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The properties of a v beam can undergo the strongest changes in the adiabatic regime over a 
wide range of energies. The adiabaticity condition is discussed; the relations describing the v 
oscillations in the adiabatic regime are derived; the divergence of neutrino packets in matter 
are considered. A geometric representation of the v oscillations is described. 

1. INTRODUCTION 

Vacuum neutrino oscillationsl become modified in 
matter.'.' The effect of the medium is due to elastic scatter- 
ing of the neutrino by "zero" angle from the electrons and 
nuclei, and reduces to the appearance of various refractive 
indices for the waves describing the motion of neutrinos (v, , 
v,, ... ). 

The influence of the motion is resonante4 The depen- 
dence of the effective-mixing parameter - sin2 28,, on the 
density of the medium (p )o r  on the neutrino energy (E,, ) 
has a Breit-Wigner form: at definite p or E the mixing be- 
comes maximal (sin' 28, = 1 ), sin2 28, decreases with in- 
creasing distance from the resonant value o f p  or E ,  and the 
width of the peak ( Ap, or AER ) is proportional to the vacu- 
um mixing sin 28. The meaning of the resonance is the fol- 
lowing. 

1. At resonance, the frequency characterizing the exter- 
nal medium is equal to the natural frequency of the system 
(mixed neutrinos). The quantity I ,  oc (GFp) - ', the proper 
length for the medium, is equal at resonance to the neutrino 
vacuum oscillation length I ,  = 4n-E /Am2: I ,  = 1, (84 1 ) 

large: d =m,/GF -- 3.5. lo9 g/cm3 (there m, is the nucleon 
mass and G, is the Fermi constant. These effects are used in 
neutrino astrophysics and geophysics. Neutrino oscillations 

in cores and were considered in this context in the sun,435.X-'0 ' 

envelopes of collapsing in the earth,".' and in the 
early universe. 

The present paper is devoted to neutrino oscillations in 
the adiabatic regime. The adiabaticity conditions were for- 
mulated in Refs. 4,7, and 9, where the principal characteris- 
tics of the neutrino oscillations in the adiabatic regime were 
presented. We derive here the previously published results 
and obtain new relations concerning the adiabatic regime. A 
discussion of the evolution of the eigenstates of neutrinos in 
matter is given in Sec. 2 and is followed (in Sec. 3)  by formu- 
lation of the adiabatic condition and an explanation of its 
meaning. Relations describing the oscillations in the adiaba- 
tic regime are derived in Sec. 4. In Sec. 5 are considered next 
effects of divergence of neutrino packets; a graphic represen- 
tation of neutrino oscillations is described in Sec. 6. Realiza- 
tions of the adiabatic condition in specific objects (sun, enve- 
lopes, supernovas) are the subject of Sec. 7. 

(Ref. 4 ) .  
2. The influence of the medium can be described with 2. EVOLUTION OF NEUTRINO EIGENSTATES IN MATTER 

the aid of a potential that changes the effective masses of the Consider the mixing of two neutrinos, e.g., v, and v, : 

oscillating neutrinos."he effective masses of the neutrinos 
are equal at resonance. In other words, the natural frequen- 
cies of the "weakly coupled" oscillators are equal, and the 
oscillations of one of them can be completely transferred to 
another. 

3. At resonance the mixing is a maximum: 8, = 45", 
and if neutrinos that are eigenstates of weak interactions are 
created in a medium of density p = p E ,  their oscilllations 
have maximum length. If a continuous energy spectrum is 
generated in a medium of constant density, the neutrino os- 
cillations will be resonantly amplified in the energy range 
( E R  - AER ) to ( E R  + AER 1. 

The manifestations of resonance (of the resonance con- 
dition) in inhomogeneous media depend on the character of 
the density variation. If the density varies slowly enough, the 
oscillation regime is adiabatic.47677 Practically total conver- 
sion of one type of neutrino into another is then possible in a 
wide energy interval. In media with variable density, the 
depth of the oscillations is no longer uniquely connected 
with the mixing angle 8,. Conditions are possible, and are 
quite realistic, under which, even in a resonant layer 
(p  =p,  ), this depth is close to zero ("nonoscillatory neu- 
trino conversion") .6.7 

The medium exerts substantial effects if its thickness is 

Here c = cos 8, s = sin 8 (6 is the mixing angle in vacuum), 
v,  and Y ,  are states with definite masses m ,  and m2.  

The equations of evolution in a medium for wave func- 
tions v, ( t )  and v, ( t )  (Ref. 2 )  can be written in the form 

A 

where vz = (v, ,v, ), and M is the evolution matrix: 

A 

The matrix elements in M satisfy the relations 

hf,+M,= (m12+m22)/2k+Z,+X,, 
M=M,-M,=(Am2/2k)cos 20+2,-X,, ( 3 )  

2B=-sin 28(Am2/2k), 
where k is the neutrino momentum, 
Am2 = m: - m:, 8, ( a  = e,p) are quantities that take the 
effect of the matter into account2: 
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( fai (0) is the amplitude of forward scattering of Y, by the 
ith component of the medium, and ni is the density of this 
component). 

Equations ( 1 ) are in effect Schrodinger equations from 
which are omitted factors that influence equally the phase 
velocities of v, and v, . We define the effective density of the 
medium as4 

G, is the Fermi constant, m, is the nucleon mass, and 
Af;(O) = f,, (0)  - fpi(0) .  Recall that faGk, so that 
peK a m,n,. For simplicity, we omit hereafter the subscript 
"eff." The expression for Mcan be rewritten with the aid ofp 
in the form 

where 
m,Am2 cos 20 

PR = 
2.2'"GFk 

is the resonant den~ i ty .~  
We introduce now the eigenstates. The states v i  

= (vim, v2, ) that diagonalize the evolution density M 
in( 1 ) will be called the eigenstates of the neutrinos in the 
medium. By definition, 

where the matrix 

cos 0, sin 0, s =( 
-sin 0 ,  cos 0, 

is defined by the condition 

h 

Here Md is a diagonal matrix: Md = diag(Mf,M?). In the 
matrix 5, the angle 8, that establishes according to ( 6 )  the 
connection between the eigenstates of the weak interactions 
Y, = (Y,, vp ) and the eigenstates in the medium, is called 
the angle of mixing in the medium. Taking (2)-(5) into 
account we get 

sin 2 0 , = 2 Z / ( M ~ + 4 a ~ ) ' ~ .  (9)  

Relations (3 )  and (4)  allow us to rewrite (9)  in the form 

sin 28,=tg 20 [(1-p/pR)2+tg2 20]-'12. (10) 

According to (6)  we have v, = 5 -'va and the angle 8, 
determines the "flavor," i.e., the v, , vm makeup of the eigen- 
states of the neutrinos in the medium. 

Two important conclusions follow from ( 10). 
1.8, varies in a medium of variable density, and conse- 

quently the "flavor" of the eigenstates vim changes. Whenp 
is decreased fromp %p, top gp, the value of 8, decreases 
from i7/2 to 8. If the angle 8 is small, the "flavor" vim is 
almost completely altered. If, for example, vim consisted at 
p >p, mainly of Y, , at p <p, the "electronic flavor" will 
predominate v i m ,  viz, vlm zl /e.  

2. The dependence of sin2 28, onp has a resonant char- 

a ~ t e r , ~  with a maximum sin2 28, = 1 at p = p, ; the half- 
width of the resonance at half maximum is 
ApR = pR tan 28. 

Let us find the evolution equations for the eigenstates of 
neutrinos in matter. It follows from (6)  and ( 1 ) that 

Using the expressions for sin 28, as a function of p [see 
( 10) I ,  we get 

where 

With allowance for ( 12), the evolution equations ( 1 1 ) for 
the eigenstates v,, and Y,, ( 11) in matter take the form 

In a medium of constant density the solution of ( 14) is tri- 
vial: 1) 8, = 0; the vim diagonalize the entire system of 
equations ( 14) and consequently are eigenstates of the Ham- 
iltonian 

2)  8 = const, meaning that the "flavor" IY,, ) does not 
change in the course of the evolution. The zg ctvp oscilla- 
tions have then the usual form with - an average depth deter- 
mined by 8, ( A ,  = sin2 28,, P = 1 - sin2 28, /2), and 
with a length 

1,=2n/ (Mtd-M,d)  =2n/ ( M 2 + 4 M 2 )  'I2. 

In a medium with variable density, the evolution matrix v, 
is not diagonal, and the v, ( t )  are not conserved: transitions 
Y,, ++vZrn are realized during the propagation. 

3. ADlABATlClTY CONDITION 

Assume that the density changes in the course of propa- 
gation: 8, #O. Let us find the condition under which the off- 
diagonal elements in the matrix (14) can be neglected. We 
call this hereafter the adiabaticity condition. Since 8, a dp/ 
dt, the adiabaticity presupposes a rather slow variation of the 
density. 

The off-diagonal terms in ( 14) have little effect on the 
evolution of the states vim if the "frequency" connected with 
8, is much lower than the "frequencies" generated by the 
diagonal terms. The lowest of them is given by the difference 

meaning that the adiabaticity condition is written in the 
form 

This relation can be made more accurate. From the system 
(14) we obtain the following equation for the probability 
P, = lv,, ( t )  l 2  of the v,, -+Y,, transition: 

[Md is defined in ( 15) ] ; the terms containing 8, are left 
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out. According to ( 16), the change of P I ,  due to the time 
dependence of Om, is equal to AP, = e 2, /(Md ) ', and there- 
fore the adiabaticity condition takes the form 

The ratio 8 2, /(Md )2 determines the accuracy of the adiaba- 
tic-approximation results. 

The inequality ( 17) must hold at all instants of time, 
but it is most critical in the resonance layer from 
(p,. - ApR ) to (pR + ApR ). In fact, on the one hand 8, 
contains besides dp/dt ( 13) a factor that increases resonant- 
ly asp -pR , and on the other hand 1, is a maximum in the 
resonance layer: I % = I, /sin 28. In addition, it is precisely 
in the resonance layer that the strongest changes of the com- 
position of the neutrino beam takes Therefore, 
even if the condition ( 17) is violated outside the resonance 
layer, this will not lead to a substantial change of the results. 
At p = pR it follows from ( 13) that 

Substituting eR, in (17), we obtain the adiabaticity condi- 
tion for the resonance layer: 

where 

is the spatial width of the resonance layer. At 2ArR >I R, 
(Refs. 4, 6, 7) the inequality (17a) holds. Hence the gist of 
the adiabaticity condition: the density of the medium must 
vary so slowly that at least one oscillation length in the sub- 
stance decreases in the layer. 

4. NEUTRINO OSCILLATIONS IN THE ADIABATIC REGIME 

We say that the oscillations occur in the adiabatic re- 
gime if the inequality ( 17) holds. The eigenstates vim of the 
neutrinos in the medium diagonalize in this case the system 
( 14) and are thus approximately the eigenstates of the Ham- 
iltonian. From ( 14) we get 

IV, , (O> = 1vim) erp  [-i J d t ' ~ : ( t ~ )  I .  (18) 
0 

The features of the adiabatic regime are the following: 1 ) the 
eigenstates vim evolve independently and the transitions 
v,, f-'v2m can be neglected. 2) The "flavors" (v, , v, com- 
position) of the eigenstates vim change. We emphasize that 
in contrast to the case of constantp, when the (v, , v, ) com- 
position of vim is constant, the "flavors" vim vary here in 
accordance with the variation of Om, and hence of the den- 
sity of the medium. This leads to substantial changes of the 
Y-beam properties. 

Consider the evolution of the eigenstates of weak inter- 
actions. Let electronic neutrinos be produced in a layer of 
density p,: 

po and the resonant density p, , the latter fixed by the values 
of k, 8, Am2 (5),  determine in accordance with ( l o )  the 

mixing angle 8; in the medium at the instant t = 0. This 
angle specifies the admixtures of the eigenstantes in the ini- 
tial state of the neutrino: 

Since the vim evolve independently in the adiabatic regime 
and the transitions v,, +vZm can be neglected, the admix- 
tures v,, and vZm in a given neutrino state do not change 
with time. They are equal to the vim admixtures ( 19) at the 
initial instant. For an arbitrary instant it follows hence that 

Substituting the time dependences of vim ( t )  known from 
( 18 in (201, we obtain the evolution of the neutrino state 

+ sin emo e r p  (-i J M: dtl) I Y,.). (21) 
0 

We determine now the probability P ( t )  of observing v, 
in a state v( t )  at an instant t. To this end we must take into 
account the change of the "flavors" of the eigenstates. By 
definition, 

where 8, ( t )  is the mixing angle in the matter at the instant t. 
Taking (22) into account, we find the probability amplitude 
(accurate to a common phase factor) 

<v. 1 v ( t )  ) = cos Omo cos em + sin emasin 0. e rp  [ -i 5 dl' M " ]  , 
0 

where Md r M  ;I - M f. This gives the sought probability 

where the mean value is 

P (t) =cos2 Om0 cos2 B,+sin2 Om0 sin2 0, (24) 

and the oscillation depth is 

The quasiperiod of the P ( t )  oscillations is, according to 
(231, 

T=2n/Md.  

The probability of the v, +v, transition in the adiabatic re- 
gime is thus a quasiperiodic function that oscillates about a 
mean value F ( t )  with amplitude A ,  ( t ) .  

We consider now the properties of the oscillations in the 
adiabatic regime. First, the solution obtained for the prob- 
ability is universal. The mean value 7 and the oscillation 
depth A ,  are functions of one variable 8, and of one param- 
eter-the value of 8, at the initial instant. The value of 8, is 
determined by the density at the given instant of time. There- 
fore A ,  and F ( t )  are functions of the localp, independent of 
the specific density distribution. The values of A ,  are the 
same in layers having the samep; they are also independent 
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of the oscillation period. The dependences of A and P on 
Am2, 8, E, and t are contained in 8, and 8 0,. 

It is convenient to introduce in place of 8, the dimen- 
sionless variable n which is directly related to the density6: 

Obviously, n is the deviation of the given density from 
the resonant value and is expressed in units of the half-width 
of the resonance layer (n = 0 at resonance). The connection 
between n and 8, follows from ( 10) : 

sin 2€t,=(n2+I)-'". (27) 

ues of A,  and 55 are independent of the density distribution, 
i.e., of the values of n at the intermediate instants of time. If 
both densitites po and pf are larger or smaller than p, , then 
no and nf are of equal sign and Pf > 1/2 in accordance with 
(28). If one of the densities po and pf is larger than p, and 
the other is smaller, then no and nf are of opposite sign and 
Pf < 1/2. The averaged suppression effect is > 2 if the neu- 
trinos cross the resonance layer. For actual applications, in- 
terest attaches to the case when the neutrinos are produced 
in dense layers and then go out into a region with p =: 0. In 
this case nf = - l/tan 28 and the oscillation parameters at 
the exit take the form 

The initial condition is fixed by the value of no, viz., 
sin 28 0, = (n i  + l)-ll'. Substituting (27) in (24) and 
(25) we get 

- 1 
P = - { I f  n,n[ (n2-I-I) ( n 2 f  I) I-'"), 

2 
(28) 

which coincide with the values published in Refs. 6 and 7, 
and are universal functions of n (Fig. 1).  Let us examine 
their properties.   he probability Pis  a monotonic function of 
n: it decreases monotonically with n at no > 0 and increases 
monotonically at no < 0. At no = 0 we have ?i = 1/2 (cre- 
ation at resonance). In the resonance layer itself -?i = 1/2 
independently of the value of no, The oscillation depth is a 
maximum at resonance (p  = p, ) : A f = (ni + 1 ) -'I2 

(Ref. 6)  and decreases with increasing deviation ofp  from 
p,. We emphasize that the oscillations with maximum 
depth A, occur only in the resonance layer and only at 
no = 0, i.e., when the initial density is equal to the resonance 
value. 

As Inol + co the amplitude of the oscillations increases: 
/ A ,  a l/no, and the neutrino propagation turns into a nonos- 
cillatory conversion of one type of neutrino into the 
The dependence of the average probability P on n converges 
to the asymptotic value = f [1 + n (n2 + 1) ] -'I2. The 
limit /no/ - co corresponds to neutrino creation either in lay- 
ers of high density, p )pR or at p =: 0 and very small sin2 20. 

Let us determine the values ofPand A,  at the exit from 
the object. In the adiabatic regime, according to (28) and 
(29), the depth of the oscillations and the average probabil- 
ity are determined only by the values of n at the neutron- 
generation point and at the boundary (no and nf ). The val- 

FIG. 1. Average probability P and oscillation depth A ,  vs n for different 
initial conditions no (numbers at the curves). 

P,='12 [I-n, cos 201 (nO2+1) Apf=sin 20 (no2+ 1) -Ih. (30) 

The effect at the exit is determined only by the mixing angle 
in vacuum and by the initial condition no. The smaller 8 and 
the larger no, the stronger the suppression of the flux of neu- 
trinos of the initial type. At small and no- co we have - 
P 1/(4n: ) + sin2 0 4  sin2 8 (Refs. 4 and 6). The value JZ P' = sin2 8 corresponds to a nonoscillatory transition. 

Note that after passing through a layer of matter, the 
oscillations in vacuum are described by parameters ( 30) 
that differ from the usual vacuum values. The reason is that 
what emerges from the object is a coherent neutrino state vf 
that does not coincide with the weak interaction eigenstate 
v, or vm . In particular, there for a nonoscillatory transition 
vf ~ f v ,  (vi-is a finite state with definite mass) there are no 
oscillations in the vacuum. 

5. GRAPHIC DESCRIPTION OF OSCILLATIONS 

The oscillations can be represented by a definite geo- 
metric picture that clearly duplicate the results above. Con- 
sider first the case of vacuum or of a medium of constant 
density. Assume that the initially generated neutrinos are 
ve: v(0) = ve. The neutrino state at an arbitrary instant t 
can then be represented in the form 

I v ( t )  )=COS O,lvim>+ sin 0, exp[-i2nt/lm] lv2,) (31) 

(8, = 8, vim = vi, I ,  = I,, in vacuum). We have left out of 
(31 ) a common factor exp[ - i (E, t  - p , x )  ] that has no ef- 
fect on the oscillations, so that the coefficient preceding 
Iv, ) is independent of the time and is real. We introduce the 
orthonormal basis of vectors where 
{vm ) = {vf,, v;,, v:, 1, where vf,, vfm and v:, corre- 
spond to the real parts of the v,, and v,, wave functions 
and to the imaginary part of the v,, wave function. We set in. 
correspondence with the arbitrary neutrino state v( t )  a unit 
vector v ( t )  in the basis {v, ) such that the components of v 
along a {v, ) axis are equal to the probability amplitudes of 
observing vim and v ( t ) .  The state v(t) (16) at the initial 
instant is described by the vector v(0)  = {COS Om, sin e m ,  
0) at an arbitrary instant t: 

v (t) -= {cos Om, sin 8, cos (2nt/lm), sin 0, sin (2ztl1,) ). 

The evolution of v( t )  is equivalent to rotation of the vector 
about the axis vL ,  whereby v describes a cone with apex 
angle 8,. The period of the rotation is equal to the period 
T = I ,  of the oscillations (Fig. 2a). 

Electron and muon neutrinos correspond in the basis 
{v, ) to the vectors 
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FIG. 2. Graphical representation of oscillations: a)  case of vacuum or of a 
medium ~ i t h  constant density, b)  adiabatic regime, c )  graphic determin- 
ation of P and A, in the adiabatic regime, d )  jumplike change of the 
density at the instant t , .  

ve= {COS Om, sin Om, i sin em), 
v,,= {-sin Om, cos em, i cos em). 

The scalar product of v, and v ( t)  determines the probability 
amplitude of observing v, in the state v( t ) :  
(v, lv(t)) = (v,v(t) ). The change of the components of v 
along v, and v, in the course of rotation of the vector v 
about V& duplicates the oscillatory picture. 

To determine the depth of the oscillations A, and the 
average probability H in the case of constant density and of 
the adiabatic regime (see below), it suffices to consider the 
real plane of {v, ) and {v, ), a = e, p. The values ofA, and 
P are 

where (vfv),,, and (vfv),, are the maximum and mini- 
mum components of v along vf.  

In a medium of variable density, 0, is variable and ac- 
cordingly the basis {v, ) rotates relative to the vectors v, 
and v, . The relative positions of Cv, 1 and {v, 1 are unique- 
ly fixed by the density at the particular instant. The relative 
positions of {v, ) and {v, ) are uniquely fixed by the density 
at the particular instant. The motion of the vector v ( t )  de- 
pends then on the character (rate) of the change of the den- 
sity with time. 

In the adiabatic regime, the absence of v,, *v2, tran- 
sitions and the invariance of the admixtures of v,, in the 
neutrino state v(t) correspond to conservation of the angle 
of rotation ofv(t)  relative to v& (Fig. 2b). The evolution of 
v in the adiabatic regime constitutes rotation of the cone axis 
(i.e., the rotation angle of v ( t )  remains unchanged and is 
equal to the angle between v and v$ at the initial instant. It 
is easy to obtain from this expressions for A ,  and F. The 
maximum and minimum components of v along vf are equal 
to 

(veRv) rnar=~~~(0rn-9rn" ), (vCRv) m , n = ~ ~ ~ ( O m + O m O )  

(Fig. 2c). Substituting them in (32) we get (24) and (25). 
Note that here A, and 7 do not depend on the phase of the 
rotation. 

If the adiabatic condition is not met, the transitions 
v, ,  -v,, become important. The angle v( t)  of rotation 
around v ,, is not conserved in this case. The limiting case is 
a jumplike change of the density at a certain instant 
t, (p-p'). At this instant the position of the vector vf,,, 
changes abruptly, 0, (p) -0, (p'), and consequently 
vf, -vf;. At t > t,, the vector v ( t )  will rotate about a new 
position v f i ,  and the rotation angle will be equal to the angle 
between v and fl; at the instant tc (Fig. 2d). The values o fF  
and A, at t>tC depend on the phase of the system rotation 
phase at the instant t, .' If the adiabatic condition is met, 7 
and A, are determined not only by 0, (p) but also by the 
oscillation phase. 

6. DIVERGENCE OF NEUTRINO WAVE PACKETS 

The foregoing results correspond to a complete overlap 
of the wave packets that describe the motion of the eigen- 
states of the neutrinos in a medium. Just as in a vacuum, 
these states have different group velocities. The influence of 
the substance becomes noticeable over large spatial scales 
and in definite ranges of Am2. The wave packet divergence 
also becomes significant for these scales and ranges of AmZ. 

Let us find the group velocities v, of the eigenstates v,, 
in a medium of constant density: 

dE, d 
,),=-z- (k+M,d (k) ) = I + dM,d (k) 

dk dk d k 

Substituting here M from (8), we obtain for the arithmetic 
mean 

the same expression as in vacuum, and for the velocity differ- 
ence we have 

Here AvB = - Am2/2k is the difference between the group 
velocities in a vacuum. It follows from (33) that IAvm I de- 
creases as p approaches p R .  At resonance we have 
Avm = AvB sin 2 0 4  AvB. The quantity Avm vanishes at 
p = p;1 = pR /cos2 28 ( p i  is the resonance density for the 
v,ctv, oscillations in the medium). At p >p;1 the difference 
bum reverses sign and becomes in the limit 

The cause of this result is that in a dense medium (p%pR ) 
the group velocity of v,, is determined by the mass m,, and 
the group velocity of v,, , conversely, by m ,. At all values of 
p for the resonance channel (p/pR > 0) the interaction with 
the substance decreases I Avm I : 1 Avm I < AvB 1, and conse- 
quently decreases the divergence of the neutrino packets. 

We discuss now the effects of packet divergence for os- 
cillations in the adiabatic regime. The states vim evolve in 
this regime independently, and we can introduce for them 
definite group velocities vi. In contrast to a medium with 
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constantp, now ui and hum are functions of the density. The 
divergence of the packets over a path L is then 

L 

For the resonance branch we have I hum I < I AuB I, therefore 
Dcanbeestimatedat ID I < IAm21L / (2k 2).Thepacketdiver- 
gence can be neglected if D & cr,  where c r  is the length of the 
wave packet. At D 2 c r  the divergence effects are substan- 
tial. In media with p >pk and p <pk the divergences have 
opposite sign. Therefore if a neutrino beam propagates in a 
substance having a monotonically varying density and 
crosses the resonance layer, the packet divergences ahead 
and past the resonance layer will cancel each other. A situa- 
tion is possible wherein vim packets that have diverged in 
front of the layerp = pR become closer together behind this 
layer and the overlap is restored. 

We consider now the case of fully divergent packets 
(D$cr) .  In this case the oscillation depth is A ,  = 0. The 
probabilities of observing v, in the packets v,, and v,, are 
respectively 

The sum of these probabilities is 

Obviously, P, coincides with the average probability P for 
fully overlapping packets. Thus, the effect P(v,  -v, ) 
summed over the packets v,, when these packets had di- 
verged, coincides with the averaged probability for total 
overlap. In experiments in which the signals are averaged 
and summed over rather large time intervals, these cases are 
indistinguishable. 

If the divergence is not complete, the summed P, also 
coincides with P, and the depth of the oscillations is propor- 
tional to the overlap of the packets: 

Here A is the depth of the oscillations in the case of total 
overlap. 

If the adiabatic condition is not met, v,, *v2, transi- 
tions become significant, and the pattern of the packet diver- 
gence becomes more complicated. 

7. REALIZATION OF ADIABATIC REGIME IN SPECIFIC 
OBJECTS. SUPPRESSION FACTOR 

The adiabatic condition is met for a wide range of values 
of the parameters Am2 and sin2 20 in the sun4 and in enve- 
lopes and cores of collapsing stars.'.' The following are typi- 
cal consequences of the oscillations. 

The neutrinos created in dense central regions of the 
stars cross layers in which p ranges from p,,, to p,,, . The 
densities p,,, and p,,, determine in accordance with ( 5 )  
the resonance interval, i.e., the interval of E /Am2 for which 
the resonance condition is met inside the given object. We 
put E /Am2 = X. ThenX,,, = m, cos 28 /2flG,prn,, is de- 
termined by the maximum (actually, central) density, X,,, 
= mN cos 20 /2 aGp,,, . Given Am2, (X,,, -X,,, ) deter- 

mines the interval of resonant energy. This is just the interval 

in which strong neutrino conversion should occur. 
As p,,, - 0 we have X,,, -. cc . In this case the upper 

limit of the strong-conversion interval is determined either 
by the dimensions of the object ( R )  or by the adiabaticity 
condition. In fact, as X increases the length of the oscilla- 
tions at  resonance increases: I :  = /,/sin 20 = 4.nX/sin 20. 
Starting with a certain X, = min(2ArR, R ) ,  where Ar, is 
the spatial width of the resonance, the layer of matter be- 
comes too thin for a strong conversion to As a rule, 
the adiabaticity condition imposes the stronger restriction. 
At x > x ,  the effect of the material weakens. 

We shall describe the effect of the passage of the neu- 
trino through matter by a suppression factor P(X, sin2 20).  
By definition, P establishes a connection between the neu- 
trino-generation spectrum F,(E) and the spectrum at the 
exit 

F , ( E )  = P ( X ,  sill2 2 0 ) F 0 ( E )  

(we assume here averaging over the oscillations). Let us dis- 
cuss the properties of the suppression factor. We consider 
first a pointlike neutrino source in a region with 

P ( X ,  sin2 2 8 )  = P , ( X ,  sinZ 2 8 ) ,  

where% is the average probability at the exit (see Sec. 4).  At 
X < X, , i.e., in the region of the adiabatic regime, the effect is 
determined by the initial condition for no (30).  The depen- 
dence on X is contained in p, . Separating it explicitly, we 
can write the initial condition in the form 

whereX,, = m, cos 28 /2 v'2Gp,,-thisisthevalueofE /Am2 
at which the resonance condition is met for the initial density 
po Substituting (34) in (30) we get 

( X / X , - l )  cos 28 
P (x, x,, sinz 2 0 )  = ) (351 

Let us discuss the result (35) (see Fig. 3 ) .  The entire X- 
interval of the strong effect of the substance can be divided 
into three parts: 

A .  Region with resonanceon. AtXgX,  Eq. (35) leads to 
the vacuum result PB = 1 - sin2 20/2, A ,  = sin2 20. For 
these neutrinos there is no resonance layer in the object, and 
the effect of the substance is negligibly small. As X ap- 
proaches X,, P ( X )  decreases, and the depth of the oscilla- 
tions increases. X = X, is the point at  which the resonance is 
turned on: P = 1/2, the oscillations in the layer have maxi- 
mum depth. With further increase of X, the probability P 

FIG. 3. Suppression factor for flux of neutrinos of initial type as a function 
of X = E/Am' ( in  units of X, ) for different sin2 6' (numbers at the 
curves). Dashed line-suppression factor averaged over the neutrino- 
source distribution. 
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continues to fall and flattens out at a level corresponding to 
maximum suppression: P z s i n 2  8. The width A of the region 
in which Pchanges from P ' to  sin2 8 is proportional to sin 28; 
the smaller the mixing in the vacuum, the narrower the re- 
gion in which the resonance is on. The shape of the P ( X )  
curve recalls here the resonance curve. 

B. Maximum suppression region. AtX$Xoa, the nonos- 
cillatory regime conditions are realized: A,  ~ 0 ,  the effect at 
the exit depends little on the initial conditions and is deter- 
mined in practice only by the mixing angle: P = sin2 8. The 
value ofX, gives the upper limit of this region. X, decreases 
likewise with decrease of 8 and the region B becomes nar- 
rower. 

C. Region of violation of adiabaticity: X > X, . With in- 
crease of X, the value of P tends to unity and the form of 
P (X)  depends on the density distribution. 

In real objects there exists a spatial distribution Nv ( r )  
of the neutrino sources, and the neutrinos are produced in 
layers with different initial densitiesp,(r). The suppression 
factor, with allowance for the source distribution, is equal to 

where Nv is normalized to 

Averaging over the source distribution leads to the follow- 
ing: 1) The factor P turns out to be larger than the factor 
P(X, X,, 8) corresponding to production at the center with 
p, = p,,, . The left edge of the "tub" (Fig. 3 )  becomes less 
steep, and the region in which the resonance is on broadens. 
2)  P becomes dependent on the distribution of the density of 
the material. 3) The region of maximum suppression be- 
comes narrower. 

8. CONCLUSION 

The adiabatic-approximation results were obtained by 
us in terms of the effective mixing and of the evolution of the 
eigenstates of the neutrinos in the medium. This method 
seems most convenient for the description of v  oscillations 
and, in particular, for the transition to the case of oscillations 
in vacuum. There are also other methods. The evolution in 
the neutrino system can beJracked by considering directly 
the variation of the matrix M with density.9 Instead of equa- 
tions for the eigenstates one writes here an equation for the 
operator that determines the change of v im.  This method 
was used in Ref. 9 to obtain an expression for P f  at the exit. 

The average probability can be obtained from the differ- 
ential equation for P.6 Omitting from Eq. ( 1 ) of Ref. 6 the 
terms containing derivatives of order higher than the first, 
we get 

Integration of this equation with the initial condition - 
P = 1 - sin2 28 0, /2 leads to expression (24). 

Let us summarize our results." 
1 ) If the density of the matter changes slowly enough, 

the neutrino oscillations take place in the adiabatic regime. 
2)  The adiabaticity condition is met for large intervals 

of Am2 and sin2 28 in the sun and in the cores and envelopes 
of collapsing stars. 

3) A feature of adiabatic neutrino propagation is that 
the eigenstates of the neutrinos in the medium evolve inde- 
pendently, and the transitions between them are negligibly 
small. The eigenstate admixtures in a given neutrino state do 
not change in the course of propagation and are equal to 
their values at the initial instant of time. 

4 )  Neutrino oscillations in the adiabatic regime can 
lead to an almost complete conversion of one type of neu- 
trino to the other in a wide energy interval. This interval is 
determined by the density differential and by the adiabati- 
city condition. The smaller the vacuum mixing, the stronger 
the attainable suppression of the flux of neutrinos of the ini- 
tial type. This is the fundamental difference from the case of 
oscillations in vacuum. 

6 )  In the case of divergence of the wavepackets vim in 
the adiabatic regime, the probability P of observing neu- 
trinos of the initial type, summed over the packet, is equal to 
the averaged probability ?i for the case when there is no di- 
vergence of the packets. 
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"After sending this article to press, we obtained Ref. 12, in which equa- 
tions for neutrino eigenstates are likewise considered and an averaged 
probability at theexit is obtained, according with our result in Ref. 7 and 
Eqs. (30) of the present article. 
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