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The evolution of large-scale disturbances under conditions of thermal instability is investigated 
in the framework of one-dimensional gasdynamic equations with allowance for processes of 
heating and radiative cooling of the gas. The characteristic thermal times in the problem are 
found in this case to be considerably shorter than the gasdynamic time, and thermal- 
conduction effects are unimportant. Two physically important classes of motion of matter in 
such a system are indicated: explosive condensation of the gas (the formation of dense cold 
regions) and explosive rarefaction of the gas (the formation of rarefied hot regions). Certain 
analytical solutions describing these features of the motion are obtained and investigated. The 
asymptotic behavior of the solutions near the singularities is investigated, and the question of 
the realization of these solutions in a problem with "natural" initial conditions is considered. 
The possibility of the formation of intermediate structures of the Zel'dovich "pancake" type 
upon development of a thermal instability in the regime of explosive condensation is indicated. 

1. INTRODUCTION 

One of the important dynamical processes in the inter- 
stellar medium and in stellar atmospheres is thermal insta- 
bility. The observed "patchiness" of the interstellar medi- 
um' and the formation of condensations in the solar 
atmosphere2 can be attributed to this instability. Apparent- 
ly, thermal instability plays an important role in processes of 
star f~rmat ion .~  Also well known in plasma physics is the 
superheating instability-a variant of thermal instability as- 
sociated with the competition between Joule heating and ra- 
diative cooling of a p l a ~ m a . ~  

A thorough analysis of the linear stage of thermal insta- 
bility is given in the well-known paper of Field.5 As regards 
the nonlinear stage of the instability, it has been investigated 
in many papers, predominantly by numerical methods, and 
in each paper specific conditions inherent to the problems 
formulated were considered. At the same time, there is an 
important general case in which the equations describing the 
nonlinear dynamics of the one-dimensional thermal instabil- 
ity can be solved analytically, making it possible to build up a 
more complete picture of the development of the instability. 
In Sec. 2 of the article we obtain nonlinear equations describ- 
ing the long-wavelength thermal instability, and the physi- 
cally interesting solutions are classified. Sections 3 and 4 are 
devoted to obtaining and investigating certain analytical so- 
lutions of the corresponding problems. In Sec. 5 we briefly 
discuss the results obtained. 

2. THE NONLINEAR EQUATIONS OF THE THERMAL 
INSTABILITY, AND A METHOD FOR SOLVING THEM 

We shall consider a gas with densityp and temperature 
T, moving with velocity v under the action of a gradient of 
the pressure p (we neglect gravity and other forces). The 
gasdynamics equations have the usual form 

Here S is the entropy per unit mass of the gas, 9 is the 
difference between the rate of radiative cooling (we assume 
the gas to be optically transparent) and the rate of heating 
per unit mass, and x is the thermal-conductivity coefficient. 
In the case of the interstellar medium, e.g., the heating is 
determined by the absorption of subcosmic rays and (or) the 
ultraviolet and x radiation of the stars.' The equation of state 
specifying the dependences ofp and S onp and T is assumed 
to be known. 

The system of equations ( 1 )-(3) has simple equilibri- 
umsolutions: T = T'O' = const, v = 0 , Y  (p'O',T'O') = 0. The 
instability of these equilibrium solutions [or, more general- 
ly, of any stationary solutions of the system ( 1 )-(3) ] is a 
thermal instability. As already noted, the linear stage of this 
instability, characterized by small deviations of the physical 
quantities from their equilibrium values, was investigated by 
Field,5 who linearized the system of equations ( 1 )-(3) to- 
gether with the equation of state of an ideal gas. Since we are 
interested in the development of the instability in the frame- 
work of the nonlinear system of equations ( 1 )-(3 ), we shall 
consider the limit of large-scale disturbances (in other 
words, we shall make use of the long-wavelength approxima- 
tion). In this case it is possible, first, to neglect the thermal 
conduction, and, secondly, to take into account the fact that 
the time of establishment of local thermal equilibrium in the 
gas becomes substantially shorter than the characteristic 
gasdynamic time. Namely, since in the long-wavelength lim- 
it the individual terms in the function 9 (p,T) are consider- 
ably greater than the other terms in Eq. (3) ,  we can use 
instead of Eq. (3) the thermal-equilibrium condition 

This approach, of course, presupposes that in the range of 
( ) parameters under consideration the condition ( d P /  

(2)  
dT), > O  is fulfilled, since only in this case is the thermal 
equilibrium (4) stable with p = const. Otherwise, a rapid 
"jump"from the unstable equilibrium (4) to some stable 
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equilibrium state (with the gas almost stationary) occurs 
first, and only then will the gas be set in motion. 

Solving the algebraic equation (4)  for T, we obtain the 
equilibrium value of the temperature for the given density: 
T ,  = T, (p).  To this temperature corresponds a pressure 
P(p)  = p(p, T, (p)  ) as a function of p alone. Thus, in the 
long-wavelength approximation the thermal instability is 
described by the system of equations ( l ) ,  (2) ,  in which one 
must substitute the function P(p)  in place of p(p,T), and 
this will be implied below without explicit stipulation. In 
Fig. 1, as an example, we give the dependence P(p)  for the 
interstellar medium. ' 

The dispersion equation for small disturbances propor- 
tional to exp( - iwt + ikx) has in the case under considera- 
tion the form1' 

whence follows the instability condition d P  /dp < 0 (the seg- 
ment AB in Fig. 1 ) . 

Let the gas be carried over sufficiently rapidly into the 
unstable state (e.g., such a situation occurs in the passage of 
shock waves in the spiral arms of a galaxy3'). Then the sys- 
tem of equations ( 1 ), (2) with the known dependence P (p )  
describes one-dimensional unstable motion of the gas and 
can be solved analytically. With the aim of obtaining visuali- 
zable results, we approximate the unstable region of P (p )  as 
follows: 

P (p) =A+Bpl-", (6)  

where A > 0, B > 0, and a > 1 are constants. The presence of 
three fitting parameters A,  B, and a makes it possible to 
obtain a sufficiently accurate approximation in the most 
widely different cases. We introduce the dimensionless vari- 
ables 2 = x/L,  2 = ct /L, fi = u/c, and j5 = p/p,, where L is 
the characteristic spatial scale of the initial  disturbance,^, is 
the characteristic value of the gas density (e.g., p, =p'O'), 
and c2 = (a - 1 )Bp; a. The quantity c (the characteristic 
gasdynamic velocity) is usually equal in order of magnitude 
to the velocity of sound in the gas under consideration. Then, 
omitting the tildes, we rewrite Eq. (2)  in the form 

Equation (1)  in dimensionless variables keeps the same 
form. The system of equations ( 1 ), (7)  with different values 
of the parameter a has arisen in a whole series of papers 
(going back to Chaplygin6) devoted to the study of different 
hydrodynamic instabilities with a linear dispersion equation 
analogous to (5 ) .  Thus, e.g., the case a = 2, corresponding 

to a "Chaplygin gas,"6 arises in the problem of the breaking 
of a neutral current layer in a plasma7 and in problems con- 
cerning the long-wavelength Buneman instability8-lo and 
parametric instability1' of a plasma. In this case, a highly 
effective method of solution is to change to Lagrangian vari- 
ables, in which Eqs. (1 ) and (7)  become linear, making it 
possible to obtain an explicit Lagrangian description of the 
motion of the gas.' The case a = 3, describing the breakway 
of constrictions in plasma pinches with current, was investi- 
gated in Ref. 12. A further series of cases is mentioned in the 
recent paper Ref. 13. 

We shall consider the case of arbitrary a .  One of the 
most effective methods of solving problems of the type under 
consideration is a hodograph transformation, which consists 
in going over from the functions p(x,t)  and v(x,t) to the 
functions x(p,v) and t(p,u), wherep and v are now consid- 
ered as the independent variables. The equations for x(p,v) 
and t(p,u) then take the form 

a d d d - ( x -V t )  = p- (a+2)  - - (5-v t )  = - - tp, 
d~ dv a E) 

(8) 

whence 

'\ 

The $tegrand of ( 10) in the (p,v) plane is, according to (8 ) ,  
a total derivative. 

Because of its linearity, Eq. (9)  admits, in principle, the 
possibility of construction of a general solution. For definite- 
ness, we shall confine ourselves to seeking those solutions 
which correspond to gas-density profiles that are symmetric 
about a certain plane x = 0. Then it is easy to see that the 
velocity u ( x )  will be an odd function ofx. Knowing the solu- 
tion of the linear equation ( 9 ) ,  we can determine the func- 
tion x(p,v) from the relation 

which follows from the general formula ( 10). Therefore, we 
shall concentrate attention on the solution of Eq. (9).  We 
make the change of variables t(p,v) = p 'I2@ (p - "'*, au/2). 
Then, for the function = @ (r,z) exp (iq, / a ) ,  by means of 
(9) we obtain the Laplace equation in the cylindrical coordi- 
nates r, z, p. A somewhat different way of reducing the sys- 
tem ( 1 ), (7)  to the three-dimensional Laplace equation was 
proposed recently in Ref. 13. The known methods of solu- 
tion of the Laplace equation make it possible to obtain a large 
set of physically interesting solutions and to investigate dif- 
ferent regimes of flow of the unstable gas [if the approxima- 
tion (6) used is extended to all values of p, from zero to 
infinity]. The most interesting solutions describe the explo- 
sive rarefaction of matter with simultaneous heating 
(p -- 0,T- w ), and the explosive condensation (collapse) of 
matter with simultaneous cooling (p -+ w , T-+ 0). Whereas 
the second case corresponds to the breaking of compression 
waves (as in "stable" gas dynamics), the first case can be 
interpreted as the breaking of rarefaction waves." We shall 
consider these cases separately. 
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3. EXPLOSIVE RAREFACTION OF THE GAS IN THE the question of the realization of this flow under ordinary 
PROCESS OF THE THERMAL INSTABILITY (natural) initial conditions. 

Changing to spherical coordinates in the Laplace equa- 
In this section we consider solutions describing explo- 

tion for the function Y, we obtain a family of solutions de- 
sive gas rarefaction (p -0) accompanied by strong heating 

scribing the explosive rarefaction of the gas: 
of the gas (T+ w ). We are interested, first, in the behavior 
of the gas flow near the singularity p-0 that (we shall as- ~ , _ C ~ " U - L ) / ~ , T J  ( 
sume) arises in the plane x = 0 at t = 0 (this is ensured by a 

1 a ~ ~ / ~ v I 2 ) ,  

particular choice of the coordinate origin), and, secondly, in where 

Pt (x)  is an associated Legendre function of the first kind on 
the cut - 1 < x  < 1 (see e.g., Ref. 14), and Cis an arbitrary 
positive constant. Below we assume that C = 1, correspond- 
ing to a certain concrete choice of L. 

The solutions written out correspond to self-similar so- 
lutions of the system of equations ( l ), (7),  of the form 

where y = 1 - a / ( l a  - 1 ). From the requirement that 
p = 0 at t = 0 there follows the inequality y < 1. The solu- 
tions ( 12) agree with the natural boundary conditions only 
in the case y)O, when the function U, (w) has zeros. Thus, in 
(12) and (13), we haveO<y< 1 or 1 + l / a< l<  + UJ. 

From the formula (12) we can obtain the following 
asymptotic forms: For Ix 1 4 It I Y ,  

while for 1x1 b It I Y  (in particular, at the time t = 0 of the 
singularity), 

The formulas ( 15) describe the formation of characteristic 
density and velocity profiles with breaks. 

The expressions ( 15) are valid for 0 < y < 1. For y = 0 
(which corresponds to the condition I = 1 + l / a ) ,  the den- 
sity vanishes on a whole segment of thex axis simultaneously 
(the length of this segment is determined by the shape of the 
initial disturbance), and the velocity of the gas becomes infi- 
nitely large. 

If the solution of a particular problem with concrete 
initial conditions is represented in the form of a sum of multi- 
poles ( 12) with different I, then near the singularityp -+ 0 the 
main role, as a rule, will be played by the multipole with the 
smallest I (and, correspondingly, with the smallest y).  In 
this sense the solution with y = 0 is physically distinct and 
deserves great attention. Therefore, we shall give here rela- 
tions for the functions R (x)  and V(x); these relations are 
obtained by setting I = 1 + l / a  in ( 12), making use of ( 1 1 ), 
and comparing the results with ( 13): 

I 

The formulas ( 16) and ( 17) can also be obtained by inte- 
grating the self-similar equations to which the system ( 1 ), 
(7)  is reduced when the relations ( 13) are substituted into 
it. The behavior of the functions R (x)  and V(x) is depicted 
in Fig. 2. In the particular case a = 2, from ( 16) and ( 17) 
we obtain R = cosP2x and V = tsin2x, in agreement with 
Ref. 9. 

It is possible that the arguments expounded here con- 
cerning the physically distinct nature of the solution with 
y = 0 will become more convincing if we give the exact solu- 
tion of the problem with definite, sufficiently natural bound- 
ary conditions-namely, if we consider the solution which, 
at t - - UJ , describes the equilibrium state of the gas. To this 
end, as in the recent paper Ref. 13, we shall make use of the 
Laplace equation for the function Y in toroidal coordinates 
7, 6, q, (Ref. 14). Then the solution can be written in the 
form 

- l /a  Y = (ch q - cos 8 )  " C,P,-$1, (ch q )  exp (ine+icp/a), 

where PJI (x)  is an associated Legendre function of the first 
kind (see Ref. 14). Confining ourselves to the harmonic with 
n = 0 and setting C,, = 1 (which corresponds to a specific 
choice of L ) ,  we obtain for t the expression 

where 

FIG. 2. 
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Investigation shows that as the density and velocity 
tend to their equilibrium values (p - 1,v - O), the value o f t  
in ( 19) tends to - w in accordance with the law 

I'[ (a+2) /a l  
K =  

2cr-a)12a I'[ (a4-1) l a ]  r2[ (a-!-2) / 2 a ]  ' 
(21) 

[This corresponds to the limit 7 -, 03 in ( 19). ] Solving (2 1 ) 
for p and v with the aid of ( 1 1 ) , we obtain, for - t )  2K, 

p=l-cos ( x /2K)  exp ( t / 2 K ) ,  

u=sin ( x l2K)  exp ( t l2K) .  

In the formulas (22) it is assumed that the plane x = 0 corre- 
sponds to one of the density minima. 

The limit 7 + 0 in formula ( 19) is also of interest. In this 
case we obtain 

and therefore, for p + 0 and arbitrary we have 

where Q = 2(2 - a)/2a /T [ (a + 1 ) /a ] .  This asymptotic 
form is the exact solution of the problem, and coincides with 
( 12) if in ( 12) we set I = 1 + l / a  and select the constant C 
in the necessary way. Thus, the solution ( 19) satisfying the 
natural initial conditions approaches at t- 0 the self-similar 
solution ( 13), ( 16), ( 17) with y = 0. Here it is necessary to 
stay at a sufficient distance from the planes x, = rK(2 j  + 1) 
(with j an integer), in which the density tends to infinity. 
The corresponding criterion has the form Ix -xi 1 
3 t + 2, ; it becomes softer and softer as the singularity is 
approached. 

Returning to formula ( 18), we note that for n > 0 the 
unstable disturbance are localized in space. l3  

4. EXPLOSIVE CONDENSATION (COLLAPSE) IN THE 
PROCESS OF THE THERMAL INSTABILITY 

We turn now to an account of the results of an investiga- 
tion of the character of the gas flow in regions of appearance 
of cold condensations (p - co ,T-0). One of the solutions 
describing the condensations has already been obtained, in 
fact, in Sec. 3 [formula ( 19) 1. However, in this solution the 
entire gas condenses in a finite time on a discrete number of 
planes, positioned at equal distances (equal to 2rK)  from 
each other. The gas density becomes infinite in all Lagran- 
gian elements of the gas simultaneously. This behavior of the 
condensations is exceptional and is not typical for general 
initial conditions. Therefore, since we are interested in pre- 
cisely the flows near the singularity p - co , we shall consider 
the following continuous set of solutions of Eqs. ( 1 ), ( 7 )  : 

where a ,, a, > 0 are constants. Since a > 1, we can neglect the 
last terms in (24) as p - w . Then, changing the scales in 
such a way that a ,  =a,  = 1, we obtain, asp- W ,  

This flow [as can be seen from formulas (9)  and ( 10) ] im- 
plies inertial motion of the gas, when the role of the pressure 
forces is negligibly small. It can be shown that the solution 
(25) corresponds to the only structurally stable singularity 
of the flow of a cold gas of noninteracting particles.I5 The 
term "structural stability" here, as usual, implies preserva- 
tion of the character of the motion upon a small change of 
the initial conditions. 

In the cases a ,  = 0 and a, = 0 the formulas (25) also 
describe the solutions (24) with p - co , but these solutions 
are scarcely typical. 

The fact that when condensation appears the gas flow 
proceeds in the same way as in a gas of noninteracting parti- 
cles is physically fairly obvious, since for the chosen approxi- 
mation of P(p)  in the form (6)  we have P(p)  -+const as 
p - w (and, correspondingly, Vp -0). The latter circum- 
stance also obtains in the three-dimensional case, and this 
makes it possible to detect a similarity between the "thermal 
collapse" considered here and the development of condensa- 
tions in the process of long-wavelength gravitational insta- 
bility.16 In this case the theory describes the formation of 
planar structures-Zel'dovich   pancake^."'^ In the colli- 
sional gas under consideration the "pancakes" should con- 
tain shock waves, as in the case of the gravitational instabil- 
ity. It is not ruled out that the onset of flattened cold 
condensations during the development of the thermal insta- 
bility is not directly connected with the long-wavelength ap- 
proximation but is preserved in the more general case. 

5. DISCUSSION OF THE RESULTS 

In this paper we have discovered two physically impor- 
tant types of motion of a gas experiencing thermal instabil- 
ity: explosive condensation (the formation of cold dense re- 
gions) and explosive rarefaction (the formation of rarefied 
hot regions). These processes have been investigated ana- 
lytically for the case when the approximation (6)  for the 
effective pressure P(p)  is extended to the entirep axis. The 
approximation (6)  is not, of course, the only one possible. 
For example, the curve P (p )  (see Fig. 1 ) for not very largep 
can also be approximated by a polynomial in powers of p; 
some of the coefficients of this polynomial should then be 
negative. Problems of this type are treated analogously. In 
the particular case P(p)  = D - Ep2, where D, E > 0 andp is 
not very large, Eqs. ( 1 ) and (2)  reduce to the familiar equa- 
tions describing the self-focusing and self-modulation of 
waves (see Ref. 17 and the literature cited therein). The 
solutions of these equations are well known; they can de- 
scribe the phenomena of explosive condensation and 
rarefaction at not very high densities. 

In the real situation of a nonmonotonic dependence 
P (p )  (see Fig. 1 ) a complete analytical investigation of the 
thermal instability is difficult, since we encounter here the 
complicated problem of the transition from unstable to sta- 
ble flow, and vice versa. A rough estimate of the final state of 
the gas in this case can be obtained from the condition that 
the final and initial pressures of the gas be equal,' and this 
makes it possible to affirm the presence of strong conipres 
sion (or rarefaction) of the gas in the real final state. 

The features of the long-wavelength thermal instability 
that have been elucidated here should evidently also be man- 
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ifested in more-complicated situations, e.g., when one takes 
into account gravitational forces or a magnetic field. In this 
connection we recall the numerical experiment of Ref. 18, in 
which, in the framework of the gasdynamic equations with 
allowance for thermal processes and gravitation, the large- 
scale flow of interstellar gas in galactic spiral waves was 
modelled, and, in conditions of thermal instability, interest- 
ing dynamical phenomena, to a certain extent analogous to 
those considered by us, were observed. 

The authors are grateful to L. S. Marochnik and R. A. 
Syunyaev for useful discussions. 

' )  Naturally, formula (5) also follows from the corresponding expression 
of Ref. 4 in the long-wavelength limit. 
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