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The methods of stochastic dynamics are used to investigate the process of autoionization of a 
classical two-electron atom. The case when the outer-electron orbit has a radius much greater 
than the inner-electron orbit and is highly prolate is considered. The conditions determining 
the stochasticity threshold for the outer-electron motion are obtained. The rate of classical 
autoionization of two-electron atoms, which can be treated as a process of outer-electron 
diffusion over the highly excited orbits, is computed. 

6 1. INTRODUCTION shall not be interested in its structure here: we shall simply 

The description of the highly excited states in one-elec- 
tron'.' and two-ele~tron'.~ atoms on the basis of classical 
mechanics has undergone intense development in the last 
few years. In particular, the use of the Kolmogorov-Arnold- 
Moser (KAM) theory5 to describe the low-frequency ioni- 
zation of the classical hydrogen atom allows us to obtain for 
the magnitude of the critical electromagnetic-wave field and 
the diffusional-ionization times values that agree with the 
experimental data.6 Let us also note the recent papers by 
Belov and Khveshchenko,' S~lov 'ev,~ and Belov et ~ l . , ~  in 
which the planetary model of the two-electron atom is used. 
In Ref. 7 the classical two-electron atom in which the radius 
of the outer-electron orbit is large compared to that of the 
inner-electron orbit is considered. In that paper the effect of 
the interelectron interaction on the energy of these electrons 
is investigated. In Ref. 8 the classical two-electron atom with 
the electrons moving in equivalent orbits is considered, but 
autoionization is not investigated. A similar problem is con- 
sidered in Ref. 9. 

Doubly excited Rydberg states of atoms can now be 
experimentally produced.I0 An attempt to compute the 
autoionization widths T, of such states by the traditional 
methods based on the quantum-mechanical perturbation 
theory (see, for example, Refs. 11 and 12) in terms of the 
interelectron interaction has failed. The point is that the con- 
dition for the applicability of the perturbation theory for the 
Coulomb interaction of highly excited electrons has, in 
atomic units, the form l/u < 1, where u is the relative velocity 
of the electrons. For electrons from shells with principal 
quantum numbers n,  and n, (n,) n ,) the quantity v will be 
determined by the faster one, i.e., by the inner-shell electron: 
v z v ,  = Z /n ,, where Z is the charge of the atomic core. We 
find that the condition, n,/Z< 1, for the applicability of the 
quantum-mechanical perturbation theory, as applied to the 
Rydberg state of the inner electron, is violated for small val- 
ues of Z. Accordingly, some other method that takes more 
explicit advantage of the quasiclassical nature of the Ryd- 
berg states should be used to compute the T, . The present 
paper is devoted to the investigation of the possibility of the 
autoionization of the classical two-electron atom by the 
methods of nonlinear dynamics. 

How does the mechanism of the classical autoioniza- 
tion of an atom look like? First, we shall treat both the outer- 
and inner-shell electrons as moving along classical trajector- 
ies. As to the atomic core, which has a charge of + 2, we 

assume that its dimensions are small compared to the radii of 
the orbits of the two electrons, so that we can consider this 
atomic core to be a point formation. The mechanism of the 
classical autoionization is such that the Coulomb field of the 
inner electron is a classical periodic perturbation for the out- 
er electron, which can, under the influence of the perturba- 
tion, make transitions into more highly excited orbits, and, 
ultimately, move away to infinity. The energy conservation 
law is not violated as a result of some decrease of the inner- 
electron energy. We shall essentially consider the case of 
electrons in orbits differing greatly in their radii. Thus, the 
change in the inner-electron orbit is quite insignificant, and 
our problem consists in the determination of the motion of 
the outer electron under the action of the Coulomb field of 
the point core and the inner electron's field, which can be 
assumed given. We assume that the frequency of revolution 
of the inner electron in its orbit is low compared to the elec- 
tromagnetic-field frequency required for the single-photon 
ionization of the outer electron. 

The problem of the classical two-electron atom is close 
to the celestial-mechanics problem of three gravitating bo- 
dies: a star and two planets. Indeed, the dependence on dis- 
tance for the Coulomb forces is the same as for the gravita- 
tional forces, and the only difference is that the interaction 
potentials for the light particles have opposite signs. The 
interaction is in the case of planets attractive, and repulsive 
in the case of electrons. Furthermore, the planets of the solar 
system are characterized by small orbit eccentricities where- 
as in the case of electrons it is necessary to take an outer orbit 
with a sufficiently large eccentricity, if the autoionization 
probability is not to be vanishingly small. 

5 2. DESCRIPTION OF THE MODEL 

To simplfy exposition we assume that the two atomic 
electrons move in the same place. They are acted upon by the 
field of the point atomic core with charge + 2 (everywhere 
below we use the system of units in which e = me = 1 ). Let 
us denote the radius vectors, the initial angular momenta 
and the energies of the electrons respectively by 
r,, Mi, and - Ei ( i  = 1 for the inner, and 2 for the outer, 
electron). As has already been noted in the Introduction, we 
shall assume that r ,>r , .  The Hamiltonian of the two-elec- 
tron atom has the form 

H=TI-2/r1+T2-2/r2+ l/Ir,-r,l. (1)  
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FIG. 1. Unperturbed orbits of the outer- and inner-shell electrons of a 
two-electron atom. 

Here T, = (r, )2/2 is the kinetic energy of the electron. The 
last term in (1) describes the interelectron repulsion. Let us, 
assuming that the inequality r,  <r, always holds, simplify 
this last term in the expression on the right-hand side of ( 1 ) : 

Here we assume that even when the outer electron is close to 
the atomic core (in the case of a large eccentricity) the radi- 
us of its orbit is large compared to that of the inner-electron 
orbit, so that the expansion (2)  remains valid. Typical orbits 
satisfying these conditions are shown in Fig. 1. 

Substituting the expansion (2)  into the expression ( I ) ,  
we obtain 

Here the interaction potential V has the form 

where p, and p, are the azimuthal angles of the electrons in 
the plane of motion. As can be seen from (3) ,  in the absence 
of the pertrubation V, the two electrons move in elliptic 
Kepler orbits independently of each other, but the inner 
electron moves in a Coulomb field with charge + 2, while 
the outer electron moves in a screened field with charge + 1. 
As already indicated above, we consider the motion of the 
inner electron as given, and are interested in the ionization of 
the outer electron under the action of the perturbation V. 
For simplicity we assume first that the inner electron moves 
in a circular orbit of radius r,, i.e., that the eccentricity of the 
orbit of this electron is equal to zero. Denoting the inner- 
electron energy by - El,  we obtain 

In the case of circular motion, the energy and angular mo- 
mentum MI of the inner electron are connected by the rela- 
tion 

E1MI2=2. (6)  

8 3. REDUCTION OF THE PROBLEM TO THE PROBLEM OF 
THE HYDROGEN ATOM IN A PERIODIC FIELD 

We assume that the oribt of the outer electron is highly 
prolate, i.e., that its eccentricity e ,  is close to unity: 

ez=(1-2E2M22)'", le2-ll <I. (7)  
Indeed, because of the conservation of the angular momen- 
tum in the course of the escape of the outer electron from the 

atomic core, the energy E, tends to zero, and the trajectory 
of this electron becomes more and more enlongated. The 
minimum radius of the outer-electron orbit is equal to 

Assuming that ryn  r,, and using the expressions ( 5 ) , we 
obtain the inequality 

at which the dipole expansion (2)  is valid at all points of the 
trajectory of the outer electron. 

For the subsequent analysis of the motion of the elec- 
trons, it is convenient to go over to the action-angle variables 
I, and 0, , where i = 1,2 (Ref. 13). In the case of circular 
motion of the inner electron, the introduction of these vari- 
ables is trivial: 19, = pl and I, = MI. For the description of 
the outer-electron motion along a highly prolate trajectory, 
let us introduce the additional regularizing variable $, viz, 
0, = +b - sin $, called the eccentric anomaly.I4 In this case 
the variables r, and p, are connected with the action-angle 
variables for the Kepler trajectory by the relations 

r:=Izz [2 sin2($/2) +MZ2/(2122) cos $1, ( 10) 

qZ=2 arctg [ 2IZlM2 tg($/2) I .  (11) 

Let us point out that the second term in the right mem- 
ber of (10) is, on account of the condition (7),  small: 
a = M2/12 4 1; therefore, it counts only when the outer elec- 
tron is close to the atomic core (when $ = 2rm, 
m = 0,1,2 ... ). For this reason wecan set cos $ = 1 in (10). 

For the same reason the function ( 1 1 ) is very close to 
being a step function, with steps of magnitude 2n- and fre- 
quency w, = 1/123. Since the function p,(t) is used only in 
the form of an argument of the cosine in (4), we shall simply 
drop it, and rewrite the perturbation (4) in the form 

In the case of unperturbed motion the quantity $ is a 
slowly varying periodic function of the time: 

8,=+-sin $=02t. (13) 

Therefore, we can, on the basis of precisely the same argu- 
ments as in Ref. 6, expand the dipole moment d = (sin2 qb/ 
2 + a2/4) - 2  in a Fourier series: 

rm 

d = d, cos (k0,). 

The coefficients dk for the case k ) a P 3 %  1 of interest to us 
here (see the Appendix) can be estimated with the aid of the 
formula 

Let us, using the value of the parameter a = M,/I, and the 
formula ( 19), rewrite this expression in the form 

Thus, the final expression for the atomic Hamiltonian 
of the outer electron has the form 

w 

where we have set 
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The Hamiltonian ( 17) is equivalent to the Hamiltonian for 
the electron of a hydrogen atom located in an external elec- 
tromagnetic field with electric field intensity Z? and frequen- 
cy w ,. This allows us to use for the solution of the problem 
the well-known methods reviewed in Ref. 6 .  

§ 4. CRITERION FOR THE OVERLAP OF THE RESONANCES 

The Hamiltonian ( 17) has been written in a form equiv- 
alent to the formula (32) in Ref. 6 (although here the Four- 
ier coefficients dk have a different form). In the review given 
in Ref. 6 the classical low-frequency ionization of the hydro- 
gen atom by a monochromatic electro-magnetic field is con- 
sidered. Let us, following Ref. 6, carry out a standard inves- 
tigation of the conditions for the stochastic behavior of the 
solution to the problem described by the Hamiltonian ( 17). 

Let us separate from the perturbation only the reso- 
nance term with number k = w,/w, ( k %  1 ), where 
w, = 1/I: and w, = 4/I: are the unperturbed frequencies 
of the motion of the outer and inner electrons, as expressed 
in terms of the action variables. Let us recall that, in these 
variables, the radius of the inner orbit is equal to r, = I:/2. 
Using the relation (5) ,  we obtain 

k=4(Iz/Il)3. (19) 
Further, retaining only the slowly varying part of the 

Hamiltonian, we arrive at the standard form of the Hamilto- 
nian5: 

Here the quantity I, is fixed at the resonance point (19), the 
new phase 8 is equal to 8 = 8, - w,r, and the quantity I is a 
new action variable introduced in the vicinity of the reso- 
nance. 

The width of the action separatrix turns out in this case 
to be equal to 

ATh= (2/3dhr1) "'. (21) 

We shall also need the width of the frequency separatrix, 
which differs from (20) by a constant factor: 

We obtain the distance between the resonances by dif- 
ferentiating the expression w = w,/k with respect to the 
quantity k: 

60=ol/k2. (23) 

The degree of overlap of the resonances is given by the 
expression 

we use the Chirikov criterion for the overlap of the reson- 
ances in the form 

2.5s2> 1. (24) 

In the notation used in (4)-(6) and ( 18), the condition 
(24) has the form 

1 2 0 d ~ ( I z / I l ) ' ~ l .  (25) 

Let us, using the estimate ( 16) for the coefficient dk , rewrite 
the inequality (25) : 

FIG. 2. The boundary, corresponding to the inequality (28),  of the sto- 
chasticity region for the outer-electron orbit is hatched. The arrows indi- 
cate the direction of enhancement of the resonance overlap. The dashed 
lines indicate the limits (a - 1 ,  p- 1) of applicability of the model under 
consideration. The continuous lines correspond to the constant values of 
the ratio { = a4/P '. 

Two parameters arise in the problem: 

a=Zz/Mz>l, p=Mz/I t~ l .  (27) 

Instead of the intensity of the critical field in the case of low- 
frequency ionization of the hydrogem atom,6 i.e., the intensi- 
ty of the field in which the process of electron diffusion over 
the orbits begins, there arises in the present case an inequali- 
ty involving the parameters of the electron orbits: 

a">P13. (28) 

It can be seen (see Fig 2) that, for the real situation, the 
boundary ( a  - 1,8- 1 ) of the region of applicability of our 
model lies deep inside the stochasticity region. The overlap 
of the resonances increases [i.e., the criterion (27) for it is 
fulfilled more and more conservatively 1 as the outer elec- 
tron's "principal quantum number" I, (or the paramter a)  
increases, but ceases when we go over to the deeper-lying 
shells on which the inner electron is localized (i.e., when the 
paramter /? is increased). This occurs when 

The estimate (29) is valid at values of a-- 1. 

9 5. COMPUTATION OF THE PROBABILITY OF 
AUTOIONIZATION TREATED AS A DIFFUSION PROCESS 

Let us write down the expression for the diffusion coef- 
ficient in much the same way as is done in Ref. 6: 

X 
D = - (k8dRI02) '. 

2 
(30) 

Let us, substituting for the quantities entering into (30), 
rewrite this expression in the form 

D=2,67Z,8Z~e/M~12. (31) 

We compute the diffusion time from the formula (59) in 
Ref. 6: 

The reciprocal quantity I?, = r; can be interpreted as the 
autoionization probability per unit time (Fig. 3): 
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Here T =  ~ T / w ,  and the integrand contains the periodic 
function 

FIG. 3. Diffusional autoionization probability r, per unit time, plotted 
as a function of the parameter 4 = n4/P in accordance with the formula 
(34). The charge of the atomic core is equal to + 2. 

In the notation introduced in (27) the autoionization proba- 
bility per unit time will have the following form: 

I',=5.34c~'/i3~. (34) 

This expression has meaning when the computed diffusion 
time is long compared to the period of the outer-electron 
motion: 

TzI'*Kl, (35) 

where T, = 27~1: 

4 6. CONCLUSION 

The principal result of the foregoing investigation is the 
conclusion that classical autoionization of two-electron 
atoms does occur, and that its probability per unit time is 
given by the expression (34). Let us note that the present 
theory cannot be applied to negative ions, since in this case 
autoionization should be determined by essentially quantum 
laws. 

Let us specify the conditions under which the above- 
presented classical-autoionization model is valid. The first 
one is the condition (35) for the power-law increase of the 
autoionization rate in the course of the process. The second 
condition requires that the perturbation (4) be a low-fre- 
quency one, i.e., that w ,  < E ,  at 

I, 5 z,V2, (36) 

and is a condition that imposes limitations on the outer- and 
inner-electron orbit parameters. 

Let us note that the transition to noncircular inner-elec- 
tron orbits offers no fundamental difficulties. All the calcu- 
lations carried out above will be valid if we replace r ,  by rim' 
and w ,  by m u , ,  where rim' is the Fourier coefficient with 
number m in the expansion of the periodic function r ,  ( t ) .  In 
this case we can consider a situation of the type of the Ju- 
piter-Saturn resonance in celestial  mechanic^.'^ 

APPENDIX 

In this Appendix we compute the Fourier coefficients of 
the perturbation that are used above in the present paper. 
These coefficients are introduced by the relation ( 14), from 
which we find 

dk = -!- ~e j d ($) exp (ihwr) dt. 
T o  

with 

The quantity dk means here the complex value of the 
integral (A. 1 ). Differentiating (A.3 ), we obtain 

2 sinz ($/a) 
d, = - J exp [ik ($--sin $) 1 d*. ('4.4) 

a-C o [sin"(4/2) +a2/4]" 

Let us estimate this integral with the aid of the well- 
known stationary-phase method. The stationary phase point 
is located at the left end of the integration range; therefore, 
let us expand the argument of the exponential function in a 
Taylor series around zero: 

Let us retain the first term of the series (A.5) in the index of 
the exponential function and reduce the remaining terms to a 
pre-exponential function, using the formula exp(x) =: 1 + x. 
It then becomes clear that the characteristic values of $ have 
the magnitude $=: (6/k) ' I 3  4 1. This allows us to expand the 
pre-exponential power function in the integral (A.4) in a 
Taylor series in the small ratio ( $ / a )  ( 1. Indeed, from the 
relations (7),  (9),  and (19) we have12)M2>I,, whence it 
follows that 

kaS-(Mz/11)3~1. (A.6) 

Replacing the upper limit of integration by infinity, we ob- 
tain 

8 
d. = --;. 5 erp (ikq3/6) [c, + z ~.(4'"'+' ] z PnOzn dlp, 

o m=z n-1 

where we have set 

Let us expand the series product in (A.7) in order to esti- 
mate the quantity d,  by the first nonvanishing term. Let us 
label the result of term by term multiplication of the series by 
two indices, equal to the numbers m and n of the terms to be 
multiplied: 

There will then arise integrals of the form 
rn 

I, (k) = J e ~ p ( i k $ ~ / 6 ) * ~  d* p 2 2 .  (A.lO) 
0 

The integral (A.lO) reduces to a gamma function after we 
have made the change of variables = k$3/6, and closed the 
integration contour with the aid of a quadrant and the ordi- 
nate axis: 
I , ( k )  =2-6'*-""I'[ (p+l) /3]exp\ in ( p f l )  /6] k-(p+L'/3. 

( A . l l )  
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Using the formula (A. 11 ), we find that the first real terms of 
the series (A.9)  are: 

0, d:Z' l )  = - l , l / (a4k"l l ) ,  d:1'2) = 26.31 (a6k'13). 

(A.12) 

A comparison of the moduli of these terms in the case when 
a = M,/I ,  < 1 shows that 

d ; Z . l )  ,d;1,2) 
rz aY24<<1. (A.  13) 

The higher-order terms of the seris (A.9)  are clearly smaller 
than those written out above. Furthermore, as the estimate 
shows, the contribution of the right end of the integration 
range to the value of the integral (A.4) is insignificant; 
therefore, the value of the Fourier coefficient is equal to 

dk-26.3/(aek").  (A. 14) 
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