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Resonant-radiation transfer with allowance for natural, Doppler, and collision broadening is 
considered. An equation for the spectral density of excited atoms is derived in the spatial 
diffusion approximation. This equation is asymptotically accurate in the case of almost 
coherent scattering under the conditions k,  Ry/Aw,  % 1 and y, /y4  1. In the opposite limiting 
case of total redistribution in frequency, it is shown that this approach leads to results accurate 
to 30%, and can therefore be used with all the parameters of the problem. The de-excitation 
rate and the density of the excited atoms in volumes of finite size are calculated in this 
approximation, and a solution of the stationary problem for a uniform semi-infinite layer is 
obtained. The results are compared with experimental and numerical simulation data. 

1. INTRODUCTION 

Radiation transfer with complete redistribution in fre- 
quency has been intensively investigated, following the clas- 
sical studies of Biberman and  holstein,'^^ and is by now well 
understood. Matters are different when partial redistribu- 
tion in frequency becomes significant. In particular, great 
theoretical interest attaches to the case when the wing of the 
spectral line in which the volume becomes optically trans- 
parent is determined by the natural broadening. Since the 
Dopper broadening usually exceeds noticeably the natural 
one, the volume must be of sufficient optical thickness for 
this purpose. At the same time, the pressure must be low 
enough to prevent collisions from causing total loss of coher- 
ence by scattering. The physical conditions under which 
such a situation can develop are typical of rapid high-tem- 
perature processes, when a plasma contains high-multiplic- 
ity waves for which the natural broadening can exceed the 
broadening by pressure, and of astrophysical applications, 
characterized by low densities and large object sizes. 

It was shown in a number of papers, by direct numerical 
solution of the transport equation394 and by Monte Carlo 
simulation of the p r ~ b l e m , ~ . ~  that partial redistribution in- 
fluences strongly the electric properties of the plasma. As- 
trophysical observations (see the bibliography in Ref. 7) 
and laboratory measurements of the de-excitation rate of the 
argon 1048 d; line8 confirm these conclusions. Many radi- 
ation transfer data obtained from numerical and physical - - 

experiments are thus available at present. There is, however, 
no theory capable of yielding reasonable estimates of, e.g., 
the de-excitation time, the density of the excited atoms, and 
the spectrum of the output radiation, which would permit 
comparison of results obtained by various workers for reso- 
nant media with differing parameters. The aim of the present 
paper is to show that resonant-radiation transfer with partial 
redistribution in frequency has features that permit simple 
relations to be obtained for the parameters of this problem. 

The theory proposed is based on the obvious fact that if 
the scattering is almost coherent (precisely the situation re- 
alized in the natural-broadening wing) the photon leaves the 
volume before its frequency reaches the optically transpar- 
ent wing of the spectral line. Thus, if the characteristic fre- 
quency of the outgoing photons is designated x,,, the optical 
thickness 

~ e t t = k ( x e t t ) R > l ,  (1.1) 
where R is the characteristic dimension of the volume and 
k ( x )  is the absorption factor. Consequently, in contrast to 
total redistribution in frequency, for which re, - 1 (Refs. 1 
and 2),  the problem has a large parameter that permits diffu- 
sion theory to be used. 

Incoherence of the scattering, even if small, plays a fun- 
damental role, since it changes the photon frequency, there- 
by affecting the rate of its diffusion. We consider two mecha- 
nisms that alter the frequency of a scattered photon: the 
Doppler effect and collision broadening. They are essential- 
ly different: the Doppler effect in the far wing of the line 
leads to a gradual change of the photon frequency (diffusion 
into the wing of the spectral line9), whereas collisions cause 
infrequent jumplike changes of the frequency within the lim- 
its of the spectral line. 

Equations describing the excited atoms in the volume 
are derived in Sec. 2 on the basis of the foregoing phyical 
principles. In Sec. 3 is considered emission of resonant radi- 
ation from volumes of finite dimensions, and equations are 
derived for the de-excitation rate and for the total number of 
excited atoms in the volume. These equations are valid both 
in the region of almost-coherent radiation ( 1.1 ) and for total 
distribution in frequency. The results are compared with the 
calculated experimental data. The stationary problem for a 
semi-infinite space is considered in Sec. 4 for almost coher- 
ent scattering. 

2. DERIVATION OF FUNDAMENTAL EQUATIONS 

The equations that describe the transfer of resonant ra- 
diation with incomplete redistribution in frequency, in terms 
of the distribution function in frequency and the spectral 
density, are quite well known.' A formal quantum-mechani- 
cal derivation of these equations under various conditions 
can be found in Refs. 10 and 11. Taking this circumstance 
into account, we introduce the needed relations, using sim- 
ple qualitative considerations. The dimensionless frequency 
x is equal to the ratio of the frequency to the Doppler width. 
The absorption factor is in this case 

k ( s )  =nSkDe (x) , (2.1) 
cc 
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where k ,  is the absorption factor in the Doppler core of the 
spectral line, y is the rate of spontaneous emission, and .r, is 
the frequency of the broadening collisions. If a 4 1 and x, is 
defined by 

it can be easily seen that 

To describe the scattering of a photon under nonstationary 
conditions, a time-dependent distribution function L (x,xl,t) 
must be introduced and taken to be the probability that an 
atom that had absorbed a photon of frequency x' is capable 
of emitting it after a time t at a frequency x. Obviously, 

0 

j ~ ( x , x ~ , t ) d x = l .  

Note that by virtue of the Heisenberg uncertainty principle 
this quantity is meaningful, for times on the order of the 
excited-atom lifetime, only for frequencies much higher 
than the natural broadening, but in the present case this is of 
no importance, since the transfer is in the far wing of the 
spectral line. Under these conditions it is reasonable to as- 
sume that 

where LC,, is a Doppler-effect-related redistribution func- 
tion for scattering that is coherent in the rest system of the 
atom. In (2.5), yc is the frequency of the collisions that lead 
to loss of coherence. It will be shown in Sec. 3 that the 
Doppler effect is significant only in the case when the colli- 
sion frequency is low; it can therefore be assumed in the 
calculation of LC,, (x,xl) that the excited atom does not 
change velocity during its lifetime. The corresponding 
expression for LC,, (x,xf) can be found in Refs. 7 and 12. 
Averaging L (x,xl,t) over the lifetime of the excited atom, we 
obtain in accordance with Ref. 12 

~ ( x ,  5')= (I-P,)L ,,,, (x, xr)+P,c (x), (2.6) 
where PC = y, /( y + yc ) 1 is the broadening-collision prob- 
ability, while L (x,xt) has the obvious meaning of the prob- 
ability that a photon absorbed at the frequency x' is reradiat- 
ed at the frequency x, a concept widely used under stationary 
conditions. 

To describe the excited atoms, we introduce the spectral 
density n(r,x,t) such that yn(r,x,t)drdxdt is equal to the 
number of atoms that absorb a photon of frequency x at the 
point r and at the instant of time t. Obviously, n(r,x,t) is 
proportional to the radiation intensity averaged over the an- 
gles and multipled by the absorption factor. The density of 
the excited atoms at the point r and at the instant t, produced 
by absorbing a photon of frequency x, is equal to 

y J exp (-yt') n (r, s, t-t') dt' 
0 

and is practically equal to n (r,x,t) in the case of strong con- 
finement, when the characteristic times are long compared 
with the spontaneous de-excitation time. In the case of 
strong confinement we can thus, by calculating n (r,x,t), ob- 
tain the total density of the excited atoms: 

The spectral density n, (r,x,t) of excited atoms is tradi- 
tionally regarded as the number of atoms capable of emitting 
a photon of frequency x at the instant of time t (source func- 
tion). Clearly, 

In this notation, assuming that isotropic scattering and that 
atoms are excited only by photon absorption, we can write 
down the equation 

n (r, x, f )  = H (r-r', z.) n. (r', x, t) dr', (2.9) 
v 

where 

k(x)exp[-k(x) Ir-r'l] 
H (r-r', x) = 

4a~1r-r'1~ 

Generally speaking, for a complete description of the 
excited atom it is necessary to include its velocity among the 
spectral-density parameters. If, however, unexcited atoms 
uniformly distributed in velocity absorb photons of frequen- 
cy x, the distribution function of the excited atoms in veloc- 
ity can be obtained from the equation 

a exp(-v,l2) f (v) = ------- ---- 
n " ~  (x) a' + ( ~ - v , , ) ~  f o ( v J  9 

where v,, and v, are the longitudinal and transverse compo- 
nents of the dimensionless velocity of the atom relative to the 
photon propagation direction, and f,(v, ) is the equilibrium 
distribution function. With due account of this distribution 
function in the calculation of L(x,xl,t), Eq. (2.9) holds for 
the spectral density n(r,x,t) integrated over the velocity. 
Equation (2.9) with allowance for (2.8) is integral in time, 
frequency, and space. In the case of total redistribution, 
when L(x,xl,t) = E(x), it leads readily to the Biberman- 
Holstein equation for the density N(r,t) of the excited 
atoms. In general, however, further analysis of this equation 
is possible only for strong confinement. Recognizing that the 
characteristic times of the problem are long, we can expand 
n (r,x,t - t ') in powers of r - t ' and obtain 

Ca 

+ J dr' dxl H (r-r', x) L(x, x') n (r', x', t )  , (2.11) 
v -m 

where 
rn 

0 

In the derivation of (2.11 ) it was taken into account that 
allowance for the difference between the integral operator H 
and a unit operator would be an exaggeration of the accura- 
cy. Next, in the case of strong confinement, the spectral line 
can be divided in two parts. The region x (x,, is the core in 
which almost all the excited atoms are concentrated and 
from which there is no direct radiation. For this region we 
have 
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n (r, x, t )=N(r,  t ) ~  (2). 

The second part of the spectral lines contains an extremely 
small number of excited atoms, but it is they which contrib- 
ute to the radiation. Naturally, the photons can cross over in 
the course of reradiation from one region to the other, and 
the radiation transfer is in fact determined by the rate of 
"additional pumping" from the core of the spectral line to 
the wing. Let us consider Eq. (2.11 ) from this point of view. 
The derivative with respect to time can be discarded in the 
wing of the spectra line (x-x,,), since the additional 
pumping from the core certainly exceeds this term in the 
case of strong confinement, and we can expand in terms of 
the spatial variables, i.e, change to the diffusion approxima- 
tion: 

m 

1 P 

An (r, x) - n (r, x) + J dxrL(x, x') I L  (r, x') = 0, 
3/c2 (5 )  

- x (2.12) 

where A is the spatial Laplacian. It was recognized in the 
derivation of (2.12) that in the case of almost coherent scat- 
tering it would be an exaggeration of the accuracy to distin- 
guish between the operator L and a unit operator. The solu- 
tion of (2.12) must be matched to the solution in the region 
of the core, i.e., the following boundary condition must be 
met at xQx,,: 

n(r,  x) = N  (r, t )  F (x) . (2.13) 

In addition, at the boundaries of the volume we have 

n(r ,  ~)lonboundar~ =0. (2.14) 

The spectral density in the wing depends on time only via the 
boundary condition (2.13 ) ; the corresponding argument 
was therefore omitted. 

Assuming Eq. (2.12) to be solved, we can obtain from 
(2.11 ), but integrating with respect to x a closed equation 
for n (r,t) : 

m 

I aLV(r, t) --- n(r  x) = A l d z - 2 - - - a N ( r , t ) + F ( r , t ) .  (2.15) 
y ut 

-a 
3k2 (x)  

This equation includes the quenching of the excited atoms by 
inelastic collisions and the nonradiative atom-excitation 
sources, which were left out of the preceding equations for 
simplicity. The cause of their omission from (2.12) is the 
same as for the terms with time derivatives. It is assumed 
that a<P,, so that no changes of PC are needed in (2.6). 

The most complicated component of Eq. (2.12) is the 
term with LC,, (x,xl); if, however, the condition 

xejj>xo (2.16) 

is met, this term can be radically simplified. The frequency 
change following each repetition of the radiation is then rela- 
tively small and it can be assumed that 

> 

J L.., (x, x f )  n (XI) ax1 
- cc 

where hx and hX2 are the mean and mean squared changes 
of the frequency in the radiation-repetition process. Since 

under condition (2.16) the absorption depends little on the 
atom velocity, we have 

There is no need for special calculation of &, for it is clear 
that 

m 

In this case Eqs. (2.12) and (2.15) take the form 

In the derivation of (2.21 ), account is taken of the fact that 
the Doppler redistribution plays a role only at small 
PC - TG (see Sec. 3), therefore 1 - PC =: 1. New variables 
are introduced in (2.20) and (2.21), such that 

n(r,  x) =E (x) f (r, x)~(alnx2) f (r ,  x), y=xV3. 

To simplify the equations, x and y are used here jointly. It is 
necessary to satisfy for (2.20) the zero boundary conditions 
(2.14) and the condition (2.13), which takes the form 

A few remarks are in order in connection with the 
boundary conditions. In the presence of broadening colli- 
sions, condition (2.22) is automatically satisfied for Eq. 
(2.20). Assume that there are no collisions. The second term 
in (2.20) describes then diffusion of photons into the wing of 
the spectral line, and the boundary condition (2.22) can be 
replaced by a source having zero frequency and due to the 
additional pumping from the spectral-line core. Clearly, the 
power of this source is equal to the rate of change of the 
density of the excited atoms in the core, a density not offset 
by quenching and by nonradiative excitation: 

This shows that, without solving (2.21) beforehand, the 
source power can be obtained only in the stationary case in 
the absence of quenching. This situation was investigated in 
Ref. 13, and Eq. (2.20) with a source Q = Fand with PC = 0 
is equivalent to the corresponding equation in Ref. 13. Note 
that the diffusion approximation, although in another phys- 
ical situation, is discussed also in Ref. 1 1. 

Zero conditions at the volume boundary lead to correct 
values of the spectral density in the entire volume, apart 
from a thin boundary layer with thickness on the order of 
k -'(x,,). In view of the small thickness of this layer, it can 
be assumed that its outgoing radiation is scattered coherent- 
ly. Incoherent scattering has been well studied7 and it is 
known that if z is the distance to the boundary, the solution 
near the boundary can be obtained from a solution that satis- 
fies the zero boundary conditions by replacing z with 

253 Sov. Phys. JETP 65 (2), February 1987 A. E. Suvorov 253 



3. DE-EXCITATION RATE AND NUMBER OF EXCITED 
ATOMS IN THE VOLUME 

If there are no extraneous excitation or quenching 
sources, it can be assumed, for a long time lapse after the 
initial excitation, that 

Here p,(r) is an eigenfunction of the Laplace operator, and 
p is  the de-excitation rate ofinterest to us. After determining - 
n (x) ,  the de-excitation rate can be obtained from the equa- 
tion 

Lo n(x)dx 8 = -  - 
3 R t _  k2 (x) ' 

where A, is the corresponding eigenvalue of the Laplace op- 
erator and R is the characteristic dimension of the volume. 

Expression (3.2) was obtained on the basis of condition 
( 1.1 ), which is known to be violated in the case of total redis- 
tribution in frequency. It does, however, yield reasonable 
results even in this case. Putting L (x,xl) = ~ ( x )  in (2.12), 
we obtain with the aid of (3.2) 

E (x) d~ ' = L+3k2 (x) R2/ho 
- m  

The calculations for the Doppler and dispersion profiles in 
the case of strong confinement show that (3.3) gives the 
correct dependence on the optical thickness, with a coeffi- 
cient overestimated by approximately lo%, 30%, and 50% 
for spherical, cylindrical, and planar geometry, respectively. 
The cause of this result is that re, -2(/Zd3) 'IZ 2 2, for total 
redistribution, as can be seen from (3.3), and it is this which 
makes the diffusion-approximation results for the spectal 
density reasonable. To avoid misunderstandings, we note 
that from Eqs. (2.12) and (2.15) it is impossible toobtain an 
equation of the diffusion type for N(r) .  Substitution of the 
solution (2.12) in (2.15) makes such an equation integral, 
taking thereby into account the large-scale correlations 
between remote points of the volume. We can thus assume 
that Eqs. (2.12) and (2.15) yield a qualitatively correct re- 
sult in the entire range of variation of re,, and in fact the 
correct one if ( 1.1 ) is satisfied. 

We turn to the calculation offl for a pure Dopper redis- 
tribution. Putting PC = 0 in (2.20) we get 

where 

With the aid of (3.2) we obtain 

The condition ( 1.1 ) with x, from (3.5) takes the form 

The condition for the validity of approximation (2.16) for 
the frequency is somewhat more stringent: 

Expression (3.6) with k, R 4 1 does not describe a tran- 

sition to a total distribution in frequency. Furthermore, it 
can be concluded from the discussion of Eq. ( 3.3 ), that the 
reason for this is that at not very high optical densities the 
diffusion description cannot be used for the frequency vari- 
ation due to the Doppler effect. This problem can be solved 
qualitatively in the following manner. We assume in accor- 
dance with Ref. 14 that the scattering at x < x, is accompa- 
nied by total redistribution in frequency. Regarding k ( x )  to 
be given for this case by (2.3), we can obtain from (2.12) the 
spectral density atx <x,. Taking k(x)  to be determined that 
at x>x,  by Eq. (2.4), and the diffusion appoximation in 
frequency to be invalid, we obtain from (2.20) the value of 
n (x)  in this region. Matching these solutions at the point x,, 
we obtain for n (x)  an expression that is qualitatively correct 
in both regions. Integrating in (3.2), we get 

where 

fldir is determined from (3.6), andp, from (3.3) with k(x)  
from (2.3 ). If pH in (3.9) is replaced by the exact value 
given by Holstein2 for the de-excitation rate, Eq. (3.9) be- 
comes exact in two limiting cases-total redistribution in 
frequency and almost-coherent radiation-and describes 
approximately correctly the transition between them. 

If the principal role is assumed by collisional redistribu- 
tion in frequency, we get, omittingfrom (2.20) the term with 
the derivative, 

The condition ( 1.1 ) for the validity of the diffusion theory 
takes the term 

Equation (3.12), however, is a good approximation if 
PC -1. 

If both redistribution mechanisms must be taken into 
account in (2.20) simultaneously, it can be shown that 

p = p d i t " ( E ) ,  (3.14) 

where 

The quantity 6 is the criterion that determines the principal 
redistribution mechanism. The two mechanisms are com- 
parable at 

The principal role is played by the Doppler redistribution at 
6 4 1  and by the collisional distribution at 6)1, with 
U(g) = 1 and U(6) = ~ ( 5 / 4 ) ~ / ~ ,  respectively. The calcu- 
lated U(5) are show in Fig. 1, which shows also that, accu- 
rate to 25%, 

U( E )  =l+n (g/4) 'h.  
It should be noted that an expression of this type was 
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FIG. 1. De-excitation rate (in dimensionless units) with allowance for the 
Doppler and collisional redistributions in frequency. 

first obtained by A. N. Starostin (unpublished) from quali- 
tative estimates of the photon-emission probability. 

Let us compare the results with the experimental data 
on the rate of emission of the 1048 d; line of argon8 from a 
cylindrical volume of radius 1.1 cm in the pressure interval 
P =  0.0015-10 Torr. The spontaneous emission rate is 
5.5.10' sec-'.I5 The collision broadening is due to resonant 
collisions with unexcited atoms. According to Ref. 16, 
yc = 0.046yNJ 3. Under these conditions, the essential pa- 
rameters of the problem are: kD R = 4. 104P, PC = 1.74P/ 
(1 + 1.74P), a = 1.2.10-'(1 + 1.74P), re, = ~ o P " ~ ,  
A, = 5.8, x, = 2.6 (Pis  the pressure in torr). It is seen from 
Fig. 2 that the de-excitation rate determined from Eqs. (3.9) 
and (3.14) agrees well with the experimental data in the 
entire pressure range. The same figure shows for comparison 
the excitation rates assuming total redistribution. 

With an aim at estimating the accuracy of Eq. (3.9), we 
consider a problem that has been numerically well investi- 
gated, that of the number of excited atoms in a planar layer 
2L thick sustained by a stationary source located at the cen- 
ter of the layer, and take into account only the Doppler redis- 
tribution infrequency. The number of exicted atoms can be 
easily expressed as a series in the eigenfuctions of Eq. (215). 
Note that in this approximation the eigenfunctions coincide 
with those of the Laplace operator, and the eigenvalues can 
be obtained from (3.9) by replacing A, by A,. In this case, 
however, simple estimates show that the first term alone 
gives the result accurate to - 10%. Thus, 

N=4/nPD, (3.16) 

where PD is determined by Eq. (3.9), in which R must be 
replaced by L, 0, = 0.53/kD L (ln kD L ) " ~  (Ref. 2), and 
,B,, is determined from (3.6) withA, = ( 7 ~ / 2 ) ~ .  The depen- 
dence on the optical thickness, calculated from (3.16), is 
shown in Fig. 3 and compared there with the results of a 

P. Torr 

FIG. 2. De-excitation rate of 1048 A line of argon: Curves-I-author's 
results, 2-total redistribution with allowance for only the Doppler effect, 
3-total redistribution with allowance for only natural and collisional 
broadening. Points--experimental results.' 

FIG. 3. Integrated density of excited atoms in a planar layer: curve 1- 
a = 4.7. lop3, 2 4  = 4.7. lo-'; 0, -results of numerical cal~ulation.~ 

numerical cal~ulation.~ It can be seen from the figure that 
Eq. (3.9) is fairly accurate at all optical thicknesses, and the 
result at sufficiently large optical thicknesses is practically 
equal to that of Ref. 13. 

4. STATIONARY PROBLEM FOR SEMI-INFINITE SPACE 

We assume that in a semi-infinite space, the quenching 
rate a and the rate of nonradiative excitation D = a are inde- 
pendent of the coordinate z measured from the surface into 
the interior of the volume. 

For a Dopper distribution in frquency, the problem has 
the following frequency and distance scales: 

x,ff= (ulna) '", (4.1) 
Ref,=(2/3n)'" (lIakn). (4.2) 

The condition ( 1.1) takes then the form 

sej j=  (2/3) 'h(a/na) '"~1.  (4.3) 

The solution of (2.20) and (2.21) shows that 
01 

2 sin (pz) e-PY 
f(z,y,=- 1--- 

76 #, P ( P + ~ )  
dp .  

In particular, the density of the excited atoms is - 

The coordinate and frequency in (4.4) and (4.5) are in units 
of (4.2) and (4.1 ). 

For a large depth 2% 1 we easily obtain from (4.4) 

It can be seen from this equation that at frequencies x >z1I3 
the spectral density differs from the equilibrium value at all 
depths. The optical thickness is then r , ,~ ' /~)  1, SO that the 
optical characteristics of the medium are not at equilibrium 
even at large optical depths. An important consequence of 
this circumstance is that the radiation from the volume is not 
at equilibrium at any frequency. 

Near the surface, 2 5 1 / ~ , ~ ,  we obtain with the aid of 
the substitution (2.24) 

Thus, in contrast to deep layers, in which the spectral den- 
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sity decreases monotonically with increase of frequency, the 
frequency dependence of the density has a maximum near 
the surface. 

We consider now the radiation emitted from the medi- 
um. At equilibrium ( a )  1 )  the intensity of the radiation 
from the surface is a/4$kL. With the aid of (4 .7 )  we find 
that in this case the radiation intensity referred to the equi- 
librium value is 

OD 

wherep is the cosine of the angle measured from the normal 
to the surface. It can be seen from (4 .8 )  that the angular 
dependence of the radiation is the same as for purely coher- 
ent scattering and the radiation intensity as a function of 
frequency has a maximum and drops to zero at high frequen- 
cies. 

At high frequencies, in fact, the radiation is determined 
by the collisional redistribution in frequency. Without 
dwelling on the details of the calculations, we present the 
final results: at x % re,P Y2  we have 

It is clear from (4 .8 )  and ( 4 . 9 )  that the maximum of the 
radiation intensity is preserved up to pressures at which 
PC - r ~ ~ /  At still higher pressures the spectrum of the radi- 
ation is determined, in accordance with (3 .15 ) ,  by the colli- 
sions. The solution of Eqs. (2 .20)  and (2.21) for this case 
encounters no fundamental difficulties and is not given here. 

These results are in qualitative agreement with the nu- 
merical calculation of Ref. 3. A quantitative comparison is 
impossible, since the (4 .3 )  is not valid under the conditions 
of Ref. 3. 

The examples considered show that the equations de- 
rived in Sec. 2  can be useful for a qualitative analysis of reso- 
nant-radiation transfer in finite volume, in the entire range 
of parameters of the maximum, from optical thicknesses 
ak, R 4 1, when it can be reliably assumed that the total dis- 
tribution in frequency is governed by the Doppler effect, to 
pressures at which PC = 1 and the total distribution in fre- 
quency is collision-governed. 

Since the results of Sec. 3  yield a complete set of eigen- 
values, they solve in principle any problem involving the 
densities of excited atoms in volumes of finite size. The 
eigenvalues are given by Eqs. ( 3 . 9 )  and (3 .14 ) ,  in which A,  

must be replaced by A ,. The eigenvalues for the total distri- 
butions, which are needed in ( 3 . 9 ) ,  can be found in Refs. 17 
and 18. The eigenfunctions agree in the approximation con- 
sidered with those of the Laplace operator. When condition 
( 1 . 1 )  is met, this result is asymptotically accurate. In the 
case least favorable for the diffusion approximation, that of 
total distribution in frequency, an analysis of the eigenfunc- 
tions obtained in Refs. 17 and 18 in the limit of large optical 
thicknesses shows that for Doppler and Lorentz profiles 
they agree, within - lo%, with the eigenfunctions of the 
Laplace operator in the entire volume except in the immedi- 
ate vicinity of the boundaries. 

The spectrum of the emitted radiation can be obtained 
from the equation 

Estimates show that Eq. (5.1 ) describes correctly the radi- 
ation at the maximum of the line emitted from the volume, in 
the range from almost-coherent scattering, when it is asymp- 
totically correct, to total redistribution in frequency. It is not 
applicable, however, in the line wing, and particularly in the 
self-reversal region, where it can lead to errors amounting to 
several orders of magnitude. 

In conclusion, the author is sincerely grateful to A. N. 
Starostin and A. E. Bulyshev, whose critical remarks were of 
considerable help in the course of the work. 
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