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In collisions of high-energy heavy ions, in the early universe, and in other relativistic systems, 
phase transitions can take place on a three-dimensional hypersurface whose points are not 
causally connected. It is shown that the derivation of the equation for the relativistic shock (or  
detonation) adiabat proposed by Taub can be generalized for discontinuity surfaces having a 
timelike normal vector; the form of the equation is universal, i.e., the same for spacelike and 
timelike discontinuities. In the considered physical example of implosion induced by radiative 
heat transfer there is a transition from a spacelike to a timelike front. 

The relativistic hydrodynamic theory of shock waves' 
has found elegant applications in cosmology'-5 and in reac- 
tions with relativistic heavy ions.'-"' A shock wave usually 
occurs when there is rapid compression of matter under the 
influence of an external force. Similar discontinuities can 
also arise spontaneously in an expanding system if a first- 
order phase transition occurs." In all these cases, shock 
waves propagate with a velocity less than the velocity of 
light. Therefore, the world lines ofthe points ofthe surface of 
the shock front form a spacelike hypersurface in Minkowski 
space (Fig. l a ) ,  i.e., a hypersurface with a spacelike normal 
vector. The conservation laws on this surface lead to the 
Rankine-Hugoniot-Taub equation,' which relates the prop- 
erties of the fluid (pressure, fluid velocity, densities of the 
conserved charges) on the two sides of the discontinuity. 

It was noted recently" that under certain conditions 
there may occur in a system a rapid phase transition leading 
to a timelike discontinuity surface. Such a situation occurs 
when the system undergoes a rapid and homogeneous rar- 
efaction and there forms a set ofbubbles at different spatial 
points causally unconnected to each other. As an example of 
this we can mention the inflationary universe model. In this 
case, the spacelike phase boundary becomes after smoothing 
a timelike surface 2 (see Fig. lb ) .  The thickness r of this 
transition region will be determined by the rates of forma- 
tion and growth of the bubbles. If T is sufficiently small com- 
pared with the characteristic time scale of the considered 
process, then it can be assumed that the phase transition 
takes place through a structureless timelike surface. The aim 
of the present paper is to give a general derivation of the 
Rankine-Hugoniot-Taub equation valid for both spacelike 
and timelike surfaces. The obtained result will be illustrated 
by a simple example. 

We denote the vector of the normal to the surface Z by 
A".  It is normalized as follows: 

ric tensor. If there is a discontinuity surface, the index 1 will 
identify the dynamical characteristics of the fluid, for exam- 
ple, Q, on one side of the discontinuity (Q , ) ,  and the index 2 
those on the other side (Q,). Then the jump of Q across the 
discontinuity will be expressed as 

[Ql =Qz-Qi. 
( 3  

In this notation, the conservation laws across the discontin- 
uity surface have the form 

[Rp]  = [T'"h,,] =O (4) 

A . 1 + 1 for timelike 2, 
Ll 1. - 1 for spacelike 2. 

The state of the system is characterized by the energy-mo- FIG. 1. Comparison of spacelike ( a )  and timelike ( b )  discontinuity sur- 
faces characterized by normal vector AM ( 1 and 2 are the phases of the 

mentum tensor matter before and after the discontinuity, and the thin straight line is the 
TP = I , . I L ~ ~ ~ L ~ ~ - p ~ ~ l ~ '  (2 )  generator of the light cone). A timelike discontinuity can occur in the case 

of the spontaneous production and growth of bubbles, which are united 
where we have introduced the enthalpy density w = e + p,  after a time T (continuous curve). If this complicated surface is smoothed, 

the sum of the energy density and the pressure then a timelike front (broken curve) is obtained. Note that in a viscous 

uI' - fluid spacelike discontinuities also have finite width. Thus, the substruc- 
- (y,yv) is the 4-ve10city of the such ture of the timelike front ( b )  can develop only if the distance between the 

that ul' u,, = 1; andf"  = diag( 1, - 1, - 1, - 1 ) is the met- bubbles is greater than the width of the spacelike discontinuities. 
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(conservation of the energy and momentum), and 

[ j ]  = [np.\,,] =O (5 )  

(conservation of the particle number). Systems in which the 
particle number is not conserved are considered in Appendix 
1. The expression (5 )  can be written down for any indepen- 
dent conserved charge with corresponding 4-current of this 
charge. Under the assumption that the flux is related to the 
conserved charge, we can introduce an invariant scalar den- 
sity n = npu,, and also the quantity x = ~ / n ~ , ~ ~ ~ , ~  which 
plays the part of the specific volume Vin nonrelativistic the- 
ory. In fact, in the nonrelativistic limit x = mV (m is the 
mass of a particle). 

To derive the equation of the detonation adiabat, which 
relates only thermodynamic quantities, it is necessary to 
eliminate the 4-velocity from Eqs. ( 4 )  and (5) .  Since (4 )  is a 
vectorial equation, it can be decomposed into two indepen- 
dent equations. For this it is necessary to take its projection 
onto the direction of the normal to the surface C: 

[R" A,,=O, (6 )  

and also to project it onto the surface itself by means of the 
projection operator P I“' = g ," - A''A"/AaA a . . 

From Eq. ( 7 )  it is possible to obtain a scalar equation which 
shows that the length of the vector G is conserved, 

[ G'G,,] =0, (8 )  

and also an equation that ensures an unchanging direction of 
the projection of the vector GI' : 

[GV/IGpI] =O. 

After manipulations, we can obtain from Eqs. (5 )  and ( 6 )  
the following expression for the flux: 

j" [ p ]  .lpA1,J [ X I  . (9 )  

From Eqs. (5 )  and (8) ,  we find 

j" [ ZL.X] / [z ']  .\,*1". 

From these two relations, we obtain directly Taub's well- 
known adiabat equation: 

[ P I  (x ,+z2)  = [ wxl . (11) 

For known p ,  and x ,  and for known equation of state Eq. 
( 1 1 ) determines the connection betweenp, andx,. Note that 
the vector A" of the normal to the discontinuity surface oc- 
curs in this equation only in the combination (ApA, )', 
which is equal to unity. Therefore, Taub's adiabat equation 
has the same form for spacelike and timelike discontinuity 
surfaces. However, there is an important difference between 
these two cases. 

This is demonstrated by Fig. 2, which shows shock and 
detonation adiabats on the ( p , x )  plane. The initial state is 
indicated by the point 1, the final state by the point 2. In the 
case of an ordinary shock wave, the adiabat determined by 
Eq. ( 11 ) passes through the point 1, since the final state of 
the matter is described by the same equation of state as the 
initial state. Ifin the final state there has been a change of the 
equation of state due to a chemical reaction or a phase transi- 

FIG. 2. Shock ( I )  and detonation (11) adiabats on the ( p,x) plane ( p i s  
the pressure andx  = w / n 2  is the generalized specific volume). The point 1 
is the initial point; the final state 2 must lie on the adiabat. The inclination 
of the straight line joining the initial and final points is determined by the 
current through the discontinuity surface: j' = + [ p ] / [ x ]  for spacelike 
( + ) and timelike ( - ) discontinuities, respectively. The segment AA' 
of the detonation adiabat corresponds to timelike discontinuities; 0 and 
0' are the Chapman-Jouguet points on the detonation adiabat. In the 
presence of enhancement due to boundary conditions, rapid combustion 
and condensation ( segment OA) can pass smoothly through the point A 
to timelike detonation. 

tion, the point 2 lies on a curve that does not pass through the 
initial point 1. Usually, this curve is called the detonation 
adiabat. Figure 2 shows the detonation adiabat for an exoth- 
ermic process. If the process is endothermic, the correspond- 
ing curve passes below the point 1. The segment OA on this 
curve corresponds to detonation, and the segment O'A' to 
slow burning (deflagration) . The hatched part of the plane, 
where [ p ]  / [x ]  < 0, was pieviously assumed to be unphysi- 
ca19.' on the basis of nonrelativistic analogies. I' According 
to Ref. 9, in this region the flux j becomes imaginary for a 
spacelike discontinuity surface, when A,Ap = - 1. How- 
ever, this region can be reached for a real value of the flux j i n  
the case of a timelike surface of the detonation front. We note 
that the existence of a shock front with timelike normal is 
impossible since the shock adiabat cannot lie in the timelike 
region (hatched region in Fig. 2 ) .  This is readily seen by 
recalling that by means of a Lorentz transformation one can 
go over to a system in which the vector of the normal to the 
timelike surface has the form A'" = ( 1,0,0,0). In this system 
there is an abrupt change o f p  and x but the density N = n y  
measured in this system remains unchanged, since 
[ j ]  = [ n y ]  = [ N ]  = 0. This is possible only in the case 
when a phase transition or chemical reaction occurs in the 
system, i.e., there is detonation. 

However, spontaneous detonation can occur only if the 
condition of increase of the entropy is satisfied. Since at the 
point 1 the Poisson adiabat is parallel to the shock adiabat, 
states with higher entropy lie above the point I .  Thus, only 
the upper quarter of the timelike detonation region can be 
reached in a physical process. In other words, only exother- 
mic detonation can occur on a timelike front. In this case, 
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when the exothermic process has a threshold (with respect 
to the pressure or the temperature), the physically realized 
section of the timelike detonation adiabat must begin at a 
certain point within the segment AA'. 

In Appendix 2 we describe a simple schematic model 
that demonstrates a continuous transition from spacelike to 
timelike detonation in an implosion process induced by radi- 
ation. Suppose a spherical core of unit radius (R = 1, c = 1 ) 
is surrounded by a rapidly igniting shell. If at t = 0 this shell 
is ignited from all sides, then some of the released energy will 
be radiated inward and heat the core. Neglecting the opacity 
and compression of the core, we can readily calculate the 
constant-temperature contours: 

Suppose that in the core an exothermic transition oc- 
curs if the temperature reaches the critical value T,. Then 
this transition takes place on the surface T(r,t) = T,. If the 
heating of the core to the temperature T, takes place rapidly 
(t=.2.5), then an appreciable part of this surface ( r 5  0.5, 
2.3 5 t 5 2.5) corresponds to timelikedetonation (Fig. 3) .  If 
the heating is slower, the timelike detonation region is con- 
centrated in a smaller central zone. 

Summarizing what we have said, we must emphasize 
that the general treatment of an arbitrary discontinuity in a 
relativistic fluid has made it possible to extend the Rankine- 
Hugoniot-Taub equation to a new region not hitherto con- 
sidered. Moreover, on the basis of nonrelativistic analogies 
this region has hitherto been regarded as unphysical. The 
inclusion in the treatment of timelike detonation closes the 
relativistic theory of rapid combustion and condensation. 

FIG. 3. Acceleration of discontinuity due to radiation can lead to a 
smooth transition from a spacelike to a timelike front at the point A, 
where the front propagates with luminal velocity. This is possible because 
the fluid does not move together with the front. The world lines of the fluid 
particles (the lines with arrows) remain spacelike, i.e., their velocity is 
less than c. The broken line is the light cone, r is measured in units ofR /c, r 
in units of R, and Tin  units of 2vCQ/C,. 

The formalism developed makes it possible to understand 
more clearly the conceptual unity of problems of relativistic 
hydrodynamics and make their mathematical description 
more transparent. This is illustrated by the concrete example 
in Fig. 3. 

The author thanks T. Matsui and I. Mishustin for valu- 
able comments. He is also very grateful to J. Chaplin, M. 
Gyulassy, and J. Kapusta for fruitful discussions. 

APPENDIX 1. DETONATION AND DEFLAGRATION FRONTS 
FOR THE QCD PLASMA AND HADRONIC MATTER WITH 
ZEROBARYONCHARGE 

Notation: 
u"=(y, yv), [~lI=(y, -yv), 
uILu,,=+ I,  gl"=diag ( I ,  -1, -2,  -1) 

The vector Ap of the normal to the discontinuity surface is 
normalized in such a way that A'' A, = $- 1 for a timelike 
( + ) and spacelike ( - ) discontinuity surface. In the local 
rest frame Ap = ( 1,0,0,0) for timelike discontinuity and 
Ap = (0,;) for spacelike discontinuity. 

I. Projection parallel to Ap : 

2. Projection perpendicular to A, . We introduce 

G,=TWA,A ,,,, h"=gr~-i\'N/R".i, 

(G, is orthogonal to A, ), 

G"{zuu, (u,A") -pA,) {gT*-R.AplPA,} 
=zu (uTAr) uw- w (u,.Y) 'Aw/PA0. 

It also follows from the condition [ G p ]  = 0 that 
[G , G, ] = 0. This leads to the expression 

We introduce the notation Q = w(uvAv ) 2  and N = AvAv. 
Then Eqs. ( A l )  and (A2)  can be rewritten in the form 

[QI=N[pl,  [Q21=N[wpl. 

Eliminating N, we have 

Q1=-N(p2-pl) (e2+pl) l (e2-pz-el+p,). 

Therefore, 

(u''1h) 12=N(~2-p1) (e2+pl)/(e?-p2-el+pl) (e,+pl). (A4)  

On the other hand, 

y12u12 ~ 0 ~ 2  el, spacelike discontinuity, ( U ~ A ~ ) ~ ~  = ( 
yl2? timelike discontinuity. (A51 

In Ref. 9, only spacelike discontinuities with 8, = 0 were 
considered. From (A4)  and (AS) we obtain an expression 
for the velocity of the oncoming flow in the rest frame of the 
front (for 8, = 8, = 0) :  

In the case of timelike detonation, the velocity v ;  is 
ui12=uI-Z. 

The relative velocity of the incoming and outgoing flows for 
both spacelike and timelike fronts is 

218 Sov. Php. JETP 65 (a), Februav 1987 Y I R ~ .  L.P.G-I 218 
< s 

1 < S .  t i  



FIG. 4. Kinematic regions in which the continuity equations are satisfied 
for physical values of the flow velocity for the transition between quark 
matter with energy density e2 and hadronic matter with energy density e ,  
( B  is the constant in the quark bag model). In the figure, I is the region of 
spacelike detonation, I1 is the region of timelike detonation, and I11 is the 
unphysical region. Because of the possibility of timelike detonation the 
unphysical region is here smaller than the one obtained in Ref. 9 (Fig. 4) .  

If we denote the entropy flux by Sp = sup, then the condi- 
tion of increase of the entropy can be written as 

for both cases of detonation in the process 1-2. If in Eqs. 
(A6)-(A8) we substitute the same equation of state and 
make the same analysis as in Ref. 9, then we can find the 
region in which timelike detonation is possible (see Fig. 4).  

APPENDIX 2. IMPLOSION INDUCED BY RADIATION 

We consider a physical volume filled with matter and 
fairly transparent for radiation. This matter undergoes an 
exothermic transition if its temperature exceeds T,. We as- 
sume that the core is surrounded by a shell of explosive that 
ignites rapidly and whose radiation leads to heating of the 
core. We ignore the expansion of the shell inward, and also 
the expansion of the core, i.e., we shall assume that its radius 
is unchanged, R = const. Suppose the shell is ignited at the 
time to = 0 simultaneously at all points. In what follows, the 
length is measured in units ofR and the time tin units ofR /c .  

Let Q be the heat that the shell radiates in unit time 
through unit surface. If it is assumed that in the matter of the 
core a constant fraction C of this heat is absorbed, then at 
distance r from the center of the core we have (we ignore the 
opacity of the core) 

where 
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Thus, the heat absorbed in unit time is 

1 ( l + r ) l - )  I ,  t>l+r, 
t .!? _ 3 ( In -, I-r<t< I+r, 

1-r 
(A101 

dt r 

Ignoring the compression, assuming that the specific heat 
C, is constant, and using the fact that dT-dQ /C,, we ob- 
tain 

t 

(thus, if t > 1 + r, then T( r  = 0,t) cc t - 1). The discontin- 
uity surface is determined by the contour T(r,t) = T,. The 
tangent to this contour at t > 1 + r is given by the expression 

The point (t, ,r, ), at which the spacelike and timelike parts 
of the surface converge, is determined by the condition (&I 
a t )  T, = 1, whence 

For example, for r, = 0.5 we have t, = 2.34 and 
T, = 3.142(2~CQ / C ,  ). The center of the core is heated to 
T, during the time t = 2.57. The liner = t, ( r )  separates the 
spacelike and timelike parts of the discontinuity surface 
T(r,t) = T,. The discontinuity is formed at r = R at the 
time t = 0 and then propagates inward. This process initially 
proceeds slowly, but it is then accelerated by the radiative 
heat transfer and at r, = t , ' (t ,  ( r )  ) goes over smoothly 
into a timelike discontinuity (see Fig. 3).  If T, = 4nQC / 
C,,  then this occurs approximately at r, = 0.5-0.6. A simi- 
lar gradual transition from spacelike to timelike detonation 
can be realized in the late stages of ultrarelativistic nuclear 
collisions. If we include radiative heat transfer in the scenar- 
io described in Ref. 11, then the transition from spacelike to 
timelike deflagration will be smooth. However, this question 
requires a more detailed numerical analysis. 

"Such discontinuities can appear in the process of matter condensation in 
a rarefaction waveX or in the case of deflagration and detonation of ex- 
panding bubbles in a supercooled metastable rnedi~rn.~."  Here, we call 
any discontinuity surface a shock front. The difference between these 
discontinuities and ordinary shock waves will be discussed below. 
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