
Critical phenomena in rotational spectra 
B. I. Zhilinskii 

Moscow State University 

I. M. Pavlichenkov 

Kurchatov Atomic Energy Institute 
(Submitted 26 February 1986; resubmitted 3 September 1986) 
Zh. Eksp. Teor. Fiz. 92, 387-403 (February 1987) 

Nonlinear effects produced in rotational spectra of molecules and atomic nuclei by centrifugal 
distortion at large values of the angular quantum number J are investigated. The theoretical 
analysis is based on a new concept, that of an effective rotational Hamiltonian. I t  is shown that 
at a certain value J, of the quantum number J there can occur in the rotational spectra of these 
systems phenomena that lead to qualitative changes of the rotation dynamics. These 
phenomena, which are in some sense analogs of phase transitions in macroscopic systems, are 
called critical. Their counterpart in classical mechanics is bifurcation. Critical phenomena for 
pure rotation is classified on the basis of a local symmetry group g. Local critical phenomena 
that cover a bounded region of the phase space of the rotational motion are singled out among 
the five types of critical phenomena that can exist in rotational spectra. In  the classical limit, 
local critical phenomena are characterized by breaking of the g symmetry, by a change of the 
degeneracy multiplicity, and by discontinuity of the second derivative of the rotation energy 
with respect to J at  the point J ,  . I t  is shown that for local critical phenomena there exists a 
universal rotational-motion Hamiltonian that is independent, accurate to the constants it 
contains, of the internal structure of the system. The universal Hamiltonian is used to develop 
a phenomenological theory of local critical phenomena and to show their deviation from 
second-order phase transitions in macroscopic systems. 

1. INTRODUCTION 

The spectra connected with quantum rotational motion 
have so far been investigated in detail only for two micro- 
scopic systems, molecules and atomic nuclei. Rotational ex- 
citations of these systems are grouped into rotational bands 
with a regular sequence of levels, each described by an ener- 
gy and by the total angular momentum J as the quantum 
number. Rotational states are therefore relatively simply 
separated by investigating the complex excitation spectra of 
these multiparticle systems. Even at the large values of J 
attained by modern methods of molecular and nuclear spec- 
troscopy, the rotational states are quite pure, i.e., they con- 
tain negligible admixtures of other types of excitation. From 
the standpoint of the study of the dynamics of a finite multi- 
particle system, hwoever, interest attaches not to the regu- 
larity indicated above, but to deviations from it, due to the 
interaction of the rotation with other degrees of freedom. We 
consider in this article the simplest among the distortions of 
rotational spectra, viz., centrifugal distortion, which be- 
comes appreciable at large J. 

For most typical molecules, the electron-excitation en- 
ergy exceeds cdnsiderably the energies of the vibrational and 
rotational excitations, so that the Born-Oppenheimer adia- 
batic approximation is quite suitable. If the electron ground 
state is not degenerate, it suffices to consider the vibrational- 
rotational motion, whose Hamiltonian is of the form' 

where J ,  ( a  = x,y,z) are the components of the total-angu- 
lar-momentum operator along the axes of the body coordi- 
nate frame (BCF),  T ,  are the vibrational angular-momen- 
tum operator, pea is a matrix inverse to the inertia tensor 
and depends on the coordinates qi of the normal vibrations 
of an n-atom molecule, whilep, are the momenta conjugate 
to them; U is the potential energy of the molecule in the 
electronic ground state. The vibrational-rotational interac- 
tion reduces to effects of centrifugal distortion that results 
from the dependence of pa, on the coordinates qi, and to 
Coriolis-interaction effects due to the operators .rr,. 

There is no analog of the Born-Oppenheimer approxi- 
mation in atomic nuclei, but the rotation in well-deformed 
nuclei is nonetheless adiabatic. The ground state of a de- 
formed nucleus is an axisymmetric ellipsoid. Deviations 
from the adiabatic approximation for rotational states with 
J g  10 are small in bands based on lower excited heavy de- 
formed nuclei. For larger J, the lower band, named the 
"yrast band" and made up of nuclear levels that have the 
lowest energy for the given J, is not homogeneous. I t  consists 
of levels of rotational bands based on quasistatic excitations, 
which turned out for some reasons to be the lowest for the 
given spin region. 

The deformation of a nucleus in the lowest band begins 
to change noticeably when the centrifugal energy of the rota- 
tion becomes comparable with the energy gap beween the 
shells; this occurs at J- 30. The deformation change is such 
as to minimize the rotational energy of the nucleus. The lar- 
gest moment of inertia is possessed by an oblate nucleus ro- 
tating about its symmetry axis. Therefore, when J is in- 
creased in the lowest band, the nucleus tends to change from 
prolate to oblate, but this is hindered by shell effects. As a 
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result, starting with J-40, the nucleus becomes nonaxial, 
and the lowest band corresponds to its rotation about the 
axis with maximum moment of inertia. 

Centrifugal effects are thus common for molecules and 
atomic nuclei. The centrifugal distortion determines the 
structure of the rotational excitations in these systems at 
sufficiently large angular momenta. Usually the effects of 
centrifugal distortion are taken into account phenomeno- 
logically, viz., with the aid of the variable moment of inertia 
in nuclei, and with the aid of the so-called reduced effective 
rotational Hamiltonians3 in molecules. In both cases, a large 
number of rotational levels are fairly well described quanti- 
tatively. One can cite as an example the rotational band for 
the ground vibrational state of the H,S molecule, for which 
29 adjustment parameters permit a good description of 426 
experimental transitions with J<22  (Ref. 4).  I t  is important 
that if J- 20 the succeeding terms of the Hamiltonian are no 
longer small compared with the preceding ones. The conver- 
gence of the power-law series is even worse for the H,O mol- 
ecule. This situation is typical of the rotational structure, 
since an expansion near J = 0 cannot describe large-J states 
in which the essentially nonlinear features of rotational dy- 
namics manifest themselves. 

Nonlinearity at large J leads to qualitatively new ef- 
fects, which have heretofore been little investigated. In Ref. 
5 is considered 90" rotation of the vector J relative to the 
BCF upon excitation of the levels of the lowest rotational 
band. This phenomenon is similar to a first-order transition. 
In Ref. 6 is described the appearance of equivalent rotation 
axes in an isolated band of a five-atom molecule in the form 
of a weak aspherical top. This is the analog of a second-order 
phase transition. Both effects lead to an irregular change of 
the levels of the rotational multiplet ( R M )  " near a certain 
critical value J,. Qualitative effects of this type in microsys- 
tems will hereafter be called critical phenomena, bearing in 
mind their difference from phase transitions in macroscopic 
systems. Critical phenomena were heretofore investigated 
mainly for model systems. The most popular is the Lipkin- 
Meshkov-Glick models7 Different approaches to the de- 
scription of a critical phenomenon in this model was consid- 
ered in Refs. 8-10. Phase transitions for a more complicated 
collective motion in a model of interacting bosons was inves- 
tigated in Ref. 1 1. 

A critical phenomenon comprises a qualitative change 
in the dynamic motion of a microsystem, and takes place at 
certain values of its integrals of motion (number of particles, 
angular momentum, energy). I t  is manifested in a restruc- 
turing of the system's collective-excitations spectrum. Criti- 
cal phenomena are a fundamental and as yet unsolved prob- 
lem in the physics of finite multiparticle systems. Three 
problems are faced in the investigation of critical phenome- 
na. 

1. Classification, i.e, determination of all the possible 
types of critical phenomena for a given collective motion of 
the system. This problem reduces to an investigation of the 
classical-energy surface of the collective motion and is 
solved in the spirit of catastrophe theory. An analog of a 
critical phenomenon in classical mechanics is bifurcation. 
An important aspect during this stage is the introduction of 
the concept of a local symmetry group g that characterizes a 
small region of the collective-motion phase space. The criti- 
cal phenomena are classified in accordance with the group g. 

All types of critical phenomena can be divided into two 
groups: local which occur in a finite region of phase space, 
and global which are not so restricted. 

2. Investigation of the spectrum of the collective excita- 
tions near the critical point. This problem, which can natu- 
rally be called the theory of quantum bifurcations, can be 
solved for local critical phenomena for which there exists in 
the vicinity of the critical point a closed collective Hamilto- 
nian capable of describing the lower collective excitations of 
the system. This Hamiltonian should be universal, i.e., be 
independent of the internal structure of the system, apart 
from the constants it contains. Solution of this problem, 
meaning construction of a phenomenological theory of criti- 
cal phenomena, makes it possible to determine the change of 
the spectrum of the lower collective excitations on passing 
through the critical point. In a finite system this change is 
the only attribute by which the critical phenomenon can be 
identified. 

3. A microscopic theory of universal critical phenome- 
na should indicate whether a critical phenomenon exists for 
a given type of collective motion in the considered system. If 
this phenomenon exists, the theory must predict the param- 
eters of the universal collective Hamiltonian. 

We solve in this paper only the first two problems for 
the simplest type of collective motion-rotation. The results 
are general and independent of the specific form of the sys- 
tem. 

2. EFFECTIVE ROTATIONAL HAMlLTONlAN AND ITS 
SYMMETRY 

I t  is convenient to study the critical phenomena with 
the aid of an effective rotational Hamiltonian 

which is an infinite series in powers of the operator Ja. The 
coefficients of this series depend on the operators of the in- 
ternal motion of the system. The Hamiltonian ( 2 )  can be 
obtained by the generalized-density matrix method used to 
describe the collective excitations of an atomic nucleus. 
For molecules, expression (2 )  is obtained from the vibra- 
tional-rotational motion Hamiltonian ( 1 ) . l 3  

If the state of the internal (rotational, single-particle, 
etc. ) motion is not degenerate, there are no Coriolis forces in 
the band based on it, and ha = haBV = ... = 0 in the Hamil- 
tonian (2) .  In this case He, describes the centrifugal-distor- 
tion effects. We shall study these effects in an isolated rota- 
tional band weakly coupled to the other rotational  band^.^' 
The coefficients h, has, etc. for such a band are c-numbers. 

The effective rotational Hamiltonian of an isolated 
band based on a nondegenerate state is invariant to time re- 
versal and to inversion of the BCF. Additional contraints on 
the coefficients of the Hamiltonian (2 )  stem from the point 
symmetry group of the system. The aggregate of the opera- 
tions of the point group and of the inversion forms the sym- 
metry group Gof the effective rotational Hamiltonian. For a 
nucleus this is the group D,. The point groups of the mole- 
cules are more varied. They include elements such as the 
symmetry plane (T, the nth order symmetry axis C, , the mir- 
ror-rotation axes3'S,, , and combinations of these elements. 

We represent He, in the form of an expansion 
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in irreducible spherical tensor operators of the form 

where J 2  = J :  + J :  + J : ,  J i  = J, + iJ, (in the BCF, J -  
and J+ are respectively raising and lowering operators), and 
fare real functions given explicitly in Ref. 14. We shall find 
it convenient to regroup the terms of (3)  and write the effec- 
tive Hamiltonian in the form 

rn 

where the function g, satisfies the relation 

and depends on the coefficients oft,, (i.e., h, haB, ... ). 
Characterizing the RM levels are, besides the quantum 

number J, irreducible representations of the group G. The 
fine structure of the levels of the multiplet is called in molec- 
ular spectroscopy the cluster structure.'" lucid descrip- 
tion of the RM cluster structure is obtained by using the 
concept of precession. We introduce the classical notion of a 
stationary rotation axis whose orientation relative to the 
BCF is determined from the equations 

where He, is the classical analog of the Hamiltonian (3) or 
(5),  and {...I are Poisson brackets. Each stable stationary 
rotation axis is connected in the RM with a level group cor- 
responding to precession of the vector J about this axis. Cor- 
responding to an unstable stationary axis is a group of levels 
located in the transition region between the states corre- 
sponding to the precession of the vector J about different 
stable axes. Symmetry makes possible several equivalent sta- 
ble rotation axes, precessions about which are equal accurate 
to a symmetry transformation. The precession of J about 
equivalent axes is independent only in the zeroth approxima- 
tion. Tunneling through the barrier between regions of 
equivalent precessions leads to splitting of the levels making 
up the cluster. 

We shall distinguish between regular and critical 
changes in the RM level structure. In the former case a 
change of the quantum number J (assumed hereafter to be 
large enough) changes only the orientation of the stationary 
axes, which leads to a monotonic dependence of the level 
energies in the RM on J. Critical phenomena are accompa- 
nied by a change of the number of stationary axes and of the 
character of their stability. At the critical point J,, some of 
the RM levels corresponding to precession about the 
changed rotation axes are restructured. The appearance or 
vanishing of equivalent stable rotation axes leads to a change 
of the cluster structure of the RM levels. 

We consider a subgroup g C G making up the z axis of 
the BCF invariant, and call it the local-symmetry group. It 
determines the form of the Hamiltonian He, (5)  near the 
selected direction of the z axis. Let the z axis lie in a symme- 
try plane a that coincides with the xz plane. It is easy to 
prove with the aid of (6)  that gz  = g, . If the z axis is a C,, 
symmetry axis, then thenonzero functions, in (5 )  are those 

with m = np, wherep = 1, 2, ... . For axes of type C,,, the 
function g, must satisfy simultaneously the first and second 
requirements. The symmetry axes C,, contribute nothing 
new to the properties of the Hamiltonian He,, isnce the C,, 
axis is identical for it with the C, axis if n is even, and is 
identical with C,, if n is odd. 

The functions g, in the Hamiltonian(5) are undoubt- 
edly determined by the symmetry of the system as a whole, 
i.e., by the group G. For a description of some of the RM 
levels, however, the decisive group is g, in accordance with 
which it is convenient to classify the critical phenomena. 
The concept of a local-symmetry group is closely related 
with the fundamental difference between the considered the- 
ory of rotational spectra and other approaches based in some 
way or another on the use of the adiabaticity of the rotation. 
The sum (5)  is not a power series, and can be conveniently 
used, as will be shown below, to describe nonlinear effects in 
rotational spectra. 

As a first step towards the solution of our problem we 
use the Hamiltonian (5)  to determine the energy of classical 
rotation in that part of phase space which corresponds to 
rotation of the system around an axis close to thez axis of the 
BCF. The phase space of the rotational motion is made up of 
three Euler angles 4,9, $and three momentap, ,p, , andp,, 
conjugate to them. The absolute value of the angular-mo- 
mentum vector J and its component J,. = p, on thez' axis of 
the laboratory frame are integrals of the motion. It is there- 
fore convenient to transform canonically to new conjugate 
variables Jand q, , J,. and q,. , and J, and q, (Ref. 16). Since 
q, and qz8 are cyclic variables, the phase space of the rotating 
body is in fact two-dimensional. It is convenient to map it on 
the surface of a sphere of radius J with center at the BCF 
origin (phase ~ p h e r e ) . ~ '  A point on the sphere with coordi- 
na tes8 ,p(cos8=Jz /J ,p=a/2-q ,  forJ,. = q ,  =O)de- 
termines the orientation of the vector J in the BCF. Thus, 
the trajectories of end point of the vector J on the phase 
sphere are classical trajectories of the system in its collective 
rotational phase space. From the Hamiltonian (5)  we obtain 
in the classical limit the rotation energy (the rotational-en- 
ergy surface). 

m 

E (0, cp) =.so (J2, eos2 0) +'I, [ e d  (I2, cos 0) e'". 

3. TYPES OF CRITICAL PHENOMENA FOR DIFFERENT 
LOCAL-SYMMETRY GROUPS 

1. We consider first the case g = C,, when the z axis is a 
general position axis and all the functions g, in (8)  differ 
from zero. We expand the rotation energy E(O,p), assuming 
the angle 19 to be small, and write this expansion in terms of 
the Cartesian coordinates { = 8 cos p, 7 = 8 sin p in the vi- 
cinity of the north pole of the phase sphere (the axes { and 7 
are directed along the axesx andy of the BCF, respectively) : 

where E, ( J )  is the energy of the system rotation about the z 
axis, and the coefficients aij depend on J. Let the z axis be at 
J =  J ,  the stationary rotation axis of the system, i.e., 
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a,,(J,) = a,,(J,,) = 0.  In this case we can restrict the ex- 
pansion in (9) to terms quadratic in 6 and 7.  If J i s  varied,the 
local behavior of the function E ( 6 , 7 )  does not change qual- 
itatively. The system, as before, has a stationary axis of rota- 
tion, but one displaced from it position at J = J,. This is the 
regular variation of the precession axis. 

The critical point5' (if it exists) is determined by the 
condition that the rotation axis be stationary and by the 
equation a:, ( J c  ) - 4a,,(J, )a,,(Jc ) = 0. In the vicinity of 
the critical point is is necessary to take into account the cubic 
terms in the expansion ( 9 ) .  A nonlinear transformation of 
the coordinates can reduce ( 9 )  to the canonical form of a 
catastrophe function of the "fold" type," which takes in our 
case the form 

where the values of a,, and a,, are specified at the point J,. 
Analysis of the surface ( 10) shows that the considered 

critical phenomenon is connected with the onset of two sta- 
tionary rotation axes, one stable and the other unstable, 
whose directions are close to that of the z axis. Near the 
critical point, a singularity arises in the second derivative, 
with respect to J ,  of the energy of rotation about the stable 
axis, E " ( J )  - + IJ + J, 1 - ' I 2 .  Figure 1 shows the classical 
trajectories on the left and right of the critical point J,  in that 
part of the phase space where the stationary axes appear. For 
J <  J, all the trajectories are global and encompass the entire 
phase sphere, in view of the absence of a stationary rotation 
axis. For J >  Jc , the local trajectories describe the precession 
of the vector J around the stable axis of rotation. The local 
trajectories are separated from the global ones by a separa- 
trix S that passes through the saddle point of the surface 
( 1 0 ) .  The separatrix is a global curve, and therefore this 
critical phenomenon is not local. 

2. Critical phenomena for the local symmetry groups 
C, , C,, and C,, are the same, and are described in the classi- 
cal limit by the energy surface. 

Depending on the signs of the coefficients a,,, and a,,, in 
expression ( 1 1  ), two types of critical phenomena exist. If a,,, 
and a,,, differ in sign, the critical phenomenon is not local 
and reduces to a change in the character of the stability of the 
stationary rotation axis z. At equal signs of the coefficients a 

FIG. 1. Classical trajectories near the north pole of the phase sphere for a 
critical phenomenon corresponding to the local symmetry group 
C, ( a  > 0, a,,> > 0, a,,, > 0). 
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FIG. 2. Classical trajectories for local critical phenomenon C,, 

and a,,,, the rotation axis z which is stable for J < J,, becomes 
unstable for J >  J, . In addition, the two equivalent unstable 
axes of rotation with energy E ,  = E, - a 2 ( J  + J, )'/4a,,, 
vanish at the point J, . 

If the coefficients a,,, and a,, are of like sign, the classi- 
cal picture of the change of the rotation of the system at the 
critical point J, is the following. If the sign of a coincides 
with that of the coefficients a,,, and a,, the rotation around 
the z axis, with energy E, ( J ) ,  goes over at J >  J, into rota- 
tion around one of the two equivalent axes k ( 8 , , , ~ / 2 )  or 
k1(8,,,3rr/2), ( 6 ;  = a ( J  - J ,  )/2a04) with energy E ,  ( J ) .  
The classical solution is then no longer invariant, and the 
second derivative with respect to J of the energy rotation 
about the stable axis becomes discontinuous at the point J,. 
Figure 2 shows a family of classical trajectories near the 
north pole of the phase sphere on the left and right of the 
point J, . The energy E, ( J )  at the saddle point of the surface 
( 1 1 ) corresponds to the separatrixsbetween the trajectories 
of the local precession and the global trajectories. The local- 
ization of the separatrix for values of J close to J, is an at- 
tribute of the local critical phenomenon that takes place in a 
bounded volume of phase space. 

For a quantum description of the investigated critical 
phenomenon we consider, for simplicity, the effective rota- 
tional Hamiltonian (5 )  for the local group C,,, . Correspond- 
ing to that part of phase space in which the local trajectories 
of Fig. 2 are located are the R M  quantum states satisfying 
the condition ( Jv lJ2  - J I  IJv) /J2  < 1 ,  which we shall call 
hereafter the lower R M  states. These states can be described 
by using an approximate Hamiltonian obtained from ( 5 )  by 
expanding the functions g, (m = 0,2,4) in powers of the 
small quantity (JS  - J 2 ) / J 2 .  This Hamiltonian, which has 
all the symmetry properties of the initial one, is of the form 

where the regular part E, ( J )  = g,(J2 ,J2)  is the energy of the 
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classical rotation of the system about the z axis, and the con- 
stants a,  a,, b , ,  b,, and c ,  depend on the internal structure of 
the system. 

To clarify the character of the change of the rotation 
dynamics of the system on going through the critical point, 
we obtain first the solutions of the Hamiltonian ( 12) in the 
harmonic approximation (see the Appendix). At J < J, the 
lower states correspond to precession of the vector J about 
the z axis. Their energies are given, according to (A4),  by 
the expression 

where the precession frequency is approximately 

The states are doubly degenerateh' relative to the sign of the 
projection M. 

At J >  J,  the frequency ( 14) becomes imaginary, mean- 
ing instability of the precession about the z axis. A new axis 
appears, or more accurately, two equivalent precession axes 
k and k'. We consider first the precession of the vector J 
about the first axis. We rotate the BCF with the aid of the 
operator R (~/2 ,0 , ,  - ~ / 2 )  (Ref. 18) in such a way that the 
k axis coincides with the z axis, and change in the trans- 
formed Hamiltonian RHc2,,R - '  to the harmonic approxi- 
mation. Since rotation of the BCF is equivalent in this ap- 
proximation to a shift of the origin, to describe the 
precession about the k  axis we must set the coefficients of the 
operators b and b  + equal to zero in the resultant Hamilto- 
nian. This requirement allows us to determine the angle 8,. 
The energy of the lower R M  levels for J >  Jc is specified by 
the quantum number K of the projection of the angular mo- 
mentum on the precession axis k: 

where E ,  (J) becomes in the classical approximation the en- 
ergy of the rotation about the k  axis. The precession frequen- 
cy if given for small 8,) by 

The wave function of the lower R M  level with K = J is 
obtained from expression (A6) with the aid of the rotation 
R :  

The function p,,, ( k l , q ) ,  which describes the precession 
about the k' axis differs from the function ( 17) in the sign of 
the angle 8,. The functions p ( k )  and p ( k l )  which corre- 
spond to one and the same energy ( 15) determine the states 
of the Hamiltonian Hc,, with broken symmetry C,. The op- 
erator of this symmetry element transforms p ( k )  into q, (k ')  
and vice versa. We emphasize that the symmetry breaking is 
the result of using the harmonic approximation. The latter 
can be improved by using the symmetrized combinations 

p ( k )  f p ( k l ) ,  which are eigenfunctions of the transforma- 
tion operator C,. By averaging the Hamiltonian HC21, over 
these functions we can determine the energy 
AE- exp{ - S ( J  - Jc )), where S - 1, ofthe opposite-parity 
level splitting. The harmonic approximation helps prove the 
universality of the Hamiltonian Hc2,, for the description of 
the lower R M  states in the vicinity of the critical point J,. 
We add to Hczc, the succeeding terms of the expansion of the 
initial Hamiltonian (5 ) ,  which contain the operators 
J: , Ji , etc. The added terms strengthen the precession an- 
harmonicity that manifests itself noticeably in the higher 
R M  states. It is easily shown, however, that they do not play 
a significant role in the harmonic approximation, which is 
valid for the lower R M  states. 

To track the restructuring of the lower R M  levels, we 
must find an exact solution of the Hamiltonian Hczv for a 
number of values of the quantum number J near J c .  It is 
natural to diagonalize Hczv in the basis of the eigenfunction 
( J M )  of the operator J,. The Hc2,, states are conveniently 
classifed in accordance with the irreducible representations 
( I R )  A , , A , ,  B , ,  and B ,  of the C,,, group (Ref. 19). The form 
of the representations is determined by the sequence of the 
quantum numbers M in the expansion of the HcZ,, eigenfunc- 
tions in terms of the functions IJM ). The results of the nu- 
merical diagonalization for a certain particular set of param- 
eters is shown in Fig. 3, where the energies of the lower RM 
levels, reckoned from the regular part E, ( J ) ,  are plotted 
against the quantum number J. At J < Jc these levels form a 
system of doublets A ,  + A ,  for the even and B ,  + B, for the 
even sequence of the values of M. The splitting of the doub- 
lets is of the inversion type and is too small to show in the 
figure. As Japproaches Jc the doublets A ,  + A ,  and B, + B, 
begin to approach each other and form at J >  Jc a quadruple 
cluster A ,  + A ,  + B ,  + B,, corresponding to delocalized 
precession about two equivalent axes. The same figure shows 
for comparison the results of harmonic-approximation cal- 
culation with Eqs. ( 13) and ( 15). 

3. An investigation of the rotational-energy surface for 
the symmetry groups C, and C, ,  shows that there exists only 
one nonlocal critical phenomenon, consisting of a change in 
the type of stability of the rotation axis." On going through 
the critical point Jc , the stable rotation axis z with the maxi- 
mal (minimal) moment of inertia becomes the axis with the 
minimal (maximal) moment of inertia." 

To solve the quantum problem we use, as before, an 
expansion of the Hamiltonian ( 5 ) 

Nonlocality of a critical phenomenon means that in the tran- 
sition region it is necessary to take into account, generally 
speaking all the terms of the expansion ( 18), including the 
discarded ones. If, however, the parameter a is large enough 
in absolute value,the discrete character of J permits the re- 
gion of substantial nonlocality to be excluded, and the first 
terms of the expansion ( 18) can be used. In the harmonic 
approximation it suffices to take into account only the first 
two terms in the Hamiltonian Hc2,,. The precession energy is 

EJM=EZ(J) - (2aIJ) (J-Jc)  (J-IhfI) ,  

M=*J, * ( I - I ) ,  . . . , (19) 
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and the wave function I JM ) coincides with an eigenfunction 
of the operator J ,  . These very same functions are used as the 
basis for obtaining the exact solution of the Hamiltonian 
( 18) with allowance for the third term of the expansion. Its 
states are classified in accordance with the I R A , ,  A?, and E 
of the C, group (Ref. 19).  Figure 4 shows a plot of the energy 
E,,, - E, for the lower RM levels, referred to the precession 
frequency. On the left and right of the critical point these 
levels form a system of doublets A ,  + A 2  for the values 
M = 3n, and a system of doubly degenerate levels of type E 
for M = 3n + 1 ,  3n + 2. I t  can be seen from the figure that 
the critical phenomenon manifests itself in a decrease of the 
number of equidistant levels corresponding to the precession 
of the vector J when the point J,  is approached and in a 
decrease of their number on moving away from this point. 
Passage through the critical point is accompanied by inver- 
sion of the levels relative to the abscissa axis. 

4. The classical picture of a critical phenomenon for the 
symmetry groups C4 and C,,, depends on the relations be- 
tween the coefficients in the expression for the classical ener- 

FIG. 3. Lower levels of rotational multiplet in the transition region 
for the local critical phenomenon Cz. Parameters of Hamiltonian 
H,, : J ,  =30,a/b,=0.3,b,/bl= l .0 ,a2/b ,=7.0 ,c , /b l=0.5;0  
doiblets A ,  + A z .  0-doublets B ,  + BZ,  dashed curves-harmonic 
approximation. 

gy (see the Conclusion). If la / < 26, the critical phenomenon 
is nonlocal and reduces, in analogy with the phenomenon for 
the symmetry group C,, to a change of the type of stability of 
the rotation axis. The critical phenomenon becomes more 
complicated when la1 > 2b. In this case, besides the stable 
rotation axis z, there appear or vanish four stable equivalent 
axes that are close to it in direction and turned through an- 
gles 90" relative to one another. The pattern of the phase 
trajectories is typical of a local critical phenomenon. I t  is 
characterized by violation of the invariance of the classical 
rotation relative to the symmetry element C4 and by discon- 
tinuity of the second derivative, with respect to J ,  of the 
rotation energy at this point Jc.20 

The locality of the considered critical phenomenon 
makes it possible to obtain from He, ( 5 )  an approximate 
universal Hamiltonian for the description of the lower RM 
levels: 

FIG. 4. Lower levels of rotational multiplet in the region of the 
transition for the critical phenomenon C,, ( J ,  = 30, a /b  = 0.8); 
0-doublets A ,  + AZ, .-doubly degenerate levels of type E. 
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We consider first the change of the precession on going 
through the critical point Jc in the case a > 2b > 0 and a > 0. 
The z axis is a stable axis of rotation on the left and right of 
J , .  The energy of the levels corresponding to precession 
about this axis is determined by the expression 

On going through the critical point, the precession about the 
z axis with maximum moment of inertia is transformed into 
precession with minimum moment of inertia. Four equiva- 
lent precession axes k, appear if J >  J c .  The energy of the 
levels corresponding to precession about any of these axes is 
equal to 

,,,- = E k ( J ) + ~ ( l -  jl<l+'/2)r K-;tj ,  +(&I), . . . , (22) 

where E, (J) is the energy of rotation about the ki  axis, K is 
the quantum number of the component of the angular mo- 
mentum along this axis, and the precession frequency is 

5. Local symmetries containing axes of order higher 
than fourth are either rarely encountered or are possessed 
only by heavy molecules whose rotational structure cannot 
be resolved spectroscopically. Analysis has shown that for 
the symmetry groups C,, and C,, with n > 5  there exists only 
one type of critical phenomenon, the same as for the local 
symmetry C,,,, if Ja 1 > 2b (Ref. 20). In this case, however, n 
rather than four equivalent axes appear. 

4. CONCLUSION 

Let us list all the considered critical phenomena in pure- 
ly rotational excitations. It is convenient to use for the classi- 
fication the classical picture, in which a critical phenomenon 
is characterized by a local-symmetry group g, by the form of 
the energy surface E(8,rp) near thez axis of the BCF, and by 
the singularity of the energy E ( J )  of rotation about the sta- 
ble axis at the critical point J , .  

s= ( 8 x / J )  ( J - J , )  [O , ' (a -26)  I"', J > J , .  (23 ) Localsymmetry group C, 

The change of the precession is manifested by a regrouping 
of the lower RM levels, which can be tracked by using the 
exact solutions of the Hamiltonian Hc2, .  We shall classify its 
states in accordance with the IRA, ,  A,, B,, B,, E of the C4, 
group.l"igure 5 shows the dependence of the RM lower- 
level energy, referred to the frequency of the precession 
about the z axis from (21). At J < J ,  the lower part of the 
RM is a system of approximately equidistant levels consist- 
ing of the doublets A ,  -+ A, (M = 4n), B, + B, (M = 4n 
+ 2) and of doubly degenerate levels of type 

E(M = 4n + 1, 4n + 3). With increase of J ,  these levels ei- 
ther come closer together to form an eightfold cluster 
A ,  + A ,  + B, + B2 + 2E (delocalized precession about four 
equivalent axes), or is regrouped into the initial structure 
(precession about the z axis). 

Energy surface 

E (g, q) = E , ( ] )  -a(l-1,)~+a02q~+a3oc6~. 

Nonlocal critical phenomenon with singularity 
E " ( J ) c  + I J -  ~ ~ 1 - l ' ~ .  

Local symmetry groups C,, C2, C,, 

Energy surface 

E ( g ,  q) =E,(J)  -a(]-Jc)q'+a~~E2f awq" 

Critical phenomena of two types exist: 1)  If a,&, < 0, the 
critical phenomenon is nonlocal and alters the character of 
the stability of the stationary rotation axis, 2 )  if a,&,, > 0, 
the critical phenomenon is local and is characterized by a 
singularity AE " ( J ,  ) = - a2/2a, .  

FIG. 5. Lower levels of rotational muitiplet in the transition 
region for the local critical phenomenon C,,,. Parameters of 
Hamlltonian Hc4, : J,  = 30, a / b  = 0.18, a /b  = 8.0; 0- 
doublets A ,  + A , ,  O-doubly degenerate levels of type E, 
A-doublets B, + B,, dashed curves-harmonic approxi- 
mation (22).  
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Local symmetry groups C3 and C,, 

Energy surface 

E ( 0 ,  rp) =E,  (J) -a(J-J, )0'+2t03 cos 3q. 

The critical phenomenon is nonlocal and consists of a 
change of the type of stability of the rotation axis. 

Local symmetry groups Cq and C,, 

Energy surface 
E ( 0 ,  cp) = E , ( J )  -1cc(J-J, )0~+(a+2b cos 4cp) Oh, b>O. 

Critical phenomena oftwo types exist: 1 ) if la I < 26 the criti- 
cal phenomenon is nonlocal and is similar to that for groups 
C, and C,,; 2) if la1 > 26, the local critical phenomenon is 
characterized by a singularity AE " (J, ) = - a*/ 
2(a - 2b). 

Localsymmetry C,,, C,,,, n25 

Energy surface 

E ( 0 ,  cp) = E , ( J )  - ,a(J-J,) 02+a04+2b0" cos nrp. 

Local critical phenomenon of type 2) for groups C, and C,, 
with singularity AE " (J, ) = - a2/2b. 

All the foregoing critical phenomena can be called ele- 
mentary in the sense that they involve the vanishing, at the 
point J of one of the coefficients of the local rotational Ham- 
iltonian. More complicated cases are possible, when several 
coefficients or a rather large number of them vanish. In the 
latter case a trough is produced on the energy surface, and 
the critical phenomenon, which leads to rotation of the vec- 
tor J through a finite angle relative to the BCF, is an analog 
of a first-order phase t ran~i t ion.~ 

Two of the five essentially different types of elementary 
critical phenomena are local. In the classical limit local criti- 
cal phenomena are characterized by degeneracy (equivalent 
rotation axes), breaking of symmetry relative to a local 
group g, and a discontinuity of the second derivative of the 
rotation energy at the point J, with respect to J. In this sense, 
local critical phenomena are similar to second-order phase 
transitions. For quantum systems such as molecular and 
atomic nuclei, the classical picture is not more than an illus- 
tration. Local critical phenomena are revealed in rotational 
spectra by the change of the RM structure, viz., by the ap- 
pearance of clusters of levels corresponding to delocalized 
precession of the vector J about the equivalent axes. With 
increase of (J- J , )  the splitting of the levels that enter in 
the cluster decreases exponentially, but the precession is not 
localized on one axis, and the states in the cluster have a 
definite symmetry relative to the group g. Thus, no sponta- 
neous symmetry breaking takes place in the critical phenom- 
enaz'.22-the Hamiltonian and its solutions remain invar- 
iant to the symmetry group 0. This is the fundamental 
difference between critical phenomena and phase transitions 
in macroscopic bodies. 

At sufficiently large J ,  a perturbation that is arbitrarily 
small relative to g takes the system out of a symmetric delo- 
calized state into an asymmetric localized one that corre- 
sponds to the classical solution. This state is nonstationary, 
but its lifetime can be long enough (in view of the low pene- 
trability of the barrier between the regions of the precessions 
about the equivalent axes) to be able to state that it really 
exists. 

The common features of local critical phenomena and 
second-order phase transitions manifest themselves in the 
universality of the collective motion near the critical point. 
Universality in the case of phase transitions means that the 
details of the Hamiltonian of the macroscopic systems are of 
no importance in the scale of the long-wave fluctuations that 
determine the phase transition. Universality of a local criti- 
cal phenomenon means that it takes place in a bounded re- 
gion of the phase space of the collective motion. Therefore 
the form of the collective Hamiltonian in the vicinity of the 
critical point is independent, accurate to constant coeffi- 
cients, of the internal structure of the system. 

For rotational spectra of molecules and atomic nuclei, 
the universality property is of practical significance. It 
makes it possible to replace, in the description of the rota- 
tional bands, the expansion near J = 0, which is patently 
unsuitable at large J, by an expansion near Jc. This possibil- 
ity has therefore not been considered in either nuclear or 
molecular spectroscopy. 

APPENDIX 

Harmonic approximation for quantum precession 

It is convenient to investigate the structure of a rota- 
tional multiplet by using the boson representation, proposed 
by Mar~halek,~"f the angular momentum of a quantum 
top. We shall be interested in angular-momentum operators 
in the BCF 

which act in the space of the wave functions 

corresponding to the states of an isolated RM; 10) is the 
vacuum state for the boson operators b + and b. 

Consider precession about the z axis. Using Eqs. ( A 1  ) 
and one of the methods described in Ref. 24, we expand the 
Hamiltonian He, ( 5 ) in terms of the boson operators b + and 
b and confine ourselves to the quadratic terms: 

H=E,(J )+SbCb+(P+iQ)  b+b++(P- iQ)  bb. (A3 

The coefficients E,, P, Q, and S depend on the parameters of 
the Hamiltonian ( 5 )  and on the quantum number J. The 
Hamiltonian (A3) is diagonalized with the aid of a linear 
canonical transformation of the operators b + and b: 

M=*I,  k ( J - I )  , . . . (A41 

The result of the diagonalization shows that the states corre- 
sponding to precession of the vector J about thez axis can be 
classified with the aid of the projection M of the angular 
momentum on this axis. The condition S > 4 ( P2  + Q 2, is 
necessary for the state with M = + J be a stable-equilibri- 
um state. The value of Jc at which S = 4 ( P  + Q '), is a 
point of transition to other states corresponding to preces- 
sion of the vector J about another axis (if it exists). The 
harmonic approximation is quite suitable if the condition 
J - ~ ~ I $ - J ~ ~ " i s m e t . ' "  

In the case of equivalent precession axes it is convenient 
to deal with a wave function in the coordinate representa- 
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tion. We introduce for this purpose a dimensionless coordi- 
nate q(  lql < cc ) defined by the relations 

2 ( - d )  b=2-'"(q+d/dq).  (AS)  
h 

We substitute ( A 5 )  in the equation Hp,, = Ep,, and re- 
write the resultant differential equation with the aid of the 
substitution 

q J ~ ~ ( q )  = $ ( q )  csp  { - i q Z Q / ( S - 2 P ) )  (-46) 

in the form 

1 
-- d2$ s L 4 f  'p4Q: g2$ = ', (S-2P) --- + 

dq' 2 (S -2P)  

( A 7 )  
For Eq.  (A7)  to describe precession, i.e., small oscillations 
near the equilibrium position q = 0, it is necessary that the 
quantities S + 2P and S - 2P be of the same sign, and 
S - 4P - 4Q > 0. The wave function of the state with 
lM / = J takes in the coordinate representation the form 

where 
(~2-4p2-Q2) '12 Q g = - 

f =  , s-,P S-2P ' 

"We define a rotational multiplet as an aggregate of rotational states with 
fixed value of the quantum number J. 

"This requirement is met by the ground-state band of even-even deformed 
nuclei. Isolated rotational bands are quite frequently encountered in mo- 
lecular spectra, both for asymmetric and high-symmetry molecules of 
the spherical-top type. 

"The mirror-rotation axis S, for a Hamiltonian invariant to the inversion 
transformation is identical with the C,, axis for even n and C,,, for 
odd n. 

4'It is called the Bloch sphere in quantum optics. 
"More accurately, degenerate critical point according to the terminology 

of catastrophe theory. 
"The degeneracy is a consequence of the symmetry of the Hamiltonian 

( 12) with respect to inversion. In real molecular spectra this symmetry 
leads to the existence of level doublets having symmetries A and B ,  or B, 
and B, relative to the group D,. In rotational spectra of nuclei and mole- 
cules that have nuclei with zero spin, only a fully symmetric stateA exists 
in place of a doublet. The doublet splitting in local critical phenomena is 
small compared with level-restructuring effects, and we neglect them. 

"The reference here is to the local characteristic of the moment of inertia 
for rotation about the z axis. 
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