q,=q, i.e., at y ,  = y2 = y,, the stabil- 
ity criterion reduces to the requirement 

In the case of skewed rhombs, however, at q ,  = l,q2# 1, i.e., 
at y ,  = &,y2 -- yq < E, the criterion of stability to internal per- 
turbations takes, with allowance for the condition (20),  the 
form 

The condition (22) determines the limiting skew, i.e., the 
minimum y, at which the solution ( 13), ( 14) still remains 
stable to internal perturbations. 

A few remarks concerning the stability of structures 
with q,  = q, = 1. In this case the conditions (2  1 ) and (22) 
degenerate to (20), and the condition ( 15) becomes inde- 
pendent of E. If the actual form of p ( 8 )  is such that these 
conditions are met, they lead in the general case to con- 
straints on the possible values of e,, of the type .9;. ,@, , where 
a, and 0, are independent of E and the difference O, - 8, is 
of the order of unity. In particular, (20) forbids the existence 
of structures with a value of 8, belonging to a certain finite 
vicinity of the point 8, = 0 (recall that p (0) = 1 ). 

As for the criterion ( 16), in the considered case 
q,  = q, = 1 it degenerates into the condition which at a # O  
certainly cannot be met for &<a2 and, with (15) taken into 
account, is certainly met at & % a 2 .  It is clear therefore that 
there must exist a certain characteristic value .cQ -a2 such 

that at E = EQ Eq. ( 16) begins to be satisfied first for a defi- 
nite value 8 = OQ, which can be naturally called the critical 
vertex angle (several values of 8 can occur simultaneously 
in certain degenerate situations). At  E > E~ ;E - .eQ gsQ 
there is produced in the vicinity of BQ a region of permisible 
values of 8; the width of this region increases with E. 

Let us illustrate the foregoing using the matrix element 
( 4 )  as the example. It is easily seen that in this case (15) 
reduces to (20),  which leads to the limitation .ir/3<8,<2~/ 
3. The most dangerous external perturbations are here those 
with k perpendicular to the bisector of the angle 8,,. On the 
other hand, the condition ( 16) for stability to resonant per- 
turbations takes the form 

In this case OQ = ~ / 2 ,  E~ = 20a2/3. If E > E ~ ,  Eq. (23) can 
be written in the form 7~/2 - SOQ <e0<.ir/2, where 
~ O , - ( E - E ~ ) ~ ~ ~ ~ ~ E - E ~ ~ E ~  

Thus, in the case of ( 4 )  the critical vertex angle of 
rhombic structures with q ,  = q, = 1 is found to be ~ / 2 .  At 
an arbitrary p (8) dependence, expanding the matrix ele- 
ments in ( 16) in powers of 68=.ir/2 - 8, and retaining 
terms - (Sol2, we obtain the criterion for having 8, = ~ / 2 .  
This criterion is quite elaborate, and we write here only the 
sufficient condition that follows from it at q ,  = q2 = 1: 

In this ~ i tua t ion ,~ '  

This expression for E~ was in fact obtained earlier in Ref. 11. 
We conclude this section by emphasizing that the con- 

dition E~ = .ir/2 is not obligatory: in some cases cells of 
oblique-angle rhombs can be stable and those with right an- 
gles unstable. 

4. HEXAGONAL STRUCTURES 

Besides the solutions investigated above, there is one 
more type of stationary spatioperiodic solutions: 

Y u ( r )  = - [ A j  cos ((Lir) + B, sin (qjr) ] + . . . , (26) 

where the vectors q, satisfy the conditions (q:,,,, - 1 ) 2  
5 max . ( l ~ J ; a ~ ) ;  9,  + q2 + q3 = 0. 

We confine ourselves next to the study of regular hexa- 
gons, for which A, =A2=A,-A; B,  =B2=B,=O; 
q ,  = q2 = q, -q (generally speaking, q # 1 ). In this case, 
substituting the Fourier transform of (26) in ( 1 ), we obtain 
for A an equation whose solution is 

Expression (27) agrees with a known result, 1 s 7 3 X  according 
to which the hexagons are produced at a negative E equal to 

~ , , , , = - a ~ / ( I f  4 p ) ,  (28) 

in abrupt fashion, i.e., having immediately a finite amplitude 
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1 ArninI=al(l+4p). (29) 

The solution (27) exists for q in the interval 
(q2 - 1 ) 2 < ~  - E,,, , see (2 )  so that the only hexagonal- 
symmetry solution that exists at E = &,,, is the one with 
q =  1. 

An investigation, perfectly analogous to that carried 
out in Refs. 1 and 8, of the stability of solutions (26) and 
(27) to external nonresonant perturbation, leads for the case 
q = 1 to the stability criterion 

wherep,,,,, =p (6 ,,2,3 ), and 6 are the angles between the 
vector k and the vectors q,,,,, , cf. (9 )  and ( 15). 

We note further that for hexagonal structures internal 
perturbations are simultaneously also resonant.' The per- 
turbed solution can be written in this case in a form similar to 
(171, (18): 

E = z [ A  +a> e r p  (I ' t+ipr)  ] cos ( l i j r )  

+z bj e r p  ( r t + i p r )  sin ( b r )  , (31) 

wherep2 5 max {I&l;a2}. 
Substitution of ( 3  1 ) in ( 1 ) leads, after linearization 

with respect to small a,, and b,, to the cumbersome disper- 
sion equation (A.2) written out explicitly in Appendix 2. 
Without dwelling on the elaborate intermediate calcula- 
tions, we present the result of its investigation. First, an in- 
vestigation of the stability to in-phase perturbations 
(p2 = 0 )  shows that the solution with the smaller IA I [lower 
sign in (27) ] is always unstable. As for the solution with the 
larger IA I [upper sign in (27) 1 it is stable for p > 1 in the 
region 

where E~ is defined in ( 12). In  the case p<f, however, it is 
stable to in-phase perturbations in the entire region of its 
existence: y, see (27 ) and (28). 

An investigations of perturbations with 
0 <p2  4 max{ ~ E I  , a2) leads to a stability criterion that is expe- 
diently written in the form 

That a - ( p  - 4 )  IA I is positive follows from the criterion of 
the stability to in-phase perturbations, so that the left-hand 
inequality in (33) follows from (27) and determines the 
boundary of the region where solutions (26) exist. The sta- 
bility conditions themselves, however, determine only the 
right-hand sides of (33) .  

The criterion (33) becomes considerably simpler near 
the points E = ,,, and also at  IA I = a/2p.  Thus, for 
example, at  E - 4cmin the conditions (33) reduce to the 
inequalities 

5. DISCUSSION OF RESULTS. PHASE DIAGRAMS 

Thus, stable rolls of type ( 5 )  form a continuous one- 
parameter family of solutions of Eq. ( 1 ), while stable rhom- 
bic ( 13) and hexagonal (26) structures form continuous 
three-parameter solutions of ( 1 ). These include as a particu- 
lar case the select structures with jqj I = 1 investigated in 
Refs. 1, 4, and 6-8. The independent parameter that deter- 
mines the particular type of solution in each family can be 
taken to be the value of the wave number q for rolls, q,,, and 
the vertex angle for vertices, and the values q,,,,, for hexa- 
gons. 

Figure 1, which can naturally be called a phase dia- 
gram, shows the regions of existence of stable stationary 
rolls, regular rhombic structures (q,  = q, = q )  with fixed 
vertex angle (6 ,  = const), and regular hexagonal structures 
(q,  = q2 = q3 ~ q ) .  The independent coordinates on this dia- 
gram are E and IA I, where A is the amplitude of the corre- 
sponding structure. The value of IA / is uniquely related to 
y,,see ( 6 ) ,  (14) ,and (27).Astothewavenumberq,ithas 
according to (2 )  at  y, < E, two values, q ,  < 1 and q2 > 1, for 
each value of y,. The regions corresponding to stable hexa- 
gons and rhombs on the phase diagram (see the figure) are 
therefore doubly degenerate: to each point of these regions 
correspond two different stable structures having identical 

FIG. 1. Phase d~agrams: The reglons occup~ed by 
stable hexagons are slngly hatched, those occ~lpled 
by rolls ( a )  and by rhombs ( b )  are cross hatched 

I I ,  - 
Srn" 0 C & 
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values of y,. Exceptions are points belonging to the upper 
boundaries of the regions, for which q ,  = q, = 1. The re- 
gions corresponding to stable rolls are not degenerate, since 
rolls with q < 1 are unstable [see ( 8 )  1. 

The regions with stable rolls ( p  (8) > 1, Fig. l a )  and 
with stable rhombic structures ( p  ( 8 )  < 4, Fig. Ib) are never 
closed." As for the region with stable hexagons, it is not 
closed atp(n-/3) < t  and is closed, according to (32),  atp(n-/ 
3 > 4 (the last result was obtained independently, but not 
published, by A. A. NepomnyashchiT). 

The kinks on the lower boundaries of the existence re- 
gions correspond to transitions to different branches of the 
stability criteria. The situation shown in the figure corre- 
sponds to the minimum number of kinks, when the condi- 
tions ( 10) and ( 16)for the stability of rolls and rhombic cells 
to resonant perturbations are more stringent for all E than 
theconditions ( 8 ) ,  (21) and ( 9 ) ,  ( 15) ofstability to internal 
and external perturbations. The generalizations of the figure 
to the case of another relation between the different stability 
criteria are obvious. 

A situation is also possible withp(n-/3) > f i.e., the re- 
gion with stable hexagons is closed, but thep (8) dependence 
is such thatp  (8) < f in some region of 6' that not located in a 
small vicinity of the point 8 = n-/3. In this case the stable 
structure competing with hexagons will be not rolls but 
rhombic cells. 

We point out also that situations are possible wherein 
none of the considered simple stationary solutions of Eqs. 
( 1 ) is stable. By way of example we consider the case a = 0 
andp  ( 8 )  having two sharp minima at 8 = n-/2 and 8 = ~ / 4 ,  
so that p(n-12) < f and p (n-/4) < i. It is assumed here that 
p(8) > f everywhere except close to these two points. 

Close to these points, however, ,u ( 8 )  is approximated, 
with sufficient accuracy, by the expressions 

In this case the hexagons are certainly unstable, since a = 0, 
and the rolls (5 ) ,  (6 )  are unstable to external perturbations 
whose wave vectors make an angle n-/2 or n-/4 with the vec- 
tor q, see (9).  Next, the rhombic structures (13) and (14), 
whose vertex angles 8,) do not satisfy the conditionp (8,)) < f ,  
are unstable to in-phase internal perturbations, see (20).  It 
remains to investigate rhombic structures with 8,, close to n-/ 
2 and a/4, whose stability is determined by the criterion 
(15).  Using (35),  we easily verify that under the condition 

square cells (8,~13-/2) are unstable to external perturba- 
tions whose wave vector is directed along the diagonal of the 

square made up of the vectors q,,, . Instability of rhombic 
cells with vertex angle close to n-/4, however, is ensured by 
the conditionp(n-/2) < $. In this case stable stationary solu- 
tions of ( 1 ) may turn out to be quasi-periodic solution with 
modulated amplitude, of the type considered in Ref. 5, solu- 
tions with selected centers,12, and other more complicated 
low-symmetry solutions." The stability criteria for such so- 
lutions are usually more stringent than for the high-symme- 
try solutions considered above, and their details are outside 
the scope of the present paper. 

We point out in conclusion that Eq. ( 1 ) considered here 
is quite general and describes not only a convective layer of 
liquid, but also other distributed dynamic systems with 
aperiodic instability for finite k and with nonlinear stabiliza- 
tion, see, e.g., Refs. 13 and 14. In addition, in a description of 
an almost conservative (Hamiltonian) system with low dis- 
sipation, such as a liquid dielectric in an external electric 
field,' ' the charged surface of liquid helium," and others, 
the problem can also be reduced in many cases to Eq. ( 1 ), in 
whichdU/dtis replaced by d 'U/dt + vaU /at, wherevisa 
small damping coefficient ( v  > 0 ) .  Obviously, this replace- 
ment affects neither the form of the stationary solutions of 
such an equation, nor the analysis of their stability to small 
perturbations. 

We note also that besides the investigated stability of 
solutions ( 5),  ( 13), and (26) to small perturbations, consid- 
erable interest attaches to their stability to perturbations of 
finite amplitude and to the associated problem of determin- 
ing the regions of attraction of the initial perturbations to 
various asymptotic states of the considered dynamic system. 

A detailed treatment of these questions will be the sub- 
ject of a separate paper, but we state here the following with- 
out proof: 

1. In the region 0 < E - E,~, 4 IE,~,, / the minimum am- 
plitude SA,,, of a perturbation that disrupts a hexagonal 
structure is estimated at SA,,, - (E - ) 'I2. 

2. A similar estimate with the substitution + E )  is 
valid in the region 0 < E  - E, 4 ~ ,  for rolls. 

3. In the region 0 < E,,, - E <E,,, (at  p > f ), on the 
other hand, the hexagonal structure can be disrupted by a 
perturbation with amplitude SAmin - (E,,, - E). 

The authors are indebted to S. I. Anisimov, M. A. Zaks, 
Ya. B. Zel'dovich, D. V. Lyubimov, and A. A. Nepomnyash- 
chi7 for a discussion of the results of the work, and also to V. 
I. Arnol'd and A. B. Givental' for a detailed discussion of its 
mathematical aspects. The authors thank E. A. Kuznetsov 
and M. D. Spektor for helpful critical remarks. 

APPENDIX 1. 

The dispersion equation that determines the stability of 
the rhombic solutions ( 13) and ( 14) to internal perturba- 
tions (17) and (18) is 

where Ei ,  2-pq3.z. 
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APPENDIX 2. *'We emphasize that we are dealing now with a small vicinity of the point 
8, = 7r/2. For rather complicated p ( 8 )  dependences, there can exist, 

The equation that determines the besides this region, other regions of stable values of e,, at a finite distance 
hexagonal solutions (26) and (27) to small internal pertur- from the point 8, = 7r/2. These regions have their own values of ep, 
bations ( 3  1 ) can be written in the form generally different from the E ~ ,  defined by (25). 

"Of course, the point here is only that these regions are not closed at E (  1. 
C C 51 0 At sizable supercriticality, higher bifurcations occur in the problem and - C 0 2  C 3 a.2 0 lead to instability of the simple stationary structures considered here.'.I2 

C c o  0 E3 (A.2) 'E. A. Kuznetsov and M. D. Spektor, Prtk. Mat. Tekh. Fiz. No. 2, 262 - 
7 - 1  0 0 ol - 2 a A  - 2 a A  (1980). E. A. Kuznetsov, Doctoral dissertation, Inst. for Space Re- 

search, USSR Academy of Sciences, 1980. 
. 0 a l- %a- .&+~. . ,2a ,4 ,~rr .~2  +'&A- " '""c"2F. H. ~lisxe: Reb. %~4-~~r.'~hji's. W, 1929 fT978). * , 

0 0 - & - 2 a A - 2 a A  w3 3V. S. Gertsberg and G. I. Sivashinsky, Progr. Theor. Fiz. 66, 1219 
(1981) 

where the symbols are (j = 1, 2, 3)  4 ~ .  ~chliiter, D. Lortz, and F. H. Busse, J. Fluid. Mech. 23, 129 (1965) 

C. - 'A. C. Newell and J. A. Whitehead, ibid. 38, 279 (1969). 
.,-pqj; Ej=4i(q2-1) E j ;  C=4pAZ+2uA; 'F. H .   BUSS^ and N. J. Riahi, ibid. 96, 243 (1980). 

oj=r-2aA+4E:; Qj=oj+2A2 'L. A. Segel, ibid. 21, 359 (1965). 

(by virtue of the condition q,  + q, + q, = 0, only two of the 
three parameters l,,, are independent, since 
61 + l 2 + 6 3 = 0 ) .  

"In convection problems, the state of the liquid is usually described by a 
definite dimensionless parameter R (the Rayleigh number), which is 
proportional to the temperature difference between the lower and upper 
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