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The cross sections and probabilities for multiphoton emission by a classical electron in a 
Coulomb field are calculated. Both monochromatic and thermal (Planck) radiation are 
considered. The case of sufficiently large external-field strengths in a single-mode field, which 
leads to nonlinear effects in the radiation, is considered. The character of the low-frequency 
(infrared) divergence of the radiation probabilities in a Planck field is investigated and the 
probabilities of the multiphoton processes are found to have a non-Poisson distribution (in 
contrast to spontaneous emission). 

$1. INTRODUCTION 

Photon emission and absorption in collisions between 
electrons and ions in an external magnetic field is of interest 
for numerous applications. This pertains to an external mo- 
nochromatic electromagnetic  field'^^ and to a wide-spec- 
trum field, such as that of thermal (Planck) r a d i a t i ~ n . ~ - ~  

The cross sections for multiphoton stimulated direct 
and inverse bremsstrahlung (SDIB) of an electron scattered 
by a Coulomb center having a charge Ze in the field of a 
strong monochromatic Z?, cos wt were calculated in a num- 
ber of papers. ',2.677 The principal parameters in this process 
are 

where v is the electron velocity, o the field frequency, and 
a = Ze2/mv2 the Coulomb length. 

The first of the parameters in ( 1.1 ), 77, indicates the 
extent to which the electron motion is classical, the second 
the intensity of the monochromatic electromagnetic field, 
and the third the region of emitted (absorbed) frequencies. 

Most preceding studies, including the seminal one by 
Bunkin and Fedorov,' were carried out in the framework of 
the Born approximation corresponding to the condition 
7 g 1. The Born approximation can be extended to arbitrar- 
ily strong field (large parameters y). The values of the pa- 
rameter { of practical interest are as a rule small (54 l ). A 
detailed investigation of the dependence of the multiphoton 
cross sections a,, on the number of emitted photons in a 
strong electromagnetic field was carried out on the basis of 
the Born approximation by Elyuth6 

A classical approach corresponding to the condition 
7) 1 was developed by Berson7 for the investigation of mul- 
tiphoton radiation processes in a Coulomb field. His method 
is based on the use of an approximation in which the photon 
trajectory in the Coulomb field is given. The ensuing classi- 
cal current excites multiphoton transitions between electro- 
magnetic-field states that can be regarded as quantum-oscil- 
lator levels. For classical motion, the parameter 6 can be 
arbitrary. For the case 6 )  1 corresponding to high radiation 
frequencies, Berson7 obtained a generalization of the known 
(single-photon) Kramers equations to the case of multipho- 
ton transitions (n > 1 ). His calculations, however, pertain to 
the case of small y 4 1, although the classical approach itself 
is applicable for larger y. 

The investigation of the case of large y > 1 in the classi- 

cal-trajectory method is one of the aims of the present paper. 
It must be borne in mind here that the classical approach 
requires that the electromagnetic field 8, be small com- 
pared with the Coulomb field e2/p& at the effective dis- 
tances p,, governing the process considered. Within the 
framework of the classical method, therefore, in contrast to 
the Born method, the value of 8, is bounded from above, 
and large values of the parameter y  correspond predomi- 
nantly to the region of low frequencies w.  

The method of given classical electron trajectories 
(classical current) is suitable for the investigation of cre- 
ation of low-frequency (soft) photons, since their emission 
does not alter the electron trajectory. This method can be 
used also to analyze multiphoton induced emission or ab- 
sorption processes in a nonmonochromatic external field, 
for example in the field of thermal (Planck) radiation of 
temperatures T p .  An example of multiple production of 
photons with classical motion of the radiated particle is the 
known "infrared catastrophe," first considered by Bloch 
and Nordsieck8 (see also Ref. 9).  In an external Planck field, 
the "infrared catastrophe" is enhanced as a result of the in- 
crease, with decrease of frequency, of the average number 
E,  (h 4 T p  ) of the Planck-field photons that cause the in- 
duced emission or absorption of the soft photons. 

Analysis of the "infrared catastrophe" in a Planck radi- 
ation field is of interest for at least two reasons. First, any 
emission or absorption process takes place against the back- 
ground of the existing relict radiation with temperature 
T p  - 3 K .  Second, the presence of an external thermal field 
of sufficiently high temperature T p  moves the "infrared ca- 
tastrophe" question from the region of "academically" low 
frequencies 

m-mfi-'vz exp(-fic/ez) 

into the region of actually observable frequencies w - T p  /+i. 
Section 2 below contains an exposition of the classical 

method; see also Refs. 5 and 7. In $3 is analyzed the case of 
monochromatic radiation at parameter values y )  1, see 
(1.1). In $4 are considered multiphoton processes in a 
Planck radiation field. The electron energy losses are calcu- 
lated in $5. 

52. FUNDAMENTAL APPROXIMATION OF THE 
SEMICLASSICAL METHOD 

The main approximation of the semiclassical method is 
that of the given classical current produced by a charged 
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particle moving along a given classical trajectory with veloc- 
ity v ( t ) .  This approximation is the basis of the analysis of 
multiphoton processes in spontaneous production of soft 
photons, see Refs. 9 and 10. The Hamiltonian of the interac- 
tion between the particle and the magnetic field is of the form 

where A is the second-quantized vector potential of the field, 
expressed in terms of the creation or annihilation operator of 
the various field modes characterized by wave vectors k (fre- 
quencies w = c / kl ) and polarization vectors e , ,  . 

The Schrodinger equation for the wave function cP of 
one mode with wave vector k takes in the interaction repre- 
sentation the form 

The scattering matrix 5 that connects the initial and final 
states of the system is 

+ 00 

s (-m, +a) = e x p  ( - - L J v d t ) .  (2.3) 
- m 

In th: classical-current representation, the action of the ma- 
trix S on the operators ci,,, , il& is given by the relations 

2n S-id:Ad=d:A-ie(-)'* J ( e k , g ( t ) ) e i a t  dt. (2.5) 
fiov -m 

An exact solution of (2.2) is known for one mode, see 
Ref. 1 1. The expression for the probability W ,  of the transi- 
tion from an initial state containing s photons (i.e., from a 
state corresponding to the sth level of the oscillator) to the 
final one, containing I photons, is 

where L P, is a Legendre polynomial of degree k. 
In the case of a monochromatic field, the number s of 

the photons can be expressed in terms of the electromagnet- 
ic-field strength 8,: 

, a-[ L! 

&02V/8n=sfio (s, V + - ) ,  (2.8) 

Wi. = 

after which the parameter x,,, , which we shall denote simply 
by x, , takes the form 

xr,n - [L:-[  (xr , r )  I 2  exp  ( - x r , l ) ,  s 2 I, 
s! 

I-r S !  1-8 

(2.6) 
X ~ , A  - [La (xr,.) 12 e x p ( - ~ r , r ) ,  s ( 2, 

I !  

In the case of a classical electromagnetic field (ass- co ) we 
obtain from (2.6), by taking the known limit 

where J,, is Bessel function of integer index, the basic single- 
mode approximation formula obtained by Berson7: 

+- 
w,. = I . ~  (2 1 j ( e v  ( t )  ) e-"' d t  1 ') , 

- m 

where n = s - 1 is the number of emitted ( n  < 0) or absorbed 
(n > 0) photons. 

Note that in the semiclassical method the emission and 
absorption probabilities are equal. 

For multimode spontaneous emission, the occupation 
numbers nk,, = I  of each of the modes are small, and the 
transition probability W ,  (s = 0, I = n , ,  ) for each of the 
oscillators of the field is greatly simplified and takes the form 
of a Poisson distribution: 

1 
Wnlr, h =  L, A !  (a, d n k ,  L e x p  (- X L ,  L) .  

The probability that N field oscillators with frequencies 
w,,w,,. ..w, will emit simultaneously a definite number 

of photons is 

From the known addition theorem for Poisson probabilities 
we have 

Changing in the usual manner from summation over the os- 
cillators to integration over the frequencies and angles, we 
obtain a known expression for the probability of multipho- 
ton spontaneous emission in a finite frequency interval 
( ~ , , w , )  (Refs. 8,9) 

In the case of a Coulomb field the parameter x, that deter- 
mines the probabilities of multiphoton processes can be cal- 
culated in explicit analytic form. 

In fact, using the Coulomb-trajectory equation 

x=a(e -ch  u ) ,  y=a(e2-1)'"sh u, t=av-'(e s h  u-u), 

(2.16) 
 where^ = sin-' 8 /2 is the eccentricity of the orbit and 8 the 
scattering angle, we obtain, following Refs. 7 and 12, the 
Fourier component of the velocity v ( t ) :  

where Ki6 is a modified Bessel function of second kind and 
imaginary argument, and the prime denotes differentihtion 
with respect to the argument. 
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We shall find it more convenient to use a coordinate 
frame in which the vector e and the velocity direction ni and 
nf of the incident and scattered electrons have the coordi- 
nates 

n,= (0, 0. I), n!= (sin 0  cos cp, sin 0  sin cp, cos 0 ) ,  

(2.18) 
e= (sin u, 0, cos a). (2.19) 

where a is the angle between the vectors ni and e. 
According to (2.7), the expression for x,  in the case of 

scattering by a Coulomb center can be written with the aid of 
(2.17) in the form 

2ne2a 
Xk = - 

AoV 
erp ($) [ ~ ~ ( n , e - n , e ) ~ K , ~  ( \ I )  

$3. CALCULATION OF MULTIPHOTON SDlB CROSS 
SECTIONS IN SCATTERING BY A COULOMB CENTER IN A 
MONOCHROMATIC FIELD OF A WAVE 

The differential cross section dun = W,rdu,,s of an n- 
photon process, where dares = a2&d&dp, is the differential 
Rutherford cross section for elastic scattering in the case of a 
monochromatic external wave field, can be written accord- 
ing to (2.10) and (2.20) in the form 

This is the basic equation from which we obtain below spe- 
cific results. It was used in Ref. 7 to calculate the cross sec- 
tions at y & 1 in the cases of low ( 6 4  1 ) and high (6% 1 ) 
frequencies, by expanding J t  in power of y. We obtain the 
integral (in p, and w ) cross section from (3.1 ) in two oppo- 
site cases: 1 ) {E & 1 and 2)  ~ E S  1, where E is the effective 
eccentricity, i.e., the one making the contribution to the 
cross section. This eccentricity will be determined below. In 
case ( 1 ) we are interested in the limit w -0, so that {& 1. 
Since 6~ has the meaning of the product of the frequency by 
the collision time, the field oscillator is excited in the first 
and second cases by the low-frequency and high-frequency 
"tail" of the Fourier spectrum of the paricle trajectory, re- 
spectively. 

1. Limit &E 4 1, fast collisions 

Using (2.18), (2.19), and the fact that under the as- 
sumed condition 

and Kit ( 6 ~ )  can be neglected, we have from ( 3.1 ) : 

don (a) = 0 2 j n z  ( $ 1  cos a- (e2- 1)' sin a cos rp 1 e dc. ) 
(3.2) 

Note that this expression is valid not only in the case of a 
Coulomb field of the scatterer, since it can be obtained from 
the initial expression (2.10) for the emission probability. If 
the condition ~ ~ - w r , , ~ ~ , ,  < 1 is met, the integral in (2.10) 
depends only in the initial and final directions of the electron 
motion on scattering: 

It can be verified using (2.18) and (2.19) that this expres- 
sion corresponds to (3.2). 

The main contribution to the result of the integration 
with respect to E in (3.2) is made at n > 1 (the case n = 1 will 
be considered separately) by the region E 5 2yn- ' sin a 
X cos e, at not too small sin a, namely, at 

We have then approximately 

We put B = 2yn-' sin a ( E  has the meaning of the effective 
eccentricity ate, = 0 )  and stipulate satisfaction of the condi- 
tion 

Recognizing that the region E - 1 is of little importance, we 
can represent (3.4), by virtue of (3.5), in the form 

jj;(*)xdzdcp on ( a )  = a2 cos cp 
0 

x 
0 

(the prime denotes differentiation with respect to the argu- 
ment). With the aid of the known expressions for the deriva- 
tive of the Bessel function, the calculation of (3.6) reduces to 
calculation of an integral of the form 

+ m  

I t - 1 C 2 k + ,  (t) l v + 2 m + ,  (t) df 
0 

The result is the sought expression for the cross section 

with condition (3.3) for a. 
The case (3.3) of a that are not small is typical of an 

isotropic electron distribution in velocity, when scattering at 
small fixed angles a has low probability. The case a - 0, the 
opposite of (3.3), can be of interest for experiments with 
electron beams. An estimate of the cross sections for this 
limit yields the relation 
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on (a=O) -a2yn-2. (3.9) 

The cross sections (3.8) and (3.9), in contrast to the 
case of weak fields (see Ref. 7), are of the same order in the 
light intensity gg or go for processes corresponding to dif- 
ferent numbers n of the absorbed (emitted) photons. An 
increase of n leads only to a relatively weak (power-law) 
decrease of their probabilities. A similar result was obtained 
earlier by Elyutin6 in the Born approximation. This agree- 
ment is a reflection of the fact that at low frequencies, as 
already noted, the probability of a transition between the 
field-oscillator states does not depend on the character of the 
scattered-particle motion. The nature of the current that ex- 
cites the field (quantum or classical) is thus unimportant. 
This simple argument gives grounds for extending the region 
of validity of expressions (3.8) and (3.9) to arbitrary values 
of the Born parameter 7 = Ze2/fiv, including also to 7- 1, 
where it is difficult to calculate the cross section by using 
(3.11, 

In the derivation of (3.8) and (3.9) we used the condi- 
tion that the radiation field is weak compared with the atom- 
ic one 

80<<Zep-2, (3.10) 

where p = a I cot (0  /2) 1 is the impact parameter, as well as 
the condition y & n/2lsin a 1 2 1 that ensures a predominant 
contribution to the cross section from the region E )  1. Sub- 
stituting in (3.10) the effective values of p, expressed in 
terms of E = 2yn-'/sinal) 1, and taking (3.5) into ac- 
count, we obtain the final result for the region of validity of 
expression (3.9) : 

beyond which the expression in the argument of the Bessel 
function in (3.1) begins to decrease exponentially. 

Thus 

An approximate calculation can be carried out by breaking 
up the integral with respect to E into two and using in each 
the appropriate approximations 

Zn Zilsln cr cos pl 

+ (y sin a cos cp) J $Idcp. (3.13) 
zylaln o 00s rl 

An estimate yields 

a 
0, (a) =a2y2 sin2 a (1n12.t~ sin a I -' + -) (3.14) 

2 .  

The region of validity of (3.12) follows from (3.10) in which 
we put E , ~ ~  z -g - I ,  and also from allowance for the condi- 
tions that the field be strong, y )  (2 sin a 1 -' and that the 
collisions be rapid, 2yf sin a ( 1 : 

where f j  = ( 2  sin a ( - 'Ze2/fiv. 
The ratio of the first expression to the second in the 

right-hand side of (3.13) is equal toffj. At f j  > f -I, the more 
stringent condition is the first: 

It can be seen from (3.11 ) that at low frequecies w and at not 
too low velocities u the width of the region in which (3.8) is 
realized is determined by the parameter wa/u. 

A similar criterion is easily obtained also for the case 
a -0 (3.9). The criterion (3.11 ) does not permit the theory 
to be exended to the case of arbitrarily strong fields go, 
therefore the law governing the growth of the cross sections 
(3.8) and ( 3.9) with increase of 27, is valid only in a limited 
region. The condition (3.1 I ) ,  in particular, prevents a tran- 
sition to theq-strong fields 2e27,/2mwv=q& 1 considered in 
Ref. 6 in the Born approximation, where a, ( g o )  - g; '. 
The reason this result was obtained in Ref. 6 is the inelastic- 
ity of the scattering of the radiating (absorbing) electron, an 
inelasticity not accounted for in the semiclassical calculation 
used in that reference. A possible way of taking into account 
the scattering inelasticity for classical motion is by the pro- 
cedure of symmetrizing relative to the initial and final mo- 
menta of the electron, used, for example, in the theory of 
Coulomb excitation of nuclei (see the discussion of this 
question in Ref. 7). 

We consider now one-photon emission (n = 1 ) . In the 
case (3.3) of greatest practical interest, the integrand in 
(3.4) decreases like 1 / ~  at E > F and the integral with respect 
to E diverges logarithmically. It can be cut off at E,, -f -', 

which is incontrovertible by virtue of the initial criterion 
7) I .  At f j  < { the second condition of (3.13) is signifi- 
cant: 

mov 
evlsinal 

The condition for its certainty reduces to the order of the 
initial criteria fia <mu2/2. 

For weak fields corresponding to y <  1 we get from 
(3.14) the known 

u, ( a )  =na2yz sin2 a In g-'. (3.16) 

All the cross sections of the one-photon processes have a 
characteristic logarithmic structure and differ only in the 
forms of the logarithms. It is convenient to represent these 
results in tabular form (Table I ) .  

It can be seen from Table I that in the case of a strong 
field the cross section has a logarithmic dependence on the 
field strength and differs from the Born cross section by a 
factor Ze2/?iv under the logarithm sign, just as in the case of 
a weak field. 

A large contribution to the cross section was made, 
when calculating the single-photon SDIB process, by the 
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TABLE I. Logarithmic factors in the cross sections for single-photon processes. 

region of small scattering angles, corresponding to E-6 - I ,  tion of sorts takes place in the continuous spectrum. 
i.e., angles at which w ~ , , , , ~ ~  - 1. The transition probability in Let us write down the conditions for the validity of our 
this region, and with it the cross section, now depends on the result. Obtaining from x,, in (3.2 1 ) the value 
character of the current, and this is in fact the reason why ceff -6 -' ln(b / n )  and substituting it in (3. IS), we get 
logarithms are contained in the first and second (reading 
downward) lines of rows of Table I. As w - 0 the upper limit In ( b / n ) > l ,  EG1 or In (b /n)>E,  gal, 
in (3.12) increases, causing an increase in the contribution 
from the region ofe in which W T ~ , ~ ~ ~ ~  < 1, and consequently, a which can be combined into a single condition b>nec, or 

decrease of the relative difference between the Born and clas- '" n h o  
sical logarithms, as seen from the table. s.> (+) - e x p { ~ ( l - + )  ea -i}. 

q 4 I 
q > 1 

2. The limit g~p  1-slow collisions 

At E B 1, expression ( 3.1 ) becomes 

Knowledge of E,, enables us also to confirm the condition 
(3.10) that the external field be weak compared with the 
atomic field, so that the complete validity condition is 

In qt-l = In ( m u a / t i o )  
Born logarithm 
In 4-I = In  (muS/Ze2w) 
classical logarithm 

do,(a)  =aVnZ(2yEe"6'z (1-sinZ rq cosZ a) lhKiE(E~)  ) ed~dcp. 

(3.17) ( :) 'Ix - e x p { ~  n:r ( 1  -5)-  I} 
Using the known asymptotic expression for Ki6 

ZewZ 

2  % <8,< vZ ( n o a l v  + In (e8 ,a /Ao)  ) , (3.23) 
Kit ( ~ 6 )  - (= ) ~ X P  for 

and the condition that it be incontrovertible is 

In yqt-l = In (e%omu3/tiao3) [ 6 ]  

In YE-'= In (e%',mlt'/Ze2tiw3) 
present paper 

(3.18) Ze2 u e 8 a  - I  

n e - ( l + - I n ( ~ ) )  A v  nwa nt io . 
and introducing the variable x = be - cE / ( f~ )  ' I 2 ,  where 

8 'A 
$4. MULTIPHOTON PROCESSES IN A PLANCK RADIATION 

b = ( - )  y g e n c l z ( ~ -  sin' . L q cosZ a )  '" FIELD 
n We consider multiphoton processes in a non-single- 

( 1  -. sinz cp cosZ a )  " I ,  (3.19) mode monochromatic external radiation field. As an exam- 
ho ple of physical interest, we use a Planck thermal-radiation 

field. 
we represent the integral cross section in the form Known results for spontaneous multiphoton processes 

2" be-' were already cited in 92 above. They can set in because the 
b  dx 

c ~ . ( a ) = ~ J [  J ~2(x)ln(---)--]dv. (3.20) smallness of the QED parameter e2/% is offset by the logar- 
E L ,  ,3 ithmically large average number of emitted photons. This 

This expression can in turn be further simplified if can be seen directly from the structure of the probability W, 
of emission of low-frequency phonons. In fact, at w~,,,,,, < 1 

Xeff -n< be-', ( 3.2 1 ) we have9: 

when the slowly varying logarithm can be taken outside the 
W n  ( 0 1 ~ 0 2 )  = ( d o l ) - " F l  (z )) integral sign with the value x -x,, . Calculation of the inte- n -  7 

n  ! 
gral in accordance with (3.8) yields a2 

oz 
p-e2/he, i r= & ~ . ( w , ,  oz)= l n ( ; ) .  (4.1) 

o , , ( a ) = ~ T l n  2% o ( :)acp. n-1 

Since the emission and absorption probabilities for an indi- 
From the weak dependence of the integrand on P and a at vidual oscillator of the continuous spectrum are proportion- 
the considered values of a that are not small, we obtain the al to (xo / V ) " ,  the emission (absorption) will be single-pho- 
estimate ton for this oscillator, since W, + , /W,, -0 as V -  CO. The 

n  vz e8,a (3.22) emission, however, from the aggregate of all oscillators in a 
o,,(a)=-(%+ln-). 2nwz n h o  given frequency interval need not necessarily be single-pho- 

ton.   his is seen already with (2.14) as an example: depend- 
This cross section depends very weakly on the field-satura- ing on the number of field oscillators considered (on the 
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width of the frequency interval), the value n,,, at which W, 
is a maximum can take on different values. 

Equilibrium Planck radiation is characterized by a 
Gibbs probability distribution WF of finding s photons (pri- 
or to the scattering) in an oscillator of frequency w at an 
emission temperature T p  : 

The probability w', of emission by an oscillator is ob- 
tained by weighting over this distribution the probabilities 
(26) of exciting this oscillator: 

2xk exp (-AolT,)  
= (xk  erp  ( - ~ W / T , ) ) - ~ Z .  ( 

V ( 1 -  exp ( A o / T p )  

1 + exp ( -Ao/T , )  xk 
(- I - exp ( -Rw/Tp)  7) 

where W:,, is the probability that the field oscillator will 
emit n photons if their initial number is s. For a distinct 
separation of the parts that are small as V-.  03, we take x, 
hereafter to mean Eq. (2.7) multiplied by V. The same trans- 
formation applies also toy defined earlier by (2.15). 

As V+ 03 we have 

1  - exp (-AolT,)  
x e x p ( -  

1 + exp ( - h o / T p )  (4.2) 

i.e., it is a Poisson distribution. In analogy with the deriva- 
tion of (2.141, we obtain for the frequency interval (@,,a2) 
the photon-emission probability W', (w,,w,) : 

1  + exp ( - A o / T p )  
e x  (- j- 

1  - exp ( - f i o / T p )  
Y. d o ) .  (4.3) 

0 ,  

For absorption, similarly, 

= ( I  - exp (-- no,ITp)) c-nnm'Tp 
s=o 

(S + n)! 

where W;f, is the probability that the oscillator will absorb n 
photons out of a finite number I = s - n. 

Taking (4.2) into account, we obtain from (4.4) 

l+exp  ( - A o / T p )  
x exp ( - (4.5) 

I-exp (-AolTp 

The absorption probability integrated over the interval 
(w,,w2) is 

-. 
I + exp ( - h o / T p )  d o  

X e x P ( - j  1 - exp( - -ho /Tp)  (4.6) 
0 ,  

Now, when the initial occupation numbers of the oscillators 
are not zero, both emission and absorption is possible. The 
observed n-photon process (we refer for the sake of argu- 
ment to emission) is an aggregate consisting of emission of 
n + k and absorption of k photons, where k assumes all pos- 
sible values from zero to infinity. Since emission and absorp- 
tion in a frequency interval are statistically independent, the 
actually observed probabilities w', and w a r e  determined by 
the set of two equations 

with appropriate normalization, where w, = w; = w; . 
The number of terms that contribute to (4.7) and (4.8) 

depends at a given (w,,w2) on the ratio h / T p .  As T p _ ,  -0, 
contribution is made only by single-photon processes corre- 
sponding to the first terms of these sums. As T p  + 03 the 
contribution of the multistep induced emission or absorp- 
tion processes that determine mainly the process increases 
sharply. This causes the resultant probability to deviate from 
a pure Poisson probability. 

Indeed, solution of this system yields 

where I, is a modified Bessel function of order n, and the 
arguments X and Yare given by 

These expressions are a new result, viz., generalization of the 
Poisson equation for spontaneous bremsstrahlung to include 
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the case of induced emission and absorption in an external 
equilibrium thermal radiation field. The Poisson equation is 
obtained from (4.9) in the limit as T p  -0 (there are no ther- 
mal photons), while (4.10) yields zero in this case, as it 
should. 

Using the known relation 

Using the operator 9, we express the field energy Ef 
after scattering in the form 

With the aid of relations (2.4) and (2.5) we get 
I_- 

we can calculate also such quantities as the mean number ii 
and the mean squared number 2 of the emitted photons, 
and the variance that characterizes the given distibution 

Elementary operations with ii& and cikn yield the calcula- 
tion result: 

Using (4.12) we get 

A n = - (Y-Y-I).  
2 

Similarly, 
The first term in (5.3) is, obviously, the initial energy Ei of 
the field, and the second is the sought difference in energy 
before and after the scattering, AE = Ef - E,,  and equals 
the already known spontaneous-emission energy. In particu- 
lar, this result holds also for a Planck radiation field, as can 
be verified directly by calculating the sum From this we get an expression for the variance 

D(n)  = (n - E l 2  = 2 - ii2 
nho (wne-ulna) X D (n) = - (Y-Y-I). 

2 

We rewrite n, n2, and D(n)  in standard notation with the aid of (4.12). 
To determine the energy acquired by the electron, we 

must take the kinetics of the processes into account. In the 
case of scattering of many classical electrons having a distri- 
bution function f ( $ ), the expression for the energy incre- 
ment AE is 

m 

1 1 + exp (-Ao/TP) do 
c = ~ ( n ) = - I  (4.16) 

2 - ,  1 - exp(-Ao/T,) ' 

0 2  

- 1 I f exp (-fio/Tp) 
n2 = -5 

2 I - exp (-Ao/Tp) 

n-i 

-w;f (8fnf io) )  At, (5.4) 

m v2 where % = -and %%%. 
2 

Here w', and w: are taken for that frequency interval in 
which AE is calculated. It must not be very large, viz., such 
that the integrands in the expressions for w', and w: not 
change too much in it, so that photon emission from even the 
opposite ends of the interval (w ,,w2) has high probabilities, 
in accordance with the meaning of the differential descrip- 
tion of AE. 

To this end we must have 

As T, -0 the variance, and with it also n (4.16), go over into 
the usual results for spontaneous emis~ion.~ As T p  + co , the 
distribution width increases strongly: 

corresponding obviously to an increase of the probability of 
production of many photons. The normalization of the dis- 
tribution, however, remains the same as before. 

$5. CALCULATION OF THE ABSORBED ENERGY 

whereg is one of the functions y, /{1 - exp( - &/T, )} or 
Ym exp( - )/{I - exp( - %/Tp )}, for which the 
ratiog(w)/gf(w)I,=,, isaminimum. 

At high temperatures the condition (5.5) ceases to de- 

We calculate the change, in one particle-scattering act, 
of the total energy of a field having a continuous spectrum. It 
is expedient to use for this calculation the S-matrix formal- 
ism, see $2. 
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pend on T ,  , and the expression in the argument of the modi- 
fied Bessel function becomes proportional to T p  . If the inter- 
val (w, ,w,)  that can be considered is fixed (is not too small), 
then w', and w>re no longer Poisson probabilities, i.e., in 
accordance with the foregoing, they do not describe pro- 
cesses that are multiphoton in (w ,,w,) . 

Expanding f ( Z? - n h )  up to terms of first order of 
smallness, substituting the probabilities, and regrouping the 
corresponding terms, we have 

dE = [ N h o f  (8) erp {- f (Y+ Y-I) ) (nYnI,, ( X )  
n-1 

-nY-"I, ( X )  ) 
OD 

XI,, ( x )  (yn+Y-") ] u d 8  do At. (5.6) 

Calculating the sums in (5.6) by elementary methods and 
returning to the original notation, we get 

0 2  

a f  A E = N ~ U V  M do,., ( f ( 8 )  J yW do  + 
., 

Changing to a small interval dm, we have 

dE d f  I f e - h . l T n  -- - Nu &' do,,, ( f  ( I )  fioy.+hz- 
dm 3 8  l - e - ' i ~ / T ~ :  

8.0z) d l .  

At large T p  $fiw and also wrcolliss 4 1, 

This result agrees with the classical energy acquisition by an 
electron in a Planck field, see Ref. 5. 
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