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The doubly excited states of a two-electron atom are considered within the framework of 
perturbation theory constructed in terms of the interelectron interaction. It is assumed that 
one of the electrons is excited to a much higher level than the other. This allows the use of the 
multipole expansion of the interaction. The contributions to the level shift from the dipole 
term (including the second-order perturbation theory correction) and the quadrupole term (in 
first order) are represented in the form of matrix elements of some equivalent operators. The 
latter are expressed in terms of the integrals of motion for the unperturbed Coulomb problem. 
The large magnitude L of the total orbital angular momentum of the atom serves as the 
parameter of the expansion obtained. The breakdown of the single-configuration 
approximation, an alternative classification of the states, and the additional integrals of the 
motion are discussed. It is shown that the problem of quantization in the asymptotic limit in 
question is effectively a one-dimensional problem. Simple explicit formulas are obtained for the 
quantum defects of the Rydberg series, which converge to the ionic energy levels with principal 
quantum numbers 2 and 3. The results are compared with data obtained in numerical 
computations for L = 3. It is shown that account should also be taken in this case of the 
contribution of that region of configuration space which corresponds to the penetration of the 
highly excited electron to the nucleus. 

1. INTRODUCTION 

The fundamental interest in the investigation of the 
doubly excited states of a two-electron atom is due to the fact 
that we cannot use in this important case of the quantum 
three-body problem the standard-in the theory of the 
atom-effective central field approximation and the fact 
that the interelectron correlations play an extremely impor- 
tant role (see, for example, the reviews in Refs. 1 and 2) .  
This does not allow us to describe the states of the atom with 
the aid of the single-electron configuration, in which definite 
values of the principal ni and orbital angular momentum Ii 
quantum numbers are ascribed to each (ith) electron. 

The single-electron configuration approximation can 
break down even in the case when one of the electrons is 
much more highly excited than the other.3 In this case it is 
natural to assume that one of the electrons (the first) is, on 
the average, located much farther away from the atomic nu- 
cleus than the other, and use the multipole expansion for the 
interaction potential: 

Here the ri are the radius vectors of the electrons with re- 
spect to the nucleus. The electrons are assumed to be distin- 
guishable, since they reside in different regions of configura- 
tion space: the exchange effects are weak, and are not 
considered below (they can be taken into account separate- 
ly). 

The dipole approximation, in which only the first term 
in the right member of ( 1 ) is taken into account, has been 
considered in detail in a number of papers4-6 under the as- 
sumption that the second (inner) electron resides in a defi- 
nite layer, i.e., possesses a definite principal quantum num- 
ber n,. Then the problem reduces to one of diagonalization 

and investigation of the operator A introduced in Refs. 4 and 
6. 

In the present paper we construct a perturbation theory 
in terms of the interaction ( 1). This allows us to take ac- 
count of the virtual excitations of the inner electron, and 
uniformly consider the contribution of the quadrupole term 
in ( 1 ) (this contribution has been found by Nikitin7 for cer- 
tain states). Recently Belov and Khveshchenko~eveloped 
a classical perturbation theory, for the applicability of which 
we must assume not only the condition n, Sn,  used by us, 
but also the extremely restrictive-from the standpoint of 
applications-conditions n,, 1 (the contribution of the vir- 
tual excitations of the inner electron is then neglected). 

A fundamental feature in the analysis of the doubly ex- 
cited states of the helium atom within the framework of per- 
turbation theory in terms of the electron-electron interac- 
tion is the strong degeneracy of the unperturbed states, 
which arises because of the unique degeneracy in the single- 
electron hydrogen-like atom. The lifting of the degeneracy 
leads to the appearance of states in which the motions of the 
electrons are highly correlated. For the construction of the 
correct zero-order functions, it is convenient to represent the 
terms of the perturbation theory series for the energy level 
shift in the form of matrix elements of some equivalent oper- 
ators. 

In the present paper we are able to do this for the sec- 
ond-order perturbation theory contribution from the dipole 
interaction by evaluating the corresponding sum exactly. 
We also take account of the quadrupole term in first order. 
In both cases the equivalent operators are constructed from 
the integrals of motion for the unperturbed Coulomb prob- 
lem: the orbital angular momentum vector and the Runge- 
Lenz vector. A similar approach has been used before to 
compute the energy levels of the hydrogen atom in crossed 
electric and magnetic  field^,^ and also to investigate single- 
ele~tron'~." and two-electron4s6 systems. 
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2. THE EQUIVALENT OPERATORS 

The perturbation theory is constructed with the unper- 
turbed Coulomb wave functions In, I,m, ) , with the effective 
charges for the inner- and outer-shell electrons equal respec- 
tively to Z and Z - 1, where Z is the nuclear charge, and the 
charge for the outer electroz takes account of the screening. 
For the dipole interaction Vd = N,.r,/< the equivalent op- 
erator 

where N, = r,/r, is found with the aid of the operator identi- 
ty9 

which is valid within the boundaries of the n, layer. Here A, 
is the Runge-Lenz vector for the inner electron: 

where pi and li are respectively the momentum and orbital 
angular momentum operators for the ith electron. It is easy 
to see that, in the subspace of wave functions with a definite 
n, value, all the matrix elements of the dipole interaction 
vanish by virtue of the following identity for the Coulomb 
radial wave  function^'^ R,, ( r , ) :  
m 

jRnI (r,) r1-*Rn,+. (ri) r12 drl=O for 2 i k < a + l .  ( 5 ,  
0 

The group-theoretical nature of this identity is discussed in 
Ref. 13. 

The dipole interaction makes a nonvanishing contribu- 
tion to the energy level shift in second order perturbation 
theory. This contribution can be represented as the follow- 
ing operator's contribution averaged over the unperturbed 
state having given n,, n, and arbitrary li, mi : 

Let us split the sum over the intermediate states that enters 
into the expression (6)  into two parts: Ud, = U2:' + UY; . 
Let the first part (U;:') contain the terms for which the 
inner electron resides in the initial n2 layer. To compute it, 
let us use the operator identity (3), as well as the sum rule 
derived in the Appendix for the single-electron Coulomb 
states: 

Let us compute the second part ( U ;%)) of the sum ap- 
proximately, assuming the energy of the virtual transition of 
the outer electron is negligible compared to the analogous 
quantity for the inner electron. Then the summation over the 
outer-electron states can be carried out with the aid of the 
completeness relation, and the sum over the inner-electron 
states coincides with the sum evaluated by Solov'evl l :  

The quadrupole term in the interaction ( 1 ) makes a 
nonzero contribution to the energy-level shift even in first- 
order perturbation theory. The corresponding equivalent 
operator can be found with the aid of the operator identity 
(A.4) derived in the Appendix: 

Uql= (3n,2/4ZZrl" [5 (NlA2)2-5/3A22- (N,1Z)Z+1/31z2]. (9)  

3. CLASSIFICATION OF THE STATES 

To determine the correct perturbation-theory func- 
tions, we must diagonalize on the degenerate states the total 
equivalent operator U y ;  + U y ;  + Uql , taking account in 
the process of the existence of exact integrals of the motion: 
the atom's total orbital angular momentum L = 1, + 1, and 
the parity. Let us note that the r, dependence of the operator 
U 2:' is formally responsible for the charge-quadrupole in- 
teraction, and coincides with the corresponding dependence 
of the operator U,, . For the U 2%) operator the r,  dependence 
corresponds to the polarization interaction (the polariza- 
tion of the inner electron by the outer electron). 

The operators U 5:' and Uq, are, in accordance with the 
identity ( 5 ) ,  diagonal in the quantum number I,, which al- 
lows us to rewrite them by replacing r, by the correspond- 
ing matrix element and using the equivalent (in the subspace 
of the states with a given I,) operator for the tensor14 
NiiN,, - SIk/3: 

(11) 
For the multipole expansion of the interaction in the formula 
( 1) to be applicable, not only the condition n ,  $n,, but also 
the condition I, - L )  n, - 1 should be f~lf i l led.~ It is not 
difficult to determine the order of smallness of the operators 
under consideration: 

It is precisely this relation that allows us to restrict ourselves 
to the quadrupole interaction in first order perturbation the- 
ory, and also to treat the operator Uj;': as a small correc- 
tion." Other corrections to the energy (the operator Vd in 
fourth order perturbation theory, the quadrupole term in the 
interaction (1) in second order perturbation theory, as well 
as the third order perturbation theory with mixed dipole and 
quadrupole interactions2)) are of the order of L -4 .  Since 
these corrections are not computed in the present paper, the 
U 2%) term will be ignored below. 

Thus, the quantum number I, is, to a high degree of 
accuracy (without allowance for the inner-electron polar- 
ization), a "good" quantum number, i.e., the operator 112 
serves as an approximate integral of motion. Since the quan- 
tum number 1, can take on different values at given values of 
L, I,, and n,, an additional integral is needed for a unique 
determination of the states. If we consider only the dipole 
interaction, then, as can be seen from ( 1 l ) ,  the operator 
(A,1, ) serves as such an integral of motion in addition to l12. 
It is precisely such integrals that are proposed and investi- 
gated in Refs. 5 and 6. The operator (A,l,)' in its general 
form can be diagonalized in the asymptotic limit of large L. 
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When allowance is made for the quadrupole interac- 
tion, the role of the additional integral of motion is played by 
that part of the sum U::' + U,, which contains some other 
operators besides l I 2  and L'. Dropping the constant factor, 
carrying out simple identity transformations, and taking ac- 
count of the fact that 

1,1Z=','2 (LZ-1,2-1,2), 

we obtain the additional integral 

[9+10(Z-I) ] (A:1,)'+2 (%-I) [21iZ12" (li12)"], (12) 

which, in its general form, can no longer be diagonalized. In 
the basis of the single-electron configurations, the problem 
of the diagonalization of this operator reduces to trinomial 
recurrence formulas, which can be investigated in the semi- 
classical approximation with the aid of the procedure devel- 
oped by Braun.I5 Let us note, however, that the numerical 
values of the coefficients in the expression for the operator 
( 12) are such that its eigenfunctions are usually close to the 
eigenfunctions of (A211 ) (see also Sec. 4).  

The expressions ( 10) and ( 11 ), after they have been 
expanded in the large quantity L - 1, up to terms of the order 
of O(L - 3 )  inclusively, coincide with the formulas obtained 
in Ref. 8 for the corrections to the effective Hamiltonian. It 
should, however, be noted that the qualitative discussion in 
the cited paper is based on the assertion that the various 
terms in the multipole expansion of the interaction make (in 
the various perturbation theory orders) to the energy of the 
states contributions of different orders in the large principal 
quantum number n ,  of the outer electron. Indeed, as can be 
seen, for example, from the formulas ( lo) ,  ( 1 1 ), and (8 ) ,  in 
terms of n,  - all the corrections are of the order of n; ( a  
fact which already follows from the normalization of the 
Coulomb wave functions), and they are ordered only in the 
parameter L I .  

4. THE RYDBERG SERIES FOR THE DOUBLY EXCITED 
STATES 

The doubly excited states under consideration form 
Rydberg series within which the principal quantum number 
n ,  of the outer electron varies, while the remaining quantum 
numbers remain constant. As n ,  increases, the energy levels 
in a series converge to a limit characterized by the energy of 
the single-electron ion in the state with principal quantum 
number n, (Refs. 5 and 7) .  The quantum defects Sn2, of the 
series are usually used to describe the positions of the energy 
levels E ,,,,,>, : 

where y denotes the set of all the remaining quantum 
numbers. The n , dependence of the operators ( 10) and ( 1 1 ) 
conforms precisely to an approximation of the quantum de- 
fect (AE, , ,2 ,  -n, 9 . 

For given values of the quantum numbers L ,  I,, n ,, and 
n, ( L - I, 1 <n, - 1 ), the quantum number 1, can take on 
values ranging from IL - I, to n, - 1. This determines the 
dimensionality of the basis in which the operator (12) 
should be diagonalized for the purpose of carrying out a clas- 
sification of the Rydberg series (or  the energy levels in 
them). The classification of the atomic states according to 

parity IT, which in our case is determined by the parity of I,, 
further lowers the dimensionality of the basis. 

In  particular, for n ,  = 2, only one state corresponds to a 
given set of L ,  I,, and .rr values, and no diagonalization is 
necessary, it being sufficient to compute only the diagonal 
matrix elements of the equivalent operators. For n, = 3 the 
situation is similar for all the states, with the exception of the 
I ,  = L, n = ( - case, in which we have to diagonalize a 
2X 2 matrix. The last case constitutes the simplest example 
of strong intermixing of single-electron configurations (see 
Sec. 1).  

Thus, in the case of the series with n, = 2 and n, = 3, it 
is possible to obtain for the quantum defects S;(j = L - 1,) 
analytic formulas having the following form: 

for the case n, = 2 , 7 ,  = ( - ; 

for the case n, = 2, .rr = ( - 1 ) L  + ; 

for the case n, = 3, .rr = ( - 1 ) L  ; and 

fjl"a = - 
81 (L-I) 

22% (2L-1) (2L+3) 

- 18(Z-1) (4L2f  11 L-23) 
ZLL (L-I) (2L-3) (2L-1) (2LS.1) 

283 Sov. Phys. JETP 65 (2), February 1987 A. K. Kazanskil and V. N. Ostrovskil 283 



for the case n, = 3, a, = ( - + l .  
The above-presented expressions3' include terms of or- 

der not higher than L - 3  and, in particular, do not take ac- 
count of the polarization effects. As has already been noted, 
the case n, = 3, .rr = ( - I ) = ,  and j = 0 contains two series, 
the quantum defects of which are further labeled by the in- 
dices + . Since the exchange is ignored in the present paper, 
the quantum defects obtained characterize the spin-aver- 
aged positions of the energy levels. 

Table I contains the quantum-defect values computed 
with the aid of the above-presented formulas for the Rydberg 
series of the helium atom (the column a) .  The value L = 3 
chosen for the total orbital angular momentum of the atom is 
not large enough for a safe application of the asymptotic 
theory developed in the present paper (with the general con- 
dition of applicability L $ n, - 1 ), but is the greatest value 
for which other authors have carried out systematic calcula- 
tions. In the papers cited in Ref. 16 Feshbach's projection 
operator method is used to compute the lowest levels (n , <6 
or 7)  of the series under consideration. The quantum defects 
found from these data are given in the column c in Table I 
(the series designations used in Ref. 16 are also indicated). It 
should be noted that the correlation of these 6 values with 
the quantum number j is not always unique. The identifica- 
tion adopted by us for j = 1, 2 (n, = 3, n- = - 1) differs 
from the one used by Nikitin,' the results of whose calcula- 
tions are presented in the column e. We also give for some 
series the quantum defects (the column d) ,  which were ex- 

tracted by us from the results of energy level (nl<4 or 5)  
calculations carried out by the complex coordinate rotation 
method. I' 

On the whole the table shows a clear improvement in 
the agreement with the numerical calculption for those 
states for which the quantum number I, assumes the greatest 
admissible (for a given L )  value, a circumstance which is 
clearly favorable for the application of the asymptotic the- 
ory. As is to be expected, there is poor agreement in the 
n, = 3 case for the quantum defects 6; , 4 , and 6; + (in the 
first of these series for L = 3 the orbital angular momentum 
of the outer electron is even smaller than that of the inner 
electron). Let us note that, in these cases, as noted in Ref. 7, 
the exchange level splitting, which is ignored in the present 
paper, is relatively large. The very good agreement obtained 
for the quantum defects 61 and 6;- is, as follows from 
further analysis, accidental. 

The configuration mixing data for n, = 2 in the numeri- 
cal calculation reported in Ref. 16 confirm that I, is a good 
quantum number. 

The series with quantum defects 6; + and 6,"- are su- 
perpositions of single-electron configuration states with 
comparable weights. Thus, for the first of these series the 
amplitudes ofthe (I,, I,) = (3,O) and (I,, I,) = (3, 2) con- 
figurations are respectively equal to 0.73 and 0.68. 

As noted in the discussion in Sec. 3, the numerical coef- 
ficients in the additional integral of motion ( 12) are such 
that we can approximate the operator classifying the states 
by (A,l,)'. Then in order to approximately determine the 
quantum defects, we must compute the diagonal matrix ele- 
ments of the equivalent operators with the eigenfunctions of 
the operators 1,' and (A21,)'. For L = 3 and n, = 3 the thus 
obtained quantum defects 6;+ differ from the values calcu- 

TABLE I. Quantum defects of the Rydberg series for the doubly excited states of a helium atom 
with total orbital angular momentum L = 3. 

Note: a )  Computed from the formulas ( 14)-( 17) of the present paper; b )  computed from the 
sameformulas, but with account taken of thecorrection for the penetration of the highly excited 
electron to the nucleus; c )  results of numerical calculation reported in Ref. 16; d )  results of 
numerical calculation reported in Ref. 16; d )  results of numerical calculation reported in Ref. 17; 
and e) results of asymptotic calculation reported in Ref. 7. 
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lated from the formulas ( 16) only in the fourth significant 
digit. 

The approach adopted here can be developed further by 
carrying out a more accurate asymptotic expansion of the 
spectrum in powers of the parameter L -I. Let us note that 
the expansion coefficients can be expressed in terms of the 
matrix elements, which diverge at insufficiently large values 
of 1,. 

Of greater importance at not very large L values is 
allowance for the fact that the expansion ( 1 ) is not valid in 
that region of configuration space where the highly excited 
electron penetrates closer to the nucleus than the inner elec- 
tron, i.e., in the region where rz > r , .  Since the first electron 
moves rapidly in this region, we can neglect its effect on the 
character of the interelectron correlations, and assume that 
the mixing of the single-electron configurations is described 
by the above-developed approximation. Then the effect of 
the penetration of the outer electron to the nucleus on the 
energy of the states can be taken into account in first order, 
taking as the perturbation the difference between the exact 
interaction (the left-hand side of the formula ( 1 ) ) and its 
approximation (the right-hand side of ( 1 ) ). Thus, the mon- 
opole part of this perturbation has the form l/r, - l / r , ,  
where r , = max(r,,r,) . As the zeroth-approximation wave 
functions, over which the averaging is carried out, let us, as 
has already been stated, take the functions obtained upon the 
diagonalization of the interaction U::' + U,, . 

The contribution of the region r, > r ,  to the level shift is 
exponentially small4' in the large parameter L. Allowance 
for it along with the first terms of the power expansion gener- 
ated by the region r ,  > r, can be justified by the fact that these 
contributions have physically different natures, and are de- 
termined by different regions of configuration space. 

The column b in Table I contains the quantum defects 
computed with account taken of the above-described correc- 
tion for the penetration of the highly excited electron to the 
nucleus. The correction was found with allowance made for 
the monopole and quadrupole parts of the interaction (the 
dipole term makes no contribution). The details of the calcu- 
lation are given in the Appendix. For n, = 2 the correction is 
small for all the series. For n, = 3 allowance for the correc- 
tion makes the values of all the quantum defects reasonable, 
although the above-noted accidental agreement with the nu- 
merical calculation disappears. The worst agreement occurs 
in the case of the quantum defect 6;; ; at large values of I, 
the role of the correction is minor, and we obtain the best 
agreement with the numerical calculations. 

5. CONCLUSION 

Thus, the limitations on the validity of the asymptotic 
theory at not too large values of the total angular momentum 
L of the atom arise not because of the neglect of the next 
terms of the expansion in L I, but because of the role of the 
penetration of the highly excited electron into the region 
close to the nucleus. As can be seen from a comparison with 
the rcsults of the numerical calculations, the agreement is 
good when allowance for the indicated region yields a small 
corrcction. 111 the opposite case the nature of the configura- 
tion mixing can differ significantly from the nature of the 
mixing permitted by the asymptotic theory (cf.. for example. 
the dewription' of the mixing for r l ,  = t i , ) .  

In conclusion, let us note the importance of the follow- 
ing aspect of our result. Since the effective asymptotic Ham- 
iltonian U;:' + U,, commutes with 1: , the problem of its 
diagonalization is a one-dimensional one (it reduces to a set 
of trinomial recurrence formulas). Thus, in the present ap- 
proximation the system turns out to be integrable in both the 
semiclassical%nd quantum approaches. Apparently, after 
the diagonalization of this Hamiltonian, the degeneracy in I, 
can only be accidental, and, therefore, from the qualitative 
standpoint, the spectrum of the complete problem possesses 
all the properties of the spectrum of integrable systems. 

APPENDIX 

1. Let us denote by In ,l,m ,) the eigenfunctions of the 
unperturbed Coulomb Hamiltonian 

II,I=-'12V1Z-(Z-3)/rl. 

Using the commutator 

we obtain the following relation between the matrix ele- 
ments: 

(En,,-En,) (n l t l i tmi t lp lA~ [n,limi) 
= i ( Z - I )  <ni'lIrml' 1 (r,A2)/ri3/nillm,), (A.1) 

where H o , ~ n , l , m , )  = E n ,  In, l ,m,) .  The operator A, does 
not act on the coordinates of the first electron (but acts on 
those of the second). Using the obtained identity, we can 
reduce the second order perturbation theory sum to the com- 
pleteness relation for the basis In , l ,m , ), and this yields the 
sum rule 

Also, taking account of the commutation relation 
[ A , ,  ,A,, ] = i~,,, I,, for the components of the Runge-Lenz 
vector, we find that the values of the sum (A.2)  can be ob- 
tained by computing the matrix elements, connecting the 
arbitrary states ~ n , l , m , )  and /n , i , t%, ) ,  of the equivalent op- 
erator 

2. Let us consider the symmetric traceless second-rank 
tensor r,,r,, - r:6,/3 , where the r,, are the components of 
the vector r2. From the vector integrals of motion I?  and A? 
we can (with allowance for the parity) construct two similar 
tensors, some linear combination of which constitutes the 
equivalent operator for the tensor of interest to us. Let us 
find the coefficients of this linear combination by computing 
those reduced matrix elements of the tensor which connect 
the states ri,l,m,) with the same values ofl,, as well as those 
with values that differ by two. The final result has the form 
of the operator identity 
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which is valid within the n, layer. This relation is derived in 
another form (for the operator x i  + y: ) in Ref. 10. 

1 
Let us give for reference the expression for the matrix 

-- ?I?' (12,12j+l,12,-2/311'66,). (A.4) element of the operator A,l,, an expression which is useful in 
42' computations: 

3. To allow for the contribution of the region of penetra- 
tion of the outer electron to the nucleus (the k th multipole), 
we must compute radial matrix elements of the form 

(the expression for the angular integrals can be found in Ref. 
7 ) .  Here we should set I, = I ; , since the quantum number I, 
is assumed to be a "good" quantum number in our calcula- 
tion. Since the unperturbed functions are superpositions of 
states with different l,, we must compute the matrix ele- 
ments with I, $1; . 

To compute the quantum defects, we used the asympto- 
tic expression for the function R,,,, ( r , )  for n ,  - w ( r ,  <n: ) : 

For the Coulomb functions of the inner electron we used the 
explicit expressions 

where P,,,,, (r,) is a well-knownI4 polynomial of degree 
n, - 1, - -1. Owing to the properties of the angular integrals, 
the condition l2 + 1; >k is fulfilled, so that the r, integral 
contains only positive powers of r,, for which the integral 
can be explicitly evaluated. The subsequent integration over 
r ,  can be carried out analytically (the result can be expressed 
in terms of the Bessel functions of imaginary argument). But 
the direct numerical integration turned out to be simpler. 

"Notice also that, in the numerator of the expression ( lo ) ,  the term 31,1, 
is small compared to the remaining terms, and makes to Ui\' a contribu- 
tion of the order ofL 4 .  Therefore, this term is discarded in the formula 
( 12), as well as in the calculations in Sec. 4, which are carried out up to 
the terms of the order of L ' inclusively. 

"The octupole term in ( 1) in first order perturbation theory, as well as 
the dipole term in third order, makes no contribution, a fact which 
follows from parity arguments. 

"The formulas (14)-(17) differ from those obtained by Nikitin,' al- 
though they have similar structures. Having in mind application to not 
too large L values, we did not carry out a formal expansion in L - m in 
them. 

4'In this respect the correction is like an exchange correction. This cir- 
cumstance allowed Nikitin7 to call it an exchange-type correction. 
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