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A unified approach to the description of scattering processes and resonance states for the 
Klein-Gordon equation in the field of a black hole is developed on the basis of Jost's method. 
Some general definitions and properties of the S matrix, amplitudes, and differential and total 
absorption and scattering cross sections are obtained for the axisymmetric Kerr-Newman 
configuration. Concrete results (scattering and absorption cross sections and the 
characteristics of resonance levels of massive particles) are obtained for the long-wave case. 

The problem of the scattering of particles and fields of 
various spins by a black hole with phenomenological specifi- 
cation of the boundary conditions on the event horizon has 
been considered in many studies (see, for example, Refs. 1- 
3, and also the bibliography of Ref. 3). In particular, the 
partial-wave (and, in some cases, the differential and total) 
cross sections for absorption and scattering have been calcu- 
lated in the long-wave approximation (R, 4A) for massless 
and massive particles. The studies of Refs. 4-9 proved the 
existence of quasibound resonance (including superradiant) 
states for massive particles, and their characteristics-ener- 
gy spectrum, damping, and excitation-were calculated in 
some important special cases. The method of Refs. 4-9 is 
based on the use of analytic and WKB solutions of the wave 
equations for E <pc2. 

In the present paper, we consider the scattering prob- 
lem for a massive scalar field in the field of a rotating and 
charged Kerr-Newman black hole. We generalize the ap- 
proach of de Alfaro and Regge, l o  based on Jost's method, for 
the case of curved space-time. We construct the S matrix for 
states E>pc2;  its analytic continuation into the region 
E <pc2 makes it possible to find the resonance states as its 
poles. Thus, we develop a unified formalism for describing 
the problems of scattering and resonance states in black hole 
fields. The concrete results (scattering and absorption cross 
sections and the characteristics of the resonance states) gen- 
eralize all the results obtained earlier in Refs. 1-3,5,7, and 8 
in the approximation 

(M and Q are the mass and charge of the black hole, J = Mac 
is its intrinsic angular momentum, and E, p ,  and e are the 
energy, mass, and charge of the particles). 

1. The behavior of a spinless particle in the Kerr-New- 
man geometry11 is described by the Klein-Gordon-Fock 
equation 

where 

tum projection m, and square of the generalized angular mo- 
mentum il 2: 

1 
@elm ( t ,  r,  0,cp) = -R,lm ( r )Z im ( 0 , ~ )  e-iwt,  

r 
(4)  

where Z ," ( 0 , ~ )  are spheroidal harmonics, 

21+1 (1-m) ! '" 
~ ~ ~ ( 0 ~  c p ) =  [Tw 1 S;  (a  (wz-p2)' ,  cos 0 )  elmq, 

( 5 )  
normalized as follows: 

and S ;"(a (w2 - p2) 'I2, cos 8 )  are spheroidal functions (see 
Ref. 12), satisfying the equation 

1 d dS 
- - ( s i n  sin 0 d0 e d 8 )  

m2 -- 
sin" 

The eigenvalues A * = A:,,, (a )  cannot be expressed analyti- 
cally in terms of the numbers I and m." If 
a (a2 - p2) ' I 2  = 0, we obtain 

iL2=l( l+l) ,  SI"=P,"(cos 0 ) ,  Zll"(O, p)=Y1"'(0, cp). 
The equation for the radial part of the wave function (4)  
takes the form of the one-dimensional Schrodinger equation 

where r* is the "tortoise" coordinate: 

dr' r2 
-=- 

dr A ' 

and the function W;" has the form 

D,=a,+ieA,, A,= (-QrIZ, 0, 0, Qra sin' ai'r) . (3  1 We consider three types of exact solutions of the radial 

Here and in what follows, we simplify the expressions by equation (8) :  

using a system of units in which fi  = C = G = 1. In separat- , , * , r * e - * + , , , , T , ,  , ( 1 la )  
ed variables, the solution of Eq. (2 )  is the wave function of a 
particle in a stationary state with energy w, angular momen- RI?) ( T 9  k, r ' ) = C i m ( ~ ,  k ,  r') e-'"'+D~m (.t, k,r')etk", ( 1 lb) 
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~ ~ 2 )  (.,-, k ,  I.') =2EI," (t, k ,  r*) sin[ kr'-nl12+6~m(z, k) I ,  ( 1 l c )  

where 

and 0, and V ,  are the angular velocity of the rotation and 
the electric potential of the black hole. 

Using the constancy of the Wronskian for the solutions 
( 1 l a )  and ( 1 l c ) ,  we calculate the Wronskian in the limits 
r*-. + CO: 

U(l) 
I m  ( T ,  k ,  r*) 7 A i m ( t ,  k )  r i T r *  + Ll lm( t ,  k )  eiT**, 

--CO 

R ~ A  ( T ,  k ,  r*) - 2 sin (kr* - n1/2 + 61,(~, k)).  
?'-.+?a 

We obtain the relation 

It can be seen that the phase shift is real only under the 
condition 

But if we require fulfillment in the limit r*+ - oo of the 
condition of capture of the wave by the trapped surface of the 
event horizon, we obtain 

2 sinh [ 2  1111 8 / , ( ~ ,  k )  ] = ~ k - '  IArm(t ,  k )  1'. (15 )  

Thus, allowance for the absorption of particles by the 
black hole leads to a complex phase shift, and the behavior of 
the coefficient functions will be as follows: 

lirn A,,=l, lirn U,,=O, lim Cl,=l, 
7 +-- T +-m r + + m  

lim Dl,=& lim Elm=l. 
r'++m r'-+m 

(16) 

It can be seen from the general form of the function 
( 10) that 

( 1 )  Rlm ( T ,  -k, r ' )  =R,:) ( t ,  k. r ' ) ,  

R::.' ( - T ,  k ,  r*) =R:: (7, k ,  r ')  . 

For the radial equation (8 )  there exist at least two pairs of 
linearly independent solutions, 

for which the relations 

R:,:," ( T .  k ,  r') =R:,: ( - T ,  k , r ' ) ,  

R,';' (7,  k ,  r")  =R::) ( T ,  -k ,  r*)  , (17) 

hold. Among these four solutions, any three are linearly de- 
pendent: 

The Jost function 

d -- R::) ( T ,  k ,  r ')  R;:' ( t ,  k ,  r') 
dr' 

does not depend on r*, since the Wronskian of two solutions 
of the radial equation (8 )  does not depend on r*. Hence, we 
find the coefficients 

Equations ( 18 ) describe a number of scattering processes 
phenomenologically. For the solution that has the form of an 
incident wave on the black hole horizon and a superposition 
of incoming and outgoing waves at infinity, we obtain 

In the limit r* + + co , we have 

where 
f l r n ( t ,  k) e ( n l  

S , ,  ( T ,  k )  = 
f r m ( ~ ,  - k )  

We choose the Jost function in the form 

f l m ( t ,  It) = exp i6,,(r, k )  - { 

then 

It follows from the theory of second-order differential 
equations1° that the Jost function is an analytic function, 
while S,, ( r ,k )  is a meromorphic function. 

The asymptotic formula (22) shows that the function 
S,, ( r ,k)  transforms an individual incident wave into an 
outgoing wave, i.e., it is a diagonal element of the Smatrix in 
the Ilm) representation. From (17), (23),  and (24) we 
readily obtain for the Jost functions and S matrix the formal 
relations 

These relations give for the phase shifts the properties 

6(,*(r, k )  = 6 r m ( - ~ ,  k ) ,  6 ! , ( ~ ,  k )=-6r , (~ ,  -k)+nl. 

2. We consider the interpretation by means of the S ma- 
trix of the bound, resonance, and virtual states of a particle 
in the field of the Kerr-Newman black hole. If k is real 
( W  >,u ), the normalization integral (@I @) diverges, i.e., 
there are no bound states. If k is complex ( k  " = Im k ' > O), 
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then it follows from the constancy of the Wronskian that 
Re k = 0. Therefore, bound states exist only under the con- 
ditionf,, (r,ik " )  = 0, this corresponding to a pole of the S 
matrix: x Slm (p, cos 0,) { COS} mcpo dR, 

sin 

 st,,,(^, ik") =m. (27 and the orthogonality of the spheroidal harmonics ( 6 )  for 
the coefficient in (33),  we obtain the asymptotic expression" 

We consider the poles of the S matrix for arbitrary k 
(k = k ' + ik ", k " < 0) .  If k ' = 0, we have a virtual state; if 
k ' (<k ", then we have a resonance state for which 

x linl S tm (p, qo) x,:' (p, ig,) e-"""0 
r-+m 

Since k = k(w ), we obtain accordingly the Breit-Wigner 
formula for the resonance states of the quantum particle in 
the field of the Kerr-Newman black hole: kr 1 1 

g o  = - + 0 (-1) =4ni1Zl"1'(0ecp0) -- sin (kr - ;) . 
P r kr sin' tilrn (7, k )  = 

yZ 
(0-00)2+"1 ' 

Then 

'Y (t ,  1 '9  0, cp) 

4ni1 n l  
e { - z ~ ~ ~ ~  (8,cp0) sill( PI - - 

l m  
kr 2 ) Zim(0r) 

where 
o-on-iy ( Y ~ F - - O ~ ) .  

3. We find explicitly an expansion for the total scatter- 
ing amplitude with respect to the partial-wave components 
and of the cross sections of elastic and inelastic scattering 
processes. The wave function ( 4 )  of any stationary state has 
the asymptotic behavior 

m I 

Comparing (29) and (35),  we find the coefficients 

2ni" 
AI,,, (@,TO) = ----Zlm' (Oocpo) exp[ is,,, (t, k )  1, 

k 
The asymptotic form of the wave function (4 )  at large dis- 
tances for elastic scattering in an arbitrary field has the 
formJ3 

Then the expansion of the total amplitude f (n,n,,) has the 
Y ( t ,  r, 0, q)-e-'yt(e'kr+ f (n ,  no)eikr/r), (30) form 

where f (n,n,) is the elastic scattering amplitude, which de- 
pends on the directions of two unit vectors: along the direc- 
tion no of incidence of the particles and along the direction n 
of scattering (or observation), these vectors having the com- 
ponents 

n={sin 0 cos cp, sin 0 sin cp, cos 0), 
If a = 0, then, applying the theorem for the composition of 
spherical harmonics, 

no=(sin 0, cos 90, sin 0, sin cp,, sos O,,). 
Then 

kr-kzf=1ir(cos 0, cos 0+sin 6, sin 0 cos(cpo-cp) ). (3 1) 
21+1 x ytm* (00cp0) ylm ( 0 ~ )  = - P I  (cos a )  
4n 

(37) 
n1=-1 

We shall seek the elastic scattering amplitude 
f (n(Bp),  no(Bopo) ) in the form of an expansion in a series 
with respect to the spheroidal harmonics (5 ) :  

( a  is the angle between the directions of incidence, no, and 
observation, n ) ,  we obtain the elastic scattering amplitude 
for the case of central symmetry in the field of the Reissner- 
Nordstrom black hole (see Ref. 3 ) .  The differential cross 
section for scattering of the particle into the direction n from 
the direction no is 

In order to find the coefficients q,, , it is necessary to expand 
the incident plane wave with respect to the spheroidal har- 
monics (5)  : 

m I 

x z1 ," (O,cpo) zT"(0cp) zIm. (O,cpo) ztm (09).  (38) 

The differential cross section for elastic scattering of the par- 
ticle into any direction from the direction no is determined 
by integration of (36): 

Using the integral representation for the product of a 
spheroidal function and a radial spheroidal function, l 4  
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do, 4:r;' 
-=- 7, y, 1slm-l l 2  lzln'(Ooqo) 1 ' .  (38a)  
d Q ,  k2 1 = o  ,,,=-l 

If there is no rotation, then, since S,, = S, ,  Z ;" = Y;", 
theorem ( 37) gives 

i.e., in this case the probability of elastic scattering into any 
direction does not depend on the direction of incidence. 

Averaging over the rotations of the black hole, we ob- 
tain the cross section for elastic scattering of the particle into 
the direction n from any direction: 

Finally, the total cross section of elastic scattering into any 
direction from any direction of incidence is 

We introduce the probability of inelastic scattering as 
the probability that a particle in the state @,,, (t,r,e,q,) does 
not impinge on the infinitesimal area r2dfl from the direc- 
tion of incidence no: 

where 

i am,' 

J, is the flux of absorbed particles incident radially on the 
black hole from the direction no, and J, is the flux of particles 
incident on the black hole from infinity from the direction 
"0. 

Substituting ( 4 1 )  in ( 4 0 )  and then in ( 3 9 ) ,  we obtain 
the cross section for inelastic scattering of the particle: 

m I 

The total cross section for absorption of the particle from the 
direction no is 

Averaging over the rotations of the collapsed object, we ob- 
tain the total cross section for absorption of particles from 
any direction of incidence: 

where T,, (r,k) is the partial-wave absorption coefficient. 
4. We consider the case of weak influence of the effects 

of rotation of the black hoie on the picture of the scattering: 
p = ka g 1 .  In the first order of perturbation theory inp2 we 
obtain for the spheroidal harmonics 

where 

With allowance for ( 4 3 ) ,  the elastic scattering amplitude 
( 3 6 )  takes the form 

where 

With allowance for ( 4 3 ) ,  the differential cross section of 
inelastic scattering ( 4 2 )  takes the form 

The expressions ( 4 3 ) ,  ( 4 5 ) ,  and ( 4 7 )  show that the effects 
of rotation of the central body are quadratic in p for 
p = ka 1 and can have an influence only in the case of an 
explicit dependence of the matrix elements S,, on the rota- 
tion parameter a.  In particular, in the long-wave approxima- 
tionp = o M ( a / M ) v  ( 1 ,  and therefore 

Restricting ourselves also to the case of a weakly charged 
black hole, we can show that the matrix element S,, has the 
explicit form 

where 

Knowing that the poles of the S matrix determine the 
energy spectrum of the particle for w <p,  we find it in explic- 
it form: 
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It can be seen that (50) is the nonrelativistic hydrogenlike 
energy spectrum of the particle in the field of the rotating 
and charged black hole.' In this approximation, as (50) 
shows, a )  the binding energy does not depend on the rotation 
of the central body and the projection of the total angular 
momentum onto the symmetry axis of the field, b) even in 
the case of a nonrotating black hole there is the degeneracy 
with respect to the quantum number I specific for nonrelati- 
vistic motion in fields with Coulomb potential. It can also be 
seen from (5 1 ) that the damping depends essentially on I. 
With increasing I, as with increasing radial quantum number 
n,, the probability of capture decreases strongly. We empha- 
size that the expression (50) is valid for arbitrary rotation of 
the black hole (a<M), including the extremal case ( a  + M). 
If the condition 

ma/r+>2oM+eQ 
of superradiance is fulfilled, the damping of the correspond- 
ing level goes over into excitation in connection with the 
production and accumulation of particles in the given level. 
These processes are most intensive for the 2p states. In this 
case 

In the long-wave approximation, the elastic scattering am- 
plitude can be represented in the form 

where f, (n ,no)  is the Coulomb elastic scattering amplitude, 

and T,, is the partial-wave absorption coefficient: 

If ( 1 + u2)uM + eQ #0, then, restricting ourselves to 
s-wave absorption, we obtain the Rutherford distribution 
with respect to the angles with a correction, 

O.I 2itlr+ v 
X {1+16, sin2 -sin 2q in sin z]} . 

1 - e s p  (-2nq) " 2 [ 2 
(56) 

In this approximation, the absorption cross section 
(42a) is basically determined by 

i.e., in the long-wave approximation it does not depend on 
the orientation of the flux of particles with respect to the 
rotation axis of the black hole. The value of the cross section 
depends quadratically on the parameter a and is reduced by 
two times on the transition to the extremal Kerr-Newman 
configuration (a--M, Q<M).  It is interesting to note that 
for sufficiently large electric repulsion, when 

the absorption cross section changes sign in connection with 
the superradiant regime of scattering for the s waves. 

We note finally that the expression (57) generalizes the 
results of Refs. 1-3 and the expressions (50) and ( 5 1 ) the 
results of Refs. 5, 7, and 8. 
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