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The diffraction of an intense spatially incoherent electromagnetic wave by a slit placed in front 
of a nonlinear medium is considered within the framework of the nonlinear parabolic equation. 
The average intensity of the diffracted radiation in the Fraunhofer zone is calculated by the 
inverse-problem method for two limiting cases, weak and strong incoherence of the incident 
wave, both for a focusing medium and for a defocusing one. 

1. INTRODUCTION 

A high-power electromagnetic pulse propagating 
through a medium usually alters the optical density of the 
latter, since the dependence of the refractive index on the 
field amplitude becomes substantial. The ensuing inhomoge- 
neity of the region leads either to self-contraction of the 
beam or to its broadening. A theoretical explanation and a 
qualitative interpretation of such effects were first consid- 
ered in Refs. 1 and 2 (see also Refs. 3, 4, and 5 ) .  

In the simplest case, the effects of self-action of an elec- 
tromagnetic wave are described by a cubic nonlinearity. The 
corresponding nonlinear increment to the induction vector 
in the case of a linearly or circularly polarized wave is usual- 
ly written in the form5 

If E~ > 0, the phase velocity of plane monochromatic waves 
decreases with increasing amplitude (focusing medium). In 
a defocusing medium (E, < 0) the phase velocity increases 
with increase of amplitude. 

We consider the influence of the nonlinearity of the me- 
dium on a monochromatic wave propagating along the z 
axis: 

where E(z,r,  ) is a slowly varying function of the coordinates 
(the so-called stationary focusing), and r, is a vector per- 
pendicular to the propagation direction. Substituting ( 1.1 ) 
in Maxwell's equations with account taken of ( 1.2), we ar- 
rive in the principal approximation at the equa t ionI5  

The solutions of Eq. (1.3) that describes the focusing 
are the subject of an appreciable number of studies (see, e.g., 
Refs. 1, 2, and 6-10). If the field E depends only on two 
variables (z and x ) ,  that stationary-focusing problem de- 
scribed by ( 1.3) admits of an exact solution, for in this case 
( 1.3) is the known nonlinear Schrodinger equation (NSE),  
which is exactly solvable by the method of the inverse scat- 
tering problem.' 

Within the framework of Eq. (1.3) it is possible to in- 
vestigate exactly not only effects peculiar to essentially non- 
linear media, but also classical (linear) effects, such as 
Fraunhofer diffraction. The use of the powerful formalism 
of the inverse-scattering problem, proposed for the NSE by 
Zakharov and Shabat,' has enabled Manakov9 to obtain an 

exact expression for the direction distribution of the diffract- 
ed-radiation intensity for wave diffraction by a slotted 
screen placed in front of a nonlinear medium. 

At present, however there are no accurate results what- 
ever for the propagation of a high-power incoherent pulse in 
a nonlinear medium, although problems of this kind were 
posed quite long ago (see, e.g., Refs. 3 ad 10). 

Mathematically, the problem of propagation of an inco- 
herent radiation pulse from a random source in a nonlinear 
medium reduces to the Cauchy problem for a nonlinear par- 
tial differential equation with random initial conditions. 

We consider in this paper, as a specific physical version 
of the problem, Fraunhofer diffraction of a monochromatic 
spatially incoherent wave by a slit, with allowance for the 
nonlinearity of the medium behind the screen. In Sec. 2 we 
consider nonlinear diffraction, in the Fraunhofer zone, of a 
wave whose amplitude contains on top of a regular compo- 
nent also a small random component that describes the spa- 
tial incoherence of the field in the plane of the screen. Using a 
perturbation theory based on the inverse-problem method, 
we obtain the correction to the average intensity of the dif- 
fracted radiation, and determine the diffraction-pattern 
changes due to the presence of the weak coherence of the 
incident wave, for two cases-focusing and defocusing me- 
dia. The third section of the paper is devoted to diffraction of 
an essentially incoherent wave. We assume for simplicity 
that the incident wave has no regular component at all, and 
investigate in this case the Zakharov-Shabat spectral prob- 
lem, connected with Eq. ( 1.3) in the inverse-problem meth- 
od, with a random potential on a segment of length L. The 
probability density for the scattering coefficient, which de- 
termines the distribution of the average intensity of the dif- - 
fracted radiation, is determined for a number of limiting 
cases. 

2. DIFFRACTION OF A PARTIALLY INCOHERENT BEAM 

We introduce a new variable ir = z/2k and denote k 'E , /  

E" by x .  Equation ( 1.3) takes then in the two-dimensional 
case ( 1.3) the form 

idE/dr+d2E/dxZ+x 1 E' IZE=O. (2.1)  

We choose the initial conditions for (2.1 ) such that they 
describe the diffraction of an electromagnetic field by a slit. 
Let the screen be located in th z = 0 plane, and let the slit be 
the strip 0 < x  > L. The field in the plane of the screen is 
assumed given: 
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According to the inverse-scattering-problem meth- 
~ d , ~ . ' '  to deduce E(x,z) from the initial value E(x,O) we 
must solve an auxiliary scattering problem. The NSE is asso- 
ciated with the Zakharov-Shabat spectral problem 

d$l/dx=ih~>l+ir'(x)$2 sgn x ,  

d$2/dx=-ih$2+ir(x) $1 

for the column function = , where A is a spectral pa- ($1) 
rameter, and the function r (x )  is simply related with the 
initial condition: r (x )  = ( Ixl/2) ' "E(~,o) .  The solution of 
the spectral problem (2.3), as is usual in scattering prob- 
lems, is represented by the so-called scattering data for a 
continuous (real A ) and a discrete (complex A ) spectrum. 
The principal role in the determination of the scattering data 
is assumed by the normalized solutions of the system (2.3), 
viz., the Jost functions, which are introduced in terms of the 
asymptotics 

( X )  ( e ) ,  x '+~ ,  

The behavior of the Jost functions at - cc and + cc is char- 
acterized respectivity by two complex functions of A-the 
scattering data a (A ) and b (A ) : 

We consider hereafter only a situation in which the co- 
efficient is not equal to zero for any A, i.e., there is no discrete 
spectrum." The determination of the solution r ( x , ~ )  from 
the initial condition is the subject of the inverse-scattering 
problem, on which we shall not dwell in detail, referring the 
reader to the original paper%nd to Ref. 1 1 (pp. 247-25 1 ) . 
We shall use hereafter only one result of the inverse-problem 
method. This result enables us to express the asymptote of 
the function J ~ ( x , T )  l 2  at large values of T in terms of the 
scattering coefficient a (A) (Refs. 9 and 1 1 ): 

As indicated in Ref. 11, one can determine from (2.5) 
the radiation-intensity distribution in nonlinear Fraunhofer 
diffraction by a slit. Since Eq. (1.3) itself is valid only for 
diffraction by small angles 8, the intensity of the radiation 
diffracted in the angle interval from 6' to 8 + dB can be writ- 
ten in the form 

For Fraunhofer diffraction in a focusing medium (tt > 0) ,  
when the amplitude of the incident electromagnetic wave is 
constant, E ( x )  = E, = const (the Manakov problem9), the 
solution of the scattering problem yields 

x=x (h) = (AZ+ ( ro (2)"', 

ro= ( 1  ~ 1 1 2 )  '"Eo. 

Therefore 

(2.10) 
This equation is valid if the initial conditions do not lead to 
waveguide channels (NES solitons), i.e., so long as the inte- 
grated intensity Ii,, = I, = IEo12L is less than9 

Focusing medium 

We proceed now to investigate, within the framework 
of the nonlinear parabolic equation ( 1.3), the diffraction of a 
random electromagnetic field. It is natural to consider first 
the case of a partially incoherent beam, when the complex 
envelope of the electric field in the screen plane (z = 0 )  has 
besides the stationary component E, also a small component 
E(X) that is a random function with paired correlators 

( E  (x) E (x') )=a12B1,(x-x'), (2.12) 

( E  (x)E*(x') )=a22D,,(x-x'), (2.13) 

where the subscripts 1, and 1, were introduced to denote the 
correlation radii, and the angle brackets stand for averaging 
over all the realizations of the random function ~ ( x ) .  We 
note that the functions B,, (g) and D ,  (c) must satisfy the 
obvious relations 

Bl,(E)=BL,(-E), Dls(E)=Dlz*(-E). 
The weak-incoherence condition means that perturbation 
theory can be used in the calculation of the properties of the 
diffraction pattern. 

The starting point in the calculation of the radiation 
intensity in the Fraunhofer zone is the general equation 
( 2 . 6 ) .  Recognizing that the Jost coefficient is a functional of 
the amplitude of the electromagnetic field incident on the 
slit, i.e., 

a=a{ro+q, r0*+q8}, 
where 

q-q (x) = ( x / 2 )  (x) , (2.14) 

the function f = lnla(R) I -' can be expanded in a functional 
Taylor series in powers of 77 (x )  and r]* (x )  . After averaging 
over the realizations of the random function [ ~ ( x )  and 
'I* (x )  1, we obtain the average intensity of the diffracted ra- 
diation in the form 

Here (dI/dO), is the coherent-diffracted-field intensity, 
which takes the form (2.10) at x > 0, and the correction 
accounts for the incoherence of the radiation and is deter- 
mined by the random-function correlators: 

where 
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1 + --- 
a" ( h )  

Q ; 2 ( ~ ) q i * 2 ( ~ f ) ]  ~ ~ ~ ( x - x ' ) }  +- (2.16) 
a" ( h )  

We use now the explicit forms of the Jost functions, obtained 
directly by solving the scattering problem (2.3), and make 
the change of variables 

x-xl=E, x+xf=b. 

The integral with respect to f can then be easily calculated, 
and ultimately the general expression for the correction to 
the average intensity of the diffracted radiation is 

Here 

1 
Ao (E) = - eaALQ ( L - t )  + - e-2ihLQ(E-L). (2.18) 

a2 (A) a" (A) 
1 1 

At ( E )  = - eZiALP (E-L) + - e-2ihLN(S-L), (2.19) 
a2 ( A )  a*' ( h )  

where 

( z )  = c{ I 12-W' sin 2 ~ z + 4 i h  sin2 xz 
4xk 2% . . 

- Z z  [ I ro I 2 - i / 2  (x2+h2) ] cos 2 ~ z f  ixh sin 2 y } ,  (2.20) 

{ -2z [ I ro 1 ' / ,  (x2+h') 'cos 2x2 P ( z ) = -  
4%' 

+2ixI. (~'+h') sin 2xz 

It is easy to verify that the correction G ( 8 )  to the aver- 
age intensity of the diffracted radiation alters the intensity at 
the point of the principal diffraction maximum [9] 

( d I ( e ) / d a ) , , = ( k l n ~  jln{cos-'[ ( l 0 x L / 2 ) " ]  ) 

by an amount 
L 

2k 
- a , ' ( ~ r ~ l c o s ' l r ~ l ~ ) - ~ ~  nx2  d ~ ~ [ l r ~ l  ( E . - - L ) I D I ~ ( E ) ,  

0 

(2.23) 

where 

F ( x )  = sin ~ x - ' / ~ x  (if2 cos2 x )  . 
For example, the value of (2.23) for the correlation function 

DI,(E.)=(1/212)ex~(-1E1/12) (2.24) 

is easily calculated in explicit form and becomes equal to 

In  addition, tl-e - cations of the diffraction rriaxima and 
minima are ch.~,.;ed respectively by amounts 

where 8 and 82; are the positions, determined from 
(2. l o ) ,  of the maxima and minima of the radiation. 

Since the instant of waveguide channel (NSE soliton) 
formation is determined by the onset of a singularity in the 
first term of (2.15), the criterion for the formation of the 
waveguide channel in terms of the dc component of the inci- 
dent-wave amplitude remains the same as before, I, 
= I Eol 2L <I,, , where I,, is defined in (2.1 1 ) . The average 

intensity of the incident radiation, however, is now 
I 

(I,,,.) = I < IE(x .0)  1 ' )  dx =IEo12 L+o11DI.(O)L. (2.25) 
0 

At average incident-wave intensity, the condition for forma- 
tion of a waveguide channel is therefore 

The validity of the employed perturbation theory is gov- 
erned by the extent to which the second term in (2.26) is 
small compared with the first. Our equations (2.16)-(2.22), 
as well as the correction (2.23) to the principal maximum, 
are therefore valid at 

The presence of weak incoherence of the diffracted 
beam leaves thus the overall picture of the nonlinear Fraun- 
hofer diffraction unchanged. Allowance for this incoherence 
alters the form of the diffraction dependence of (dl(O)/d8 ), 
as well as the condition for the formation of the waveguide 
channels. The calculations demonstrate, however, the gen- 
eral character of the change in the diffraction pattern when 
the incident-field incoherence is allowed for, viz., the direc- 
tions of the shifts of the diffraction minima and maxima, the 
broadening of the diffraction peaks, and the strengthening of 
the conditions for waveguide-channel formation. 

Defocusing medium 

The medium is defocusing if the nonlinearity parameter 
x in ( 1.3) is negative. Accordingly, at ?t < 0 ,  the squared 
modulus of the Jost coefficient a ( A ) ,  which determines as 
before the intensity of the diffracted radiation, is 
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la(h) 12=[h2-lro12 cos2 ~ ( A ) L ] / ( h ~ - ( r ~ l ~ ) ,  (2.27) 

where 

z(A) = (A2- IrO 12)"a. (2.28) 

Taking into account all the changes necessitated by the nega- 
tive sign of the nonlinearity in ( 1.3), we can formulate the 
final result as follows: The average intensity of the diffracted 
radiation is determined by Eq. (2.15), where (dI(0) /d0) ,  
for a defocusing medium must be taken to mean Eq. (1.6) 
with the reflection coefficient defined by (2.27), while the 
correction G ( 0 )  needed to account for the weak incoherence 
of the diffracted wave is described by Eqs. (2.16)-(2.22), in 
which we must substitute a: - - u:, x(A) - i ( A ) ,  i ( A )  is 
defined in (2.28). 

3. NONLINEAR DIFFRACTION OF THE RANDOM FIELD 

The perturbation theory used above is restricted to suf- 
ficiently small values of the random-field variance. For cor- 
relation functions such as (2.24) (when the variance is in- 
versely proportional to the field-correlation radius) this 
imposes a lower bound on the field correlation radius in the 
screen plane. To investigate the evolution of the large-vari- 
ance beams we must solve exactly a stochastic nonlinear 
problem. Since the propagation of a quasimonochromatic 
wave in a nonlinear medium is described by an exactly inte- 
grable NSE, the inverse-scattering problem yields, generally 
speaking, the solution for an arbitrary realization of the field 
in the screen plane. What is important in this case is that the 
intensity distribution in the screen plane (which serves as 
the initial condition) is limited by the slit dimensions, i.e., we 
can use for it the inverse-scattering-problem method in the 
classical formulation. The random initial conditions can be 
governed by the incoherent character of the source, for ex- 
ample by partial incoherence of the laser pulse, or by the 
randomness of the screen (as the beam passes through a nar- 
row layer of a randomly inhomogeneous medium). For 
propagation of an incoherent pulse, interest attaches to its 
statistical properties. We confine ourselves to calculation of 
the mean beam intensity in the Fraunhofer zone. 

We turn to the inverse-scattering-problem method. The 
solution of the NSE is determined by scattering properties of 
the corresponding Zakharov-Shabat system (2.3), where 
the potential r ( x )  should be taken to be the initial condition 
of the problem (the intensity distribution in the screen 
plane). In the present section we assume for simplicity that 
the incident wave has no regular component at all, and con- 
sider the diffraction of an essentially incoherent field, when 
r ( x )  is a random function. 

The nonlinear-diffraction problem can be solved by the 
following procedure. The distribution of the beam in the 
screen region is used to determine the statistics of the scatter- 
ing properties of the Zakharov-Shabat system. The inverse- 
problem method is used to reconstruct from them the statis- 
tics of the NSE solutions, after which the radiation 
characteristics in the Fraunhofer zone are calculated. 

We seek the solution of (2.3) in the form 

A,(c(x-L, A) +BL$(x-L, A), x>L, 
A (x)q(x ,  h)+B(x)$(x, A), O c x t L ,  

A,rp(x, ).), x t O ,  

where p and t/~ are defined in (2.4). I t  is easily verified that 

the functions A(x)  and B ( x )  satisfy respectively the equa- 
tions 

d~ /dx=i r* (x )  e-2'LA(x) sgn x ,  

with boundary conditions 

We introduce an auxiliary reflection coefficient 

According to the "immersion" method, it is easy to derive 
for the reflection coefficient R ( L )  ( L  is regarded here as the 
argument) the equation 

with initial condition R ( L  = 0 )  = 0. 
Equation (3.3) is the fundamental for the study of the 

diffraction of essentially incoherent radiation in a nonlinear 
medium. 

Focusing medium 

Consider the problem with real initial conditions. This 
case corresponds to propagation of a linearly polarized 
wave. We assume the field in the plane of the screen to the 
Gaussian with statistical characteristics 

To  find the statistics of the scattering data, we consider Eq. 
(3.3). I t  is convenient to write the reflection coefficient in 
the form 

inasmuch as by virtue of (2.6) the average beam intensity in 
the Fraunhofer zone is determined by the modulus of the 
reflection coefficient, i.e., by the function 9 ( L ) .  We are 
consequently interested in the one-parameter probability 
density. Substituting 

we obtain from (3.3) and (3.5) the system of equations 

dY/dL=r(L) cos (2AL+6), (3.7a) 

dD/dL=-2r(L)sin (2hL+6)ctg 2Y. (3.7b) 

The system (3.7) is analyzed by known methods." We 
introduce the probability density 

where, as before, the angle brackets denote averaging over 
all the realizations of the random function r ( L ) .  Using the 
standard procedure, we obtain an equation for P ( x  ,, x,; L ) : 

where 

a,= cos (2AL+x2), B,=-2 sin (2hL+x,)ctg 22,. 
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It is impossible to find an exact solution of (3 .9) .  We analyze 
the solution by using two facts mentioned above: first, since 
we are interested in nonlinear Fraunhofer diffraction, we put 
AL < 1 < 9& 1 ); second, the use of the variables introduced in 
(3 .5 )  allows us to confine ourselves to one-parameter prob- 
ability density forx,.  Integration with respect to x ,  reduces 
(3 .9 )  to the form 

dP1 -- dLP1 
oL 7 

d L 8x1 

I d L  a 
= 0 2 { I F  + ctp 2xl - - z sin-' zx,} (&Pi) . (3 .10)  ax, 

We have introduced here the notation 
, 

P,  = J dx2 I-'(x,, z,; L ) ,  
0 

n 

j3 = j dx2cos[z(2kL+x.) lP(xl.x2; L ) ,  
0 

where P,  is the probability density of interest to us. We solve 
the resultant equation by iteration. To this end, we consider 
first the probability density P,(O) for the intensity on the 
axis, which describes the radiation diffracted through zero 
angle ( A  = 0 ) .  It is easily seen that a solution of ( 3 . 3 )  with 
allowance for (3 .5 )  is 

I. L 

X 
= tg 1 ( )  1,  q =-;sgn J r ( z )dx .  (3.11) 

L 0 

The probability density for 9 is determined from ( 3.9). 
At P = P I  we have, with allowance for the initial condition 
( d P / d 9 ) ,  = 0  and the boundary condition 
P ( L  = 0 )  = S ( x l ) ,  

rn 

A general expression for the average intensity is 

Expression (3.12) therefore determines completely the in- 
tensity of the radiation diffracted through zero angle: 

m 

2k (-1)" exp (-4n2021)] . 
,,=I 

n 

It is curious that a similar analysis of random fields with 
arbitrary correlation radii leads to a result obtained from 
(3.14) by the simple substitution 

whereB({ - { ') = ( r ( { ) r ( f  ' ) ) ,and takeconsequently into 
account the dependence of the average intensity on the 
beam-inhomogeneity scale. 

It is easy to obtain from (3 .14)  in the linear limit 
(I&% - 0 )  the well known value of the intensity of diffract- 
ed radiation propagating in a linear medium: 

where I, = 4a2/?t is the incident-wave intensity determined 
from the condition ( E ( x ) E ( x l  ) ) = I,S ( x  - x')  . 

In the limiting case of strong incoherence ( I , J x  $ 1  ) 
the sum in (3.14) is exponentially small compared with the 
first term in the square brackets. We get therefore 

We proceed now to study small-angle diffraction 
(0  # O ) .  At A L  << 1  we must substitute in the right-hand side 
of (3 .10)  the unperturbed value of the probability density. 
As a result we obtain a solution with an initial condition 
P I I L = O :  

03 

( 1 )  P ,  ( x i ;  L )=  -- 16" 2n cos(2nxl)erp[- ( ~ r i o ) ' ~ ]  
a-co"=, 

(3.15) 

With (3 .15)  taken into account, an expression can be ob- 
tained for the intensity of the small-angle diffracted radi- 
ation. This expression is too unwieldy to present here. 

Defocusing medium 

We assume, as before, that r ( x )  is a Gaussian random 
function with statistical properties (3 .4) .  It is convenient 
then to introduce the functions and 8 defined as 

B =p-ZhL-~/2 ,  (3 .16)  

V=arcth %!='I2 111 [ (1+92)/(1-5e)], (3 .17)  

97 and q, are respectively te amplitude and phase of the re- 
flection coefficient defined by Eq. (3 .5) .  

Taking (3.16) and (3 .17)  into account, we get from 
(3 .3)  

dY/dL=-r(L)cos (2hL+6), (3 .18)  

d6/dL=2r(L) sin (2kL+O)cth 2 Y .  (3 .19)  

We introduce the probability density defined by (3 .8) .  
We obtain as before for the one-parameter probability 

density P ( x , , L )  an expression that describes the intensity of 
the diffracted radiation: 

d + cth lr, - - 2 ch-' 2xl] (Pi-P). ( 3 - 2 0 )  
d ~ r  

The notation here is the same as in the preceding subsection. 
We find first the zero-angle-diffracted radiation. Equa- 

tion (3 .3)  is easily solved explicitly: 

For P 1'' ( x , ; L )  we have correspondingly 
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P, '~ '  (x,; L) = 
1 

20(nL)Ih (1-xi2) 

In2[ ( l+xi) /  (1-xi) I x exp {- 
1602L 

} (3.22) 

and the average intensity is given by 
CO 

In the limiting case we have from (3.23 ) 
k l n 2 / n I x ( ,  02LB1, 
2k02L/n I ?I 1, 02L<1. 

Note that the argument of the logarithm in the integrand of 
(3.23) does not vanish at any value of y, meaning that no - 
waveguide channels can be produced in a defocusing medi- 
um. The analogous equation for a focusing medium con- 
tained an integrable singularity. 

The probability density describing the non-zero-angle 
diffracted radiation is 

L 

Validity of the approximations employed 

We now discuss briefly the validity of the employed ap- 
proximation with a 6-correlated random field r ( x ) .  The va- 
lidity question is raised for two reasons. First, the S-correlat- 
ed field model can strictly speaking not be used to study 
nonlinear Fraunhofer diffraction, since the condition for the 
validity of the inverse-scattering-problem method used to 
obtain the main results is absolute integrability of the func- 
tion r (x ) ,  which is certainly not met for a S-correlated field. 
Second, the nonlinear parabolic equation that describes the 
self-action of a nonlinear wave is applicable for quasi-planar 
packets. This means that the scale of variation of E ( x )  in a 
plane perpendicular to the wave-propagation direction must 
satisfy the condition I<k -'. The equations obtained above 
must therefore be regarded as first-order approximations in 
the small parameter I /L, where I is the scale of the beam 
inhomogeneity (the correlation radius) and L is the charac- 
teristic length over which the system parameters vary (the 
slit width). The interval of the modulus of the beam intensity 
over the entire screen area must therefore be bounded. For 
the described approach to be valid it is necessary to meet 
definite compatibility conditions. These are easily obtained 
from the exact form of the equation for the probability den- 
sity of a beam with arbitrary inhomogeneity scale, by writing 
down the conditions under which the scale of variation of the 
beam correlation function in the screen plane is a minimum 
in all the integrals contained in this equation. A straightfor- 

ward but rather cumbersome calculation leads to the condi- 
tion 

where A- k0 and IJ is the intensity of the fluctuations [see 
(2.4) 1. The inequalities (3.24) is thus the condition for the 
validity of the 6-correlated-field approximation. These in- 
equalities lead finally to the condition for the validity of the 
proposed theory 

Allowance for the finite correlation radii yields a much more 
complicated dependence of the diffracted-radiation intensi- 
ty on the slit width and on the diffraction angle. 

4. CONCLUSION 

We have considered nonlinear Fraunhofer diffraction 
of a spatially incoherent wave. Obviously, the questions in- 
vestigated are but part of the problem of random-field propa- 
gation in substantially nonlinear media even in the case of 
the simplest exactly integrable mode. I t  remains, for exam- 
ple, to develop a rigorous correlation theory for a nonlinear 
random field, to calculate the statistical characteristics of 
the diffracted radiation, to determine the stochastic proper- 
ties (not only the asymptotics) of the field along the entire 
propagation direction, and others. Another urgent task, in 
our opinion, is further development of methods for statisti- 
cally describing the solutions of nonlinear partial differential 
equations with random initial conditions, and finding re- 
sults, similar to those given above, for other nonlinear equa- 
tions, particularly those for which the inverse-scattering- 
problem method is applicable. We have in mind here the 
study of the dynamics of pulses, randomly specified at the 
initial instant, in essentially nonlinear systems. 

The authors thank A. M. Kosevich and L. A. Pastur for 
helpful discussions and advice. 
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