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A theory is developed which describes, for the first time, the optical properties of fractal 
clusters (i.e., aggregates having nontrivial Hausdorff dimensionality and consisting of 
interacting monomer particles). It is shown with respect to these properties the fractal clusters 
differ substantially from both gases and condensed media. A dipole-dipole interaction between 
the monomers is assumed. The theory is based on the self-consistent-field equations. It takes 
into account the fluctuating character of the fractal cluster (the fact that the probability of 
mutual approach of the monomers is not small while the integral probability density tends 
asymptotically to zero). An expression for the linear susceptibility is obtained. The spectra of 
individual monomers joined into a cluster are subject to splitting, shift, and broadening, which 
depend strongly on the fractal (Hausdorff) dimensionality of the cluster, but are independent 
of the number of monomers in it (if the cluster has a nontrivial dimensionality). At the same 
time, the monomers preserve partially their individuality, and the susceptibility remains 
quasiresonant. The broadening, just as the imaginary part of the susceptibility, is independent 
of the dissipation in an individual monomer. Surface enhanced Raman scattering (SERS) is 
predicted from an impurity particle fixed near one of the monomers of the cluster if the latter 
is excited in its absorption band. The gain of the SERS is also determined by the fractal 
dimensionality. 

1. INTRODUCTION 

Fractals, objects of non-integer (in the case of general 
position) dimensionality imbedded in three-dimensional 

are attracting ever increasing interest. Their phys- 
ical realization are, in particular, fractal clusters. These are 
aggregates of particles, called monomers, joined by bonds. 
The number of monomers in a certain radius r inside a fractal 
is given asymptotically (as r -  cc ) by 

where R, is a constant of the dimension of length, and Dis an 
index, called the fractal (Hausdorff) dimensionality. D is in 
general a noninteger, and a fractal is called nontrivial when 
D is less than the dimensionality of the space. 

The bonds specify the long-range paired correlation 
between the monomers, corresponding to a density-density 
correlation function 

where r is the distance between the monomers, R ,  is the total 
dimension of the fractal, and the exponent (D  - 3) in the 
functiong is also determined by the fractal dimensionality (a  
consequence of gauge invariance). 

Fractal clusters are formed, in particular, in diffusion- 
limited aggregation processes (polymerization) .3-5 Accord- 
ingly, fractals are particles having different physical proper- 
ties in colloidal solutions and in suspensions (see, e.g., Refs. 
6-9). A solidifying surface that grows under diffusion-limit- 
ed conditions with insufficient surface relaxation, or is 
formed when the material is sprayed-on, is also an aggregate 

of fractal  cluster^.^.'^ Most macromolecules (polymers) are 
fractals." Fractals include also the so-called percolation 
clusters (see, e.g., Ref. 12) formed when bonds are random- 
ly produced between centers and are models of fluctuations 
in phase transitions, and also structures of binary solutions 
and polymers. 

It is shown in the present paper that fractals have 
unique optical properties that differ radically from those of 
either gases or condensed media. When a fractal is formed, 
the lines of monomers broaden and split into doublets, but 
the latter remain centered near the initial positions, in which 
the minimum absorption of the fractal takes place. Thus, the 
individuality (the resonant character of the lines) of mon- 
omers is partially conserved. This property is due to the fact 
that the integral density of the particles of the fractal tend to 
zero with increase of its radius, in proportion to R f-'. Si- 
imultaneous interaction of many monomers has therefore 
low probability, but their binary interaction can be quite 
strong in view of the presence of the pair correlation (2) .  As 
0 - 3 ,  i.e., on going to a trivial fractal, the lines broaden 
strongly (in the "thermodynamic" limit N -  W ,  R, - CC,  

Ro = const), owing to the long-range character of the di- 
pole-dipole interaction. This is evidence that the monomers 
have a tendency to lose their individuality (formation of a 
broad level band) in a condensed medium. 

It will be shown below that fractals have also another 
important property-they are subject to surface-enhanced 
Raman scattering (SERS) by impurity centers. It is custom- 
ary to assume (see Refs. 13 and 14) that SERS is produced 
when an impurity is bound to a rough surface of a polarizable 
body. In this respect, the entire fractal is an extremely rough 
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"surface" (with dimensionality D) .  The results of the pres- The Lorentz field can be easily calculated in the case of 
ent paper explain a fact hitherto not understood,14 that the a fractal as the field produced by the charges on the surface 
strongest SERS signal of impurity molecules is observed of the selected sphere of radius RL , or by using integral rela- 
from aggregated metallic particles in colloidal solutions tion (e.g., in analogy with Ref. 15). Using ( 2 )  for the mon- 
(such particles are now known to be fractal clusters). omer density around the fixed ith monomer, we get 

2. LINEAR SUSCEPTIBILITY OF A FRACTAL 

Consider a fractal consisting ofN monomers located at 
points {ri } and interacting via dipole-dipole forces. We ob- 
tain the linear response of the dipole moment within the 
framework of the equations of the time-dependent self-con- 
sistent field. Let the light-wave intensity be 
E ( t )  = Em e - '"' + C.C. The quantum-mechanical mean val- 
ue of the dipole moment induced by the wave field at the ith 
monomer is similarly expressed: d' ( t )  = dLe -'"' + C.C. We 
leave out hereafter the indices w of the amplitudes. We as- 
sume for simplicity that the monomers are identical and are 
isotropically polarized (by assuming the latter property we 
lose effects connected with the light-wave polarization). The 
equations for the response amplitudes are 

here E is the external field, Ei is the field due to the remain- 
ing monomers at the location of the given one, and 
xo = xo(w) is the polarizability of an isolated monomer; a 
(Latin) superscript stands everywhere for the number of the 
particle, and a (Greek) subscript for a tensor component; 

where nq is a unit vector in the direction of ru =I-' - r' ; the 
prime on the summation sign means that the sum extends 
over all monomers but the ith. For simplicity we assume 
everywhere that the light wavelength A exceeds considerably 
the cluster dimension R, . 

A property of a dipole interaction (and in general of a 
multiple interaction with nonzero moment) is that the self- 
consistent field vanishes on averaging over a spherically 
symmetric distribution. Contributions are therefore made in 
(4)  only by anisotropic fluctuations of the particle density. 
By virtue of the rarefaction (asymptotically zero average 
density, see the Introduction) of a nontrival fractal, almost 
all monomers are located at large ( > R,) distances from the 
given one and form an approximately isotropic cloud that 
makes a small contribution to (4).  

Starting from the properties described above, we sepa- 
rate from the self-consistent field E' the contribution of the 
few closest monomers (the fluctuating component). We rep- 
resent the field of the large number of remote monomers in 
the usual fashion, as a sum of a depolarizing field and a Lor- 
entz field EL . We combine the first of them with the external 
field E. After this renormalization, E in (3)  no longer stands 
for the external field but for the average macroscopic field, 
the response to which is to be determined. The self-consis- 
tent (local) field acquires the form 

Here 8" denotes summation over the monomers located in- 
side the sphere of a certain sufficiently small radius RL con- 
structed around the given (ith) monomer (Lorentz sphere). 

where d is the average (in the sense of the response ampli- 
tude) dipole moment of the monomer. In contrast to the case 
D = 3, the Lorentz field (6)  depends on RL 

It can be seen from (5)  and (6)  that EL does not exceed 
the field of one monomer brought to within a distance r 5 R, 
to the given one. This approach is probable, notwithstanding 
the asymptotically zero integral density of the nontrivial 
fractal: it follows from ( 1 ) and (2 )  that the average number 
of monomers within the radius R, around the given one is 
equal to unity. 

Starting with the indicated properties, we retain in the 
sum 8 of (5)  only one term corresponding to the nearest 
monomer numbered, say, j (binary approximation). For 
self-consistency it is necessary that the Lorentz sphere con- 
tain (on the average) one monomer. In accordance with ( 1 ) 
and (2 ) ,  this choice means thaat RL = R,. 

In view of the symmetry of the dipole-dipole interaction 
relative to particle exchange [to reversal of the sign of n q n  
(5) 1,  and since the nearby monomers are located in the same 
field of the remote monomers, we conclude that cY = d' . The 
self-consistent field (5) takes then the form 

Even though the two contributions to (7)  are of the 
same order (it must be recognized that r'j 5 R,), they mani- 
fest themselves differently, as will be shown below. The field 
proportional to d' (binary) and describing the fluctuation in 
the nearest environment of the monomer causes, besides a 
shift of the spectrum, a broadening not connected with the 
initial relaxation (dissipation) in the monomer. In addition, 
the analytic properties of the susceptibility are changed: the 
poles in the complex frequency plane are replaced by branch 
points. In contrast to the binary contribution, the second 
term (the Lorentz field) in (7)  is not random and therefore, 
as is clear beforehand, does not change the analytic proper- 
ties of the response and leads only to a certain renormaliza- 
tion of the latter (the meromorphism of the response func- 
tion is not violated if only the Lorentz field is taken into 
account). 

To prevent details from obscuring the results of the 
fluctuating character of a nontrivial fractal (whose binary- 
interaction probability not small at zero average density), 
we develop the theory first in a purely binary approximation, 
neglecting the Lorentz field EL. We next (see Sec. 4) take 
EL into account exactly and confirm the arguments ad- 
vanced above. 

Omitting the field EL from (7) ,  we obtain the solution 
(3), (7)  in the form 

where @ = (r" ) -3.  The response matrix M - '  is given by 
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We recognize now that the given monomer can be ap- 
proached by any of the monomers of the fractal. We must 
therefore express @ in the form 

If the binary approximation (8)-(10) is used self-consis- 
tently, averaging over the configurations { J }  should yield 
only the paired correlator (2) .  

Taking into account the isotropy of the particle distri- 
bution, we obtain for the average amplitude of the dipole- 
moment response 

where (...) is an average over the ensemble of clusters, i.e., 
over the sets {r' }; the trace is taken over the tensor indices; 
x1 is the average susceptibility of the monomer in the fractal. 
The value ofx,, obviously, no longer depends on the number 
of the particle. Therefore the dipole susceptibility of the clus- 
ter is 

The physical meaning of this result is lucid. The first 
term in the angle brackets corresponds to dipoles that are 
perpendicular to the vector rV that joins them; the statistical 
weight of such an arrangement is equal to 2. The second term 
corresponds to the case of a collinear arrangement of the 
dipoles [the field reverses direction in this case and is dou- 
bled in intensity, cf. (4) 1. The additive character of the aver- 
aging of the indicated configurations, which follows from 
( 12), is due to the binary approximation. 

To calculated x1 we must find averages of quantities of 
the type ( z  + @)-I, where z  is a complex parameter [cf. 
( 12) 1. We use for this purpose the Laplace transform 

(A) = i j dt erp (-irt) F ( t )  , 
0 

where Im z < 0; we obtain the result for Im z < 0 by analytic 
continuation; 

As a consequence of the binary approximation, the averag- 
ing over all monomer pairs i, j in ( 14) is carried out indepen- 
dently; this yields 

Substituting the correlator (2) ,  we obtain from (16) 
asymptotically as R, -. oo (the actual requirement is 
Rc 9 I x O I ~ ' ~ )  

where r ( x )  is the gamma function, and the branch of the 
power-law function is fixed by choosing the phase: i = ei"'2. 
The procedure used above to calculate the function ( 14) is 
similar (accurate to the use of the "imaginary time") to that 

known in the theory of static quenching of incoherent excita- 
tions.'' It can be seen from ( 17) that f ( t )  -0 are R, + W .  

Therefore, taking (1)  into account, we obtain from (13), 
(15) and (17) in the thermodynamic limit (as N -  W ,  

R, W ,  Ro = const) 

where a = D /3, and S ,  is a special function of the complex 
variable z, determined from ( 18) with Im z  > 0; its analytic 
continuation into the lower half-plane is defined by the rela- 
tion 

s, (z*)  =S=* ( 2 ) .  (19) 

It can be shown that S ,  (2) is analytic in the complex plane, 
with a cut from 0 to co along the real axis; z = 0 is a branch 
point. At a = 1/2 the function S ,  (2) is expressed in terms of 
standard functions [ 171 

It follows from ( 12) and ( 19) that the dipole suscepti- 
bility of the fractal is of the form 

It can be seen from this expression that the form of the func- 
tional dependence of the cluster on the monomer susceptibil- 
ity is determined by the fractal dimensionality, whereas the 
scales of this dependence are set by the dimensional param- 
eter Ro of the fractal. 

To determine the dependence  of^ (2 1 ) on the radiation 
frequency, we specify the form of the susceptibility xo of a 
single monomer. For systems having an isolated resonance 
we have near this resonance 

where R is the deviation from resonance, r is the relaxation 
constant (the width of the resonance), and w, and R, are 
respectively the characteristic excitation frequency and the 
geometric dimension of the system. In the two-level-system 
model 

where dl, is the dipole moment of the transition (we use a 
system of units in which R = 1 ). For the important case of a 
monomer in the form of a macrosopic sphere of radius R, 
and dielectric constant E,  the known expression 

reduces in the vicinity of the isolated resonance to the form 
(22), with parameters 

The values ofe", d ~ ' / d o  ili (25 are taken at a point at which 
E' = - 2. For plasmon resonance in a metallic sphere 
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where E, is the constant contribution made to E by the inter- 
band transitions, w, is the plasma frequency, and o, is the 
resonant frequency corresponding to the point 51 = 0. 

When account is taken of (22), it can be seen from (2 1 ) 
that inclusion of a monomer in a fractal broadens and shifts 
the spectral lines of the latter by amounts of the order of the 
chracteristic fractal frequency 

As indicated above, the broadening of the spectra is due to 
the large density fluctuations in the nontrivial fractal. 

The existence of a thermodynamic limit (or of a gauge 
invariance-independent of the susceptibility per monomer 
of the cluster radius R, ) is an exclusive feature of a nontri- 
vial fractal (D < 3); this feature vanishes at D = 3. In the 
latter case, as can be seen from the initial relation (16), a 
logarithmic divergence appears and the estimate of the 
broadening (shift) of the monomer lines takes the form 

We point out that the logarithm is never too large here, 
since R, $A.  The fact that in the theory there are no diver- 
gences of a nontrivial fractal means also that the form (2) of 
the correlation function, which is valid strictly speaking only 
at R, 5 r 5 R, , can be used in calculations [in Eq. ( 16) ] in 
the entire range of r. 

If the fractal broadening flf (27) exceeds considerably 
the initial width r, the latter can be made to approach zero in 
(21 ). In that case, however, the imaginary part of the func- 
tion S, does not tend to zero; it is finite and its sign is deter- 
mined by that of the imaginary part of r. In this case the 
susceptibility is determined by a complex function of a real 
pure argument 

sa (x) =S. (x+iO) . (29) 

This function satisfies the following sum rule for the imagi- 
nary part and the requirement that the real part be con- 
served: 

a - 
S ~ r n  s. (r) dx=n, f Re sa (x) &=0. (30) 
0 -a 

At x(O the function s, is pure real and takes the form 

The imaginary part Im s, (x)  is positive at x > 0 and vanish- 
es at x = 0 together with all its derivatives. These properties 
can be easily tracked using as an example a fractal cluster of 
dimensionality 1.5, for which it follows from (20) that 

Im S I I , (~ )  ='I2nx-% exp (-n14x) 0 (x) , (32) 

where B(x) is the Heaviside unit step function. 
The function s, (x),  which determines the line contour 

in the case of large fractal broadening, is shown in Fig. 1 for 
D = 1.5 and 2.5, which span the values of the Hausdorff 
dimensionality of most known fractals. We point out that in 
the case of fractals on a plane and of an electric field E per- 

FIG. 1 .  Real and imaginary parts of the function ( 18). Curves: l- 
a = 0 . 5 , D =  1.5;2-<=0.83,D=2.5.  

pendicular to the plane, the susceptibility is determined by 
one function s, : 

where the approximate value of X was obtained with 
allowance for (22). 

The vanishing of the imaginary part of X, at negative 
detunings, which can be tracked in Fig. 1, is due to the fact 
that the excited levels of all the monomers are shifted in this 
case upward from the initial positions (the interaction ener- 
gy is positive). The resonance, and with it also the absorp- 
tion described by Im X, is therefore possible only for positive 
detuning from lines of isolated monomers. Of course, ab- 
sorption at negative detunings is in fact strictly nonzero, but 
it is small in the parameter ( r / m a ~ ( f l , f l ~ ) ) ~ .  

At flf % r, with allowance for ( 19) and (22), the spec- 
tral dependence of the susceptibility (21 ) of a fractal imbed- 
ded in a three-dimensional space takes the form 

x=Nxi='/3NRo3 [2s0 (X) - l / Z ~ . *  (-'/ZX)], (34) 

where X is defined in (33). This dependence is illustrated in 
Fig. 2. I t  can be seen that when the fractal dimensionality is 

FIG. 2. Real and imaginary parts of the susceptibility (34) (per mon- 
omer), calculated in the binary approximation, vs the variable 
X = - R Re,y , - '~f l /Cl~ .  Curves: 1-D = 1.5; 2-0 = 2.5. 
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decreased the resonance becomes more peaked, and the 
peaks shift towards the S2 = 0 axis, i.e., the monomers pre- 
serve their individuality to a greater degree. The real part of 
the susceptibility is no longer proportional to the derivative 
of the imaginary part. The splitting of the contour into doub- 
lets is determined by the contribution of the various configu- 
rations of the dipoles [see the discussion that follows Eq. 
( 12) 1. At negative detunings the resonance is due to contri- 
butions of collinear dipole pairs whose excited level is shifted 
downward (negative interaction energy). At detunings con- 
siderably larger than the fractal width, the susceptibility 
(34) is independent of the fractal dimensionality and tends 
to the susceptibility of an isolated monomer. 

The width of the resonance and the imaginary part of 
the susceptibility (34) are finite and are independent (at 
Of&l?) of the initial width J?. They are due to dephasing 
phenomena. Different pairs of monomers, whose mutual ap- 
proach is probable in view of the fractal correlation (2 ) ,  
have randomly shifted levels and resonate at different fre- 
quencies, and this leads to rapid relaxation of the induced 
dipole moment (polarization). This effect is similar to Lan- 
dau damping in the sense that the finite line width and the 
imaginary part of the susceptibility are not connected with 
dissipation in individual monomers, a dissipation that limits 
the lifetime of the populations. 

3. SURFACE ENHANCED RAMAN SCATTERING (SERS) BY 
IMPURITIES IN FACTALS 

We consider the enhancement of Raman scattering by 
an impurity particle, due to the excess of the local field in the 
fractal over the mean value. Let the Raman-scattering parti- 
cle be at a short distance from a certain (ith) monomer of the 
fractal, and let the particle radius vector drawn from the 
point r be designated R. The field Ec acting on this impurity 
particle consists of the average field, the self-consistent field 
of the fractal at the particle location, and the field of the 
nearest (ith) monomer regarded as an induced dipole: 

where nc is a unit vector in the direction of R. In the Lorentz- 
field approximation we can obtain from (3)  and (8)  the 
following expression for the sum of the average and self- 
consistent fields: 

To keep the details from obscuring the physical principles, 
we shall neglect the enhancement of the Raman scattering 
by the interaction of the impurity particle with the fractal at 
the scattered-radiation frequency. This, at any rate, is valid 
for sufficiently large frequency shifts due to scattering. 

The SERS gain G is determined by the ratio of the mean 
squared field acting on the impurity to the square of the field 
E. From (35)  and (36),  with allowance for the spherical 
symmetry we obtain for the gain 

G=( 1Ec)2>/IE12=1/3 Sp <TT+>, T--HM-'. (37) 

Assuming a random orientation of the impurity particle rel- 
ative to the bonds of the fractal, we represent G(37) as a 
contraction of two fourth-rank tensors: 

Using the form (9)  of the response matrix and averaging 
over the orientations, we get 

( ~ , ~ - ' ~ , ; " > = 6 , ~ 6 , , (  I A I 2+Z13 Re (AB')  +'/I, IBI 
+'/I, (6,:6pa+6anSpr) ( I B1 (39) 

The expression for (naB II:a ) takes the form, with the sub- 
stitutions A - a  and B-+b. As a result, expression (37) for 
the gain becomes 

G= r213 (-2+14/15R-6] ( (xO-'+(D I-'> 
+ ['/,I ( [~0 - ' -2@1-~)  

Re < ( x ~ - ~ + @ ) - ' ( x ~ - ~ ' - ~ @ ) - ~ ) .  (40) 

It is easy to verify that 

< ( X o - l + @  1-2>=-Roa Irn S u ( - R o 3 ~ o - ~ ) l I ~  xo-', (41 ) 

Re( (xo-'+@) -' (~o-'*-2Q)-') 

=Ro%e { (2~o- '+~o- '* ) - ' [S~  (-Ro3%o-'1 -Sue (112R~3~~- ' )  I ) .  
(42) 

It can be seen from a comparison of the widths of the corre- 
sponding structures that the interference term (42) is small 
in terms of the parameter T/Of ( 1. Note that this term has a 
small spectral width (of order I?). 

It follows from the representation (22) that in G (40) 
the contribution proportional to I x , I - ~  is small in the pa- 
rameter r2/02, 4 l. Thus, from among the three fields ac- 
counted for [see the discussion of Eq. (30) 1, only that of the 
fractal monomer closest to the scattering particles is signifi- 
cant. Its dipole, however, is induced by the self-consistent 
field of the entire fractal and depends on the Hausdorff di- 
mensionality D. Taking into account the ongoing estimates, 
we obtain for the gain from (40) and (41 ) 

(43) 

The maximum gain, G,,, , is reached at R -R, . For a 
dielectric-sphere monomer we can write rigorously 
R = R, . It follows then from (43) for the case of large frac- 
tal broadening (a,- $ T ) ,  with allowance for the analytic- 
continuation formula ( 19), that 

with X as defined in (33). Since the two functions Im s, in 
(44) never differ from zero simultaneously, the spectral 
form of the SERS gain agrees, at a given sign of the detuning, 
with the form of the absorption spectrum given by I m x  
(34). This property is a consequence of the employed ap- 
proximations-the binary one and R, <A. The connection 
between (Im X) and the factor G,,, can be written in explic- 
it form by rewriting (44) with the aid of (34): 

It is expedient to compare the result (44) with the 
expression for the gain of SERS by an impurity particle fixed 
on the surface of a dielectric sphereI4: 

G ,,,, =4 /  (e-  I ) / (E+~) lL=4a)..,'/F2, (46) 
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where the second equality was obtained for the susceptibil- 
ity, in the form (22), of the sphere, while f;is the width of the 
resonance. It is customary to use for 5; the observed reso- 
nance width, while the frequency shift due to the interaction 
of different spheres with one another is calculated by using 
the theory of the averaged Lorentz field (see, e.g., Ref. 13 ) . 
We point out that both the observed broadening and the shift 
of the resonance are large. Thus, the phenomenological pa- 
rameter agrees with the value il of the present theory. This 
shows that the use of (46) for a fractal cluster underesti- 
mates G,,, by a factor f l f / r >  1 compared with Eq. (44), 
which is the result of a consistent theory in which both the 
shifts and the broadenings of monomer resonances are ob- 
tained in a self-consistent fashion. 

The appearance of the factor (il,-r)-' in the SERS 
gain (44) is not accidental and is not connected with specific 
approximations. The point is that spontaneous Raman scat- 
tering is an incoherent effect. Therefore the quantity to be 
averaged over the ensemble of fractals is the squared modu- 
lus of the field acting on the impurity [cf. (37) 1. On the 
other hand the phase of this field, which is important for 
coherent effect, is immaterial in this case. Consequently, the 
impurity emission is determined by the local field of the 
nearest monomer. If the latter is at resonance with the exter- 
nal field, the gain is proportional to r-' in accordance with 
(46). Furthermore, the probability that the monomer near- 
est to the impurity is resonant is estimated to be the spectral 
width T/flf. It is the product to these factors which leads 
(apart from a factor of the order of unity) to the predicted 
Eq. (44). 

4. ALLOWANCE FOR THE LORENTZ FIELD 

Let us consider the influence of the Lorentz field. With 
EL taken into account, the solution of Eqs. (3)  and ( 7 )  is of 
the form [cf. ( 8 ) ]  

From this, for the susceptibility of fractals, we have 

where X, is given by (2 1 ); here and henceforth the tilde la- 
bels a renormalized quantity, i.e., calculated with allowance 
for the Lorentz field. The spectral dependence of the suscep- 
tibility (34) is now replaced by 

We point out that in contrast to (34) the susceptibility (49) 
has a pole. Since, however, the real and imaginary parts ofx, 
are of the same order, this pole is located far in the complex 
plane and does not influence greatly the behavior at physical 
values of the frequency. 

Relation (49) is illustrated in Fig. 3. Comparison with 
Fig. 2 shows that, as expected [see the discussion following 
Eq. (6)  1, renormalization of the susceptibility does not alter 
the qualitative feature of its behavior. Indeed, the spectrum 
remains split into a doublet, each component of which is 
shifted and broadened by amounts of the same order. Quan- 
titatively, the renormalization in the "blue" region (il > 0)  
is noticeable: the peaks are approximately 30% higher and 
are shifted somewhat towards the fl  = 0 axis compared with 
Fig. 2. In the region il < 0 the renormalization is negligibly 

FIG. 3. The same as Fig. 2, but for the suceptibility ( 7 )  renormalized by 
taking the Lorentz field into account. 

small. The linear susceptibility of the fractal is thus deter- 
mined mainly by fluctuations in the nearest environment of 
the monomer. The Lorentz field leads only to some renor- 
malization which is small in the "red'-shift region that is of 
greatest interest for observation of the SERS effect. 

In analogy with the foregoing, allowance for the Lor- 
entz field renormalizes the SERS gain. We have in place of 
(36) 

which leads to the renormalized value 

where G is given by (43). With allowance for (48), we get 
therefore in place of (44) 

Thus, the connection (44) between the SERS gain and ab- 
sorption factor (the value of I m j , )  does not change at all 
when the Lorentz field is taken into account. 

5. CONCLUDING DISCUSSION 

We summarize briefly the general principles and the 
result of this paper. A theory for the optical properties of 
fractal clusters (called here fractals for short) has been for- 
mulated for the first time. The linear susceptibility has been 
obtained [see (21), (34), and also (48), (49), and Figs. 2 
and 31. The existence of surface-enhanced Raman scattering 
by impurity centers embedded in a fractal has been predicted 
[the gain is given by (43 ) and (5 1 ) 1. 

Fractals differ in their optical properties from both gas- 
es and condensed media. The point is that nontrivial fractals 
have low (asymptotically, zero) average density (in this re- 
spect they are similar to gases). The reason is the presence of 
the power-law pair correlation (2 ) . The very same correla- 
tion, however, makes for a sizable probability of pairwise 
mutual approach of the monomers that make up the fractal, 
and hence for a strong interaction between them (as in the 
condensed phase). These properties have made it possible to 
construct for the linear response of a nontrivial fractal a the- 
ory based on subdivision of the self-consistent field into con- 
tributions of the nearest neighbor (binary approximation) 
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and of the Lorentz field. The fluctuating field of a nearest 
neighbor turns out to be the most important [see the discus- 
sions following Eqs. (7 ) ,  ( 9 ) ,  and (52) ] .  

The cause of SERS by a fractal is that an impurity parti- 
cle at a fixed location near some monomer is subjected to the 
influence of the local field of only this monomer. This field is 
strong, because the monomers in a fractal preserve in part 
their individuality (because of the rarefaction and disorder 
of the fractal). The gain G, obtained in the binary approxi- 
mation, is given by Eq. (43),  and its spectral dependence by 
(44). The latter duplicates approximately the form of the 
absorption spectrum [see (45) 1. Allowance for the Lorentz 
field, while renormalizing the gain, does not change its con- 
nection with the absorption of the fractal [see (52) ]. 

We conclude by examining qualitatively the application 
of the theory to real fractal clusters. These, as noted in the 
Introduction, are quite prevalent. It should be pointed out in 
this connection that in the development of the theory [see 
the transition from ( 14) to ( 15) ] we have taken into ac- 
count only pair correlations, whose function (2 )  is governed 
by fractal properties, and have neglected multiparticle cor- 
relations. If, to the contrary, the latter are large, a group of 
strongly correlated monomers can be regarded as a single 
monomer, but having already a renormalized susceptibility. 
As a result of this renormalization procedure, similar to the 
one used in the theory of phase transitions, we can return to 
the case of weak multiparticle correlation and obtain from 
( 14) Eq. (18) and all the following ones. 

For example, flexible linear macromolecules are frac- 
tals with dimensionality D=: 5/3 (Ref. 1 1 ). A renormalized 
monomer in such a macromolecule is a segment of a chain 
within the limits of a line called persistent. This line is a 
region of monomers strongly correlated in position, on 
which a polymer can be regarded a rectilinear. The persis- 
tent length can include from several (e.g., in RNA)  to sever- 
al hundred (in a two-string DNA)  monomers. 

Let us examine applications of the theory to the SERS 
effect. We consider for the sake of argument small spherical 
silver particles, in which plasma oscillations have a wave- 
length A, = 2.rrc/oP = 140 nm. It is customarily assumed 
that the SERS excitation spectra in such systems are 
grouped around the plasma resonance frequency a,,, which 
corresponds in silver, according to (26),  to a wavelength 
A, = 340 nm. In experiment, however (see, e.g., Fig 13 of 
Ref. 14), the SERS excitation spectra of the same impurity 
molecules can, depending on the method used to prepare the 
metallic matrix, have maxima both in the near UV (which 
corresponds approximately to A,) and in a region of longer 
wavelengths, up to the "red," of the spectrum. Attempts to 
explain such large spectral shifts to interaction of the mon- 
omers, which are assumed to be uncorrelated in space (tri- 
vial fractal structure), by resorting to the Lorentz theory, 
meet with certain difficulties. For example, to obtain an ab- 
sorption peak at 650 nm it must be assumed that 86% of 
the volume is occupied by the metal.13 Actually, however, 
experiments on aggregated metallic colloids, in which the 
maximum SERS signal was observed, the volume occupied 
by the metal was smaller by orders of magnitude (cf. Ref. 6) .  

We shall show below that whether or not a cluster con- 
sisting of metallic microspheres has an absorption band far 
in the long-wave region depends on its fractal dimensionali- 
ty. To be specific, we assume the cluster to be maximally 

dense (the spheres are close packed), i.e., we put R,,zR,.  It 
follows then from (26) and (27) that the characteristic frac- 
tal frequency 0,. is approximately 20% of w,,. The widths of 
the fractal spectra can exceed flf by several times (cf. Fig. 
3 ) ,  i.e, be of the order of w,. 

The estimates show how large the spectral shifts of frac- 
tals can be. In the case of such large detunings, however, the 
linearized expression (22) for the susceptibility is, strictly 
speaking, no longer valid. It is then necessary to use in all the 
expressions the exact values X = - R Re X, ', (33),  
wherex, is given by (24) with E given by (26).  The quantity 
X as a function of w behaves as follows: in the low frequency 
region (w,,<o<o,,[ (E,, + 2 ) / ( ~ ,  - 1 ) ] 'I2)x takes on val- 
ues from 0 to CQ, while in the long-wave region (as w is 
decreased from w, to 0 ) ,  X runs through the finite segment of 
values from 0 to - 1. It is easily seen from Fig. 3 that Im 2 ,  
is close to zero for X in the range from zero to a certain 
limiting value - Xm that depends on the fractal dimension- 
ality. 

On the basis of the properties listed above, we conclude 
that absorption of fractals from metallic microspheres in the 
long-wave region (at  w < w,) is significant only when 
Xm < 1. The values (at half-maximum of I m j , )  for differ- 
ent fractal dimensionalities are the following (cf. Fig. 3) :  
D =  1.5, X,,, = 0.5; D = 1.75; X ,  = 1.0; D = 2.5, 
Xm = 8.0. Thus, absorption, and hence also the SERS effect, 
in the long-wave region is appreciable in the considered clus- 
ters only at D 5  1.75. Note that D Z  1.75 is expected for a 
cluster aggregation4; approximately the same value of D was 
obtained in experiments with colloidal gold.' The proximity 
of the observed fractal dimensionality to the limit 
( D  = 1.75) explains the observedI4 variability of the appear- 
ance of a long-wave band in SERS excitation spectra. 

The value of G obtained for fractals can be substantially 
larger than predicted by the customarily employed expres- 
sion [see the discussion that follows Eq. (46) 1 .  The point is 
that the interaction of the monomers in a fractal is taken into 
account consistently in the present theory. On the contrary, 
the shift of the absorption bands is usually (see, e.g., Ref. 13) 
described in accordance with the Lorentz theory, and their 
width is taken equal to the observed value. This last proce- 
dure underestimates G,,, for fractals by a factor ill /r. This 
circumstance can explain the heretofore not fully under- 
stood factI4 that the largest SERS effect was observed pre- 
cisely for colloidal metallic aggregates, which are known 
(see, e.g., Ref. 6) to be of fractal nature. 
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