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A degenerate two-dimensional electron gas, in a magnetic band formed from a Landau level in 
the presence of a one-dimensional periodic potential, is considered. In strong magnetic fields, 
when the magnetic length 2 is smaller than the period A of the potential, the system becomes 
substantially nonuniform. The dependence of the components uii (i, j = x, y )  of the 
conductivity tensor on the occupancy Y of the magnetic band in the presence of scattering by 
point impurities is calculated for different A /A. In the case of small 2 /A the diagonal 
components uii have a sharp maximum at v = 4. The Hall conductivity a,, does not depend on 
the parameters of the scatterers. A smooth transition from the classical to the quantum Hall 
effect as 2 /A decreases is traced. 

1. INTRODUCTION 

The energy spectrum of two-dimensional ( 20 )  elec- 
trons in a quantizing magnetic field B is a set of Landau 
levels broadened as a result of scattering by a random impu- 
rity potential. The quantum Hall effect (QHE),' which is 
observed in such systems in sufficiently strong fields B and 
low temperatures T, consists in the fact that in finite inter- 
vals of B or of the electron density n, the Hall conductivity 
takes quantized values 

on semiconductor surfaces with high Miller in dice^,^ or can 
be created artificially in MIS structures in the form of a peri- 
odic striped ~ t ruc tu re .~  We shall assume that the amplitude 
of the potential is small in comparison with the cyclotron 
energy fiw, and shall neglect mixing of the Landau levels. 
The potential V(x) transforms the Landau levels into nar- 
row (in comparison with fiw, ) 1D magnetic bands's6 with a 
dispersion law E, (k, ) that can be calculated in lowest order 
in V / h ,  : 

eN(k , )  --(Nk,l VI Nk,). (4)  

It is assumed that the layer of 2 0  electrons lies in the plane 
where p = O, I,...; here - is the charge, is = 0, the magnetic field B = (o,O,B) is perpendicular to the 
Planck's constant, and the dissipative components of the layer, k, is the wave vector in they direction, and p k ,  ) are 
conductivity tensor vanish: the Landau wavefunctions, which, in this approximation, 

Deviations from ( 1 ) are associated with violation of (2).  
With decreases of B or increase of T a smooth transition to 
the classical Hall effect is observed: 

Here Y = 277-2 2n, is the occupancy factor of the Landau lev- 
els, 2 = (&/eB) ' I2  is the magnetic length, and c is the veloc- 
ity of light. The theory of the QHE in Ref. 2 explains ( 1 ) and 
(2) ,  but is not able at present to give a quantitative explana- 
tion of the real deviations from the ideal quantization ( 1) or 
of the transition to (3).  

The construction of a consistent theory of uii (B,T) is 
made difficult by the absence of a small parameter associated 
with the scattering of electrons by impurities. The reason for 
this is that the Landau levels with respect to the center of the 
Larmor orbit are infinitely degenerate in the absence of im- 
purities. This difficulty is removed, at least partially, in 2 0  
systems, in which the electron energy depends on the coordi- 
nates of the center of the orbit in the absence of impurities. 
This situation is realized for a 2 0  electron system in a period- 
ic 1D potential V(x) = V(x + A ) ,  where A is the period of 
the potential and is much greater than the lattice constant. 
In the present paper we trace the transition from ( 3 )  to ( 1) 
in such a system. 

The potential V(x) arises naturally in inversion layers 

characterize the states of the electrons in the magnetic band. 
The band energy (4) is relative to the N th Landau level. It is 
obvious that E~ (X) = E, (X + A), where X = - 2 2ky is 
the x coordinate of the center of the orbit and is a good quan- 
tum number in the absence of impurity scattering; therefore, 
the energy in the band is periodic in ky space, with period A / 
R '. In the following we shall confine ourselves to considering 
the fundamental magnetic band N = 0, and shall omit the 
index N. 

The halfwidth of the band (4)  increases exponentially 
with increase of B in relatively weak magnetic  field^,^ and, as 
2 /A - 0, reaches a maximum value equal to the amplitude of 
the potential V(x). In this case,' E(X) = V(X). We shall 
assume for simplicity that the equation E(X) = const has no 
more than two real roots on a period of the function E (X) . In 
other respects, the explicit form of E(X) is not specified. We 
assume that the band (4) is not smeared out by the scatter- 
ing. The presence of a small parameter, equal to the ratio of 
the collisional broadening of the Landau levels to the width 
of the magnetic band, makes it possible to calculate uii cor- 
rectly by treating the scattering by impurities in the lowest 
Born approximation. 

The electrons in the magnetic band tend to occupy the 
minima of the potential V(x). The properties of the system 
depend strongly on the magnitude of the parameter2 /A. In 
relatively weak fields B (A 2 A ) , the wavefunctions of elec- 
trons in neighboring minima of V(x) overlap strongly, and 
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the system can be regarded as almost uniform. The diagonal 
components of the conductivity tensor in this case have been 
calculated in Ref. 6 by means of the Kubo formula. It was 
found that the conductivity is strongly anisotropic 
(a,, (ayy ) and is determined by two different mechanisms. 
The conductivity uyy has a band character and is inversely 
proportional to the scattering. The conductivity ax, is due to 
migration of the centers of the orbits along the x axis as a 
result of the scattering, and is directly proportional to the 
scattering. Qualitatively, these two mechanisms are present 
for all values of R /A. 

In strong fields B (A <A ) the overlap of wavefunctions 
from neighboring minima of the potential V(x) is exponen- 
tially small, and thesystem becomes highly nonuniform. It is 
this case that will be considered in this paper. The electron 
concentration is a periodic function of x with period A .  The 
potential V(x) in this case must be calculated self-consis- 
tently. This causes the width of the magnetic band to depend 
on v. 

More fundamental is another consequence of the non- 
uniformity of the system. An external electric field is distrib- 
uted in the system nonuniformly. This casts doubt on the 
applicability of the usual Kubo formula for the conductivity. 
Therefore, in this paper we use for the calculation of the 
current the physically intuitive quasiclassical ideas first in- 
troduced by Titeica.' 

The article is arranged as follows. In Sec. 2 we calculate 
the distribution function of electrons over the band in weak 
electric fields in the presence of scattering by point impuri- 
ties. It is assumed that, because of fast electron-phonon re- 
laxation, it is a local-equilibrium distribution function. In 
Sec. 3 we find general expressions for the components of the 
conductivity tensor. In Sec. 4 we give an analysis of them. 
Special attention is paid to an investigation of the behavior of 
the Hall components of the conductivity. In Sec. 5 we discuss 
the limits of applicability of the results. Preliminary results 
of this work were published in Ref. 9. 

2. SOLUTION OF THE KINETIC EQUATION 

We shall consider a degenerate electron gas in the low- 
est magnetic band E(X) (Fig. la) .  In equilibrium the elec- 
trons occupy states in the minima (wells) of E(X), up to the 
Fermi energy E,. By virtue of the one-dimensional nature of 
the magnetic band (4),  the Fermi surface E (XF ) = EF is the 
set of points XF = X Ps2' + nA, where n = 0, f 1 ,..., and 
X$.2' are chosen as shown in Fig. la. The density of states at 
the Fermi level has the form 

where vk1r2' are the Fermi velocities of the electrons, vJ."~' 
= ld~/dX )A ' / f i  at X = X $1.2'. The number of occupied 

states is equal to IX kl' - Xk2' IS /237R 'A, whereSis the area 
of the system, whence it follows that (X$" - XJ2'( = AY. 
Thus, in the space of the orbit centers the electrons occupy 
bands of width Av, separated by intervals A ( 1 - Y ) ;  see Fig. 
lb. 

The orbit centers move in they direction with velocity 
v = - A 2fi-'d~/aX, thereby creating currents in the sys- 
tem. These currents are associated with the Hall drift of elec- 
trons in the field V(x), have a nondissipative character, and 

FIG. 1. Energy and distribution of electrons in a magnetic band at T = 0 
K, as a function of thex coordinate Xofthe center ofthe orbit, in equilibri- 
um (a)  and in an external electric field (c);  b) trajectories of the centers of 
electron orbits; the occupied states are shaded; the solid arrows represent 
the velocities of orbit centers; the dashed arrows show transitions between 
trajectories on account of scattering by impurities, which are denoted by 
crosses; A = A ,  + A, is the change of the Fermi level in a period of the 
function E(X). 

do not destroy the equilibrium in the system. When scattered 
by impurities, electrons can pass over from one trajectory to 
another and, as a result of this, be displaced in the x direc- 
tion. Obviously, in equilibrium the average current is equal 
to zero. 

An external electric field F = (F, , Fy ) renormalizes 
the spectrum [E(X) +Z'(X) ] and destroys the equilibrium in 
the system. The field component Fx tilts the curve E(X); see 
Fig. lc. As the Fermi-level electrons are displaced along the 
x axis on account of scattering by impurities, they accumu- 
late at one of the edges of each well because of the difference 
in the intrawell and interwell overlap integrals. The same 
accumulation effect can be produced by a field F,. In this 
case the electrons are displaced along thex axis with the Hall 
velocity x = cFy /B, and impurity scattering limits the accu- 
mulation process. As a result, the external electric field is 
supplemented by an induced field, and the total electric field 
acting on an electron becomes dependent on x. Model esti- 
mates6 show that, as a rule, typical velocities of electrons in 
the band exceed the sound velocity. This makes it possible to 
assume that in a weak electric field the rapid ~lectron-  
phonon relaxation at each well edge on account of Cerenkov 
emission of phonons will lead to the establishment of local 
equilibrium described by the Fermi distribution function 
f(X) with a Fermi energy depending on X (Ref. 10). 

The current in the system depends on the differences A, 
and A, of the Fermi levels inside each well and in neighbor- 
ing wells, respectively (see Fig. lc) .  We introduce the quan- 
tity A = A ,  + A,. In this nonuniform system the quantity 
- A/eA plays the role of the average (over a period A )  elec- 
tric field F:. 

To determine A ,  and A, it is necessary to solve the ki- 
netic equation for f in the X-representation: 
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where U = uoBiS(r - r, ) is the potential of the point im- 
purities; the bar denotes the standard averaging over the im- 
purity configurations; the perturbed spectrum E(X) differs 
from the unperturbed spectrum E ( X )  to the extent that A, 
and A, differ from zero. The average value of the square of 
the matrix element in (6),  

depends exponentially on B and on the hopping length 
IX - X 'I, on account of the overlap integral; n, is the concen- 
tration of impurities, and Ly is the normalization length of 
the sample. Assuming that the deviations of the local-equi- 
librium distribution function f(X) from the equilibrium dis- 
tribution function fo(X) are small, we obtain, after lineariza- 
tion of (6), an equation for EF (X) : 

In the degenerate case, from (7 )  there follows a simple alge- 
braic relation between A,  and A: 

The infinite sums in (8) have arisen because in the integral in 
(7) we have taken into account hopping of electrons 
between different points of the Fermi surface upon scatter- 
ing by impurities. We note that for Fy = 0 the expression (8) 
contains no parameters associated with the scatterers. 

3. CALCULATION OF THE CURRENT 

We shall consider first they component of the current. 
It arises as a result of the skewness of the Fermi level within 
each well. The average current density j,, is found in the 
usual way: 

A12 

Linearizing (9) with respect to the perturbation A,, we ob- 
tain 

It follows from (8)  and ( l o )  that 

where - 

formally coincides, for v;" = u p ' ,  with the corresponding 
expression in Ref. 6, and describes the classical conductivity 
of a degenerate electron gas in a 1D band, and 

is the Hall conductivity, since it is the coefficient of propor- 
tionality between jy and the effective electric field F :  
= - A/eA. 

The current densityj, = j:" + j?) along thex axis con- 
tains two contributions. The first contribution 

is related to the usual Hall drift of electrons in a field Fy to 
zeroth order in the scattering, while the second contribution 
is due to the migration of the orbit centers X on account of 
impurity scattering and can be calculated by the method 
proposed for the 3 0  case in Ref. 8: 

The subsequent calculations are analogous to those which 
were performed in the solution of the kinetic equation. Lin- 
earizing ( 15 ), we obtain 

A12 m 

~8 ( e  ( X )  -r  ( X I ) )  (- 2) [ E F ( X ) - E R ( X 1 )  I .  

whence, for degenerate statistics, it follows that 

Expressing A, in terms of A by means of (8) ,  we obtain 

where 
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It follows from (14), (17), and (19) that 

with ayx determined by the expression ( 13 ) . The generaliza- 
tion of the results obtained to the case of finite T can be 
carried out using the formula of Mott." 

4. ANALYSIS OF THE RESULTS 

The expressions obtained above for aii can be simplified 
in the limiting cases of almost uniform and highly nonuni- 
form systems. 

In relatively weak magnetic fields the system is almost 
uniform, and for 2.ir2A ,/A 2s 1 the infinite sums in the ex- 
pressions for the tensor components a,, can be replaced, with 
an exponentially small error, by integrah6 The equations 
( 12) and ( 18) for aii go over into the corresponding expres- 
sions obtained in Ref. 6, and the Hall conductivity is de- 
scribed by the classical expression ( 3 ) . 

We shall consider the opposite limiting case of very 
strong magnetic fields (U 2/A & 1), when the system be- 
comes highly nonuniform. In all the infinite sums we may 
retain only the first few terms, corresponding to hops 
between neighboring Fermi points. The "bottleneck" for the 
scattering is the least probable hop; the hopping length for 
the latter along the x axis is equal to A ( 1 - v) for v < 1, and 
Av for v > (see Fig. lb ) .  The bottleneck disappears for 
v = 4, and with this occupancy of the band we should expect 
singularities in the conductivity. Actually, this implies that 
at v = 4 there is a transition from electronic conduction 
( v < i )  to hole conduction (v  > 4 ) .  

In analyzing the expressions obtained we shall start 
from the case A = 0. It is realized when the Hall contacts 
along the x axis are short-circuited. On the energy diagram 
shown in Fig. lc, we must set A, = - A,. Under the action 
of the field Fy a dissipative current jy and a Hall current jx 
flow in the system. The collisionless component j:" of the 
Hall current [see ( 14) 1 tends to increase A,, while scatter- 
ing decreases A,. Therefore, A, is directly proportional to Fy 
and inversely proportional to the scattering probability, and 
this provides a qualitative explanation of the expression (8).  
Since the current satisfies jy -A,, u,,,, is inversely propor- 
tional to the scattering probability. For U '/A ' -4 1 the prin- 

cipal contribution to the scattering probability is given by 
hops within wells for v < and by hops between wells for 
v > 4 (see Fig. lc) .  The overlap integrals corresponding to 
these hops increase as the Fermi level approaches the edges 
of the band, and so the dependence u,, (v)  has a maximum at 
Y = 1. As B increases the overlap integrals decrease and uyy 
increases. The dependence ayy ( v )  for different values of B is 
shown in Fig. 2a. 

The main result of the paper is described by Eqs. ( 13) 
and (20). In the calculation of ax, we made essential use of 
the scattering of electrons by impurities, but the answer 
turned out to be independent of the parameters ni and u, of 
the scatterem9 This result, which is surprising at first sight, 
can be explained as follows. The collisional component 
a$'Fy of the Hall current is proportional to the number of 
electrons in an energy interval of width A,, and to the prob- 
ability of scattering of these electrons. The quantity A,, as 
has been pointed out, is inversely proportional to the scatter- 
ing probability. Therefore, in the expressions for u$' and 
ox, the parameters of the scatterers cancel. 

The dependence o;, (v)  for different values of B is 
shown in Fig. 2b. In the uniform case (2.rr2A 2/A 2 >  1) the 
expressions ( 13) and (20) go over into ( 3 )  (the classical 
Hall effect). With decrease of A /A the dependence uxy (v) 
deviates more and more strongly from the classical straight 
line, when v # 4, and, as B + oo , takes the form of an ideal step 
with discontinuity e2/2m7 at v = 4 (the ideal quantum Hall 
effect). For 2A , /A & 1 the deviations from the ideal step are 
exponentially small: 

e2 { [ A2('/,-v) I} -' 
ox,=--- If exp 

2nk hZ 

This behavior of uxy has a simple physical explanation. 
In the lower half of the band, as B increases the probability 
that an electron hops between neighboring wells upon scat- 
tering decreases faster than the probability of hopping with- 

FIG. 2. Dependence of the diagonal components a,, (a)  and ax, (c)  and 
the Hall component a,, (b) of the conductivity tensor on the occupancy v 
of the magnetic band in weak ( 2 d  : & A  2, curves I ) ,  moderate ( I /  
2a2 < A  : / A  < 4, curves 2 ) ,  and strong (U : ( A  ' ,  curves 3 ) magnetic 
fields B: B ,  < B , < B , ; A i  = ( f i c / e B , ) ' I 2 ,  i =  1,2,3. 
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in the well (see Fig. lc)  and for A /A -0 the individual wells 
become isolated and we have a,, -0. In the upper half of the 
band, analogous arguments are applicable to the holes, and 
for A /A-0 the quantity a,, tends to the Hall conductivity 
e2/2&i of a completely filled Landau level. 

We now consider the case when the electric field is ap- 
plied along the x axis, and Fy = 0 (the Hall contacts along 
they axis are closed). A dissipative current j, and a Hall 
current jy flow in the system. In the case U ,/A 2 <  1, the 
bottleneck determining the quantity j, is an intrawell hop 
for v > 4 and an interwell hop for v < 4. Therefore, the voltage 
drops mainly inside the wells for v > 4 (A, -A, A, -0 as 
B- cc ) and between the wells for v < 4 ( A, -1 0, A2 - A as 
B- a). The electron hops within wells (between wells) 
form a current j, proportional to A, (A,) and to the prob- 
ability of these hops. It follows from the continuity of the 
current that A,/A, does not depend on the parameters of the 
scatterers, but is determined entirely by the ratio of the over- 
lap integrals [see (8)  ]. 

The Hall current jy is due to the skewness A, of EF 
within the wells, and in calculating it we can regard the sam- 
ple as a set of independent conducting strips (Fig. lb),  each 
of which is in the regime of the ideal QHE, with occupancy 
equal to unity. The total Hall current jyA across a period is 
equal to A1e2/2&i, whence follows the expression ( 10). The 
dependence uyx (v)  [see (13) and Fig. 2b] coincides, to 
within a constant factor, with the dependence A, (v)  . 

The fact that the usual relation (20) holds in this 
strongly nonuniform and anisotropic system is not trivial. It 
does not follow, generally speaking, from the Onsager sym- 
metry relations. lo 

The dissipative current j, is due to hops of electrons 
between Fermi points. The formula ( 18) for ox, for 2A '/ 
A '< 1 is greatly simplified," and for vkl' = vk2' =uF  can be 
represented in the form of the Einstein relation: 

Here N(EF) is determined by means of ( 5 ) ,  and the expres- 
sion in the square brackets, which has the meaning of the 
diffusion coefficient D,,, is written in terms of the lifetimes 
of an electron in respect of transitions within wells (7,) and 
between wells (r?) upon scattering by impurities, with 

n uoz 
Ti-% = - - AZvZ 

(2n) " AZhup 

The dependence of (7, + 7,) - ' on v [and, consequently, the 
dependence ox, (v)  ] has a maximum at v = 9 ;  the quantity 
c,"" decreases with increase of B (see Fig. 2c). In the uni- 
form case, when 2r2A '/A % 1, a,, qualitatively repeats the 
behavior of the density of states N(EF ) and has maxima at 
the edges of the band [the divergences of N(EF) are re- 
moved due to the scattering]. 

An interesting consequence of the results obtained is a 
relationship between the small corrections Soxy to the quan- 
tized Hall-conductivity values ( 1 ) and the dissipative com- 
ponents ax, and oyy of the conductivity tensor. For 
A ,<A 21v - 41, using (12) and (22) we obtain 

From this and from (2  1 ) it follows that 

Relations of this type have been investigated for an isotropic 
2 0  electron-impurity system [ V ( x )  = 0, c,, = ayy 1, both 
experimentally l 2  and t h e ~ r e t i c a l l ~ . ' ~ . ' ~  In Ref. 13 a linear 
relationship (Saxy -a,, ) was obtained by the renormaliza- 
tion-group method, while in Ref. 14 a quadratic relationship 
between So,, and ox, (So,, -a:, ) was obtained by numeri- 
cal methods. For an anisotropic system such a relationship 
has not been investigated previously. 

Finally, we note that in experiments on the quantum 
Hall effect one usually measures not the conductivity but 
the resistivity p U .  Using the relation betwen these tensors 
(j? = &-' ), we shall analyze the behavior of pii (v)  for 
0 < v < 1 as A/A -0. In this limit, a,, -0 and uyy - w , and 
sop, -+ cc and pyy -0 for v = const. The behavior of the 
Hall resistivity turns out to be unusual: Despite the fact that 
oxy experiences a discontinuity at v = 4 (see Fig. 2b), 
p, - 2&i/e2 for all v. Usually, a,, and p, experience dis- 
continuities at the same values of Y .  In the given case the 
absence of a discontinuity ofp, inside the band is explained 
by the fact that in this limit the sample, for all values of v, is 
divided into almost independent conducting strips (Fig. 
lb),  each of which is in the regime of the quantum Hall effect 
with a local occupancy equal to unity. The important point is 
that we are concerned here with the lower magnetic band. 
Only under this condition are the conducting strips separat- 
ed by nonconducting regions and not connected electrically. 
When the higher magnetic bands are occupied a division into 
independent strips is found to be impossible, and the discon- 
tinuities of oxy anap,, occur at the same (half-integer) val- 
ues of v. 

5. CONCLUSION 

The formula ( 13) describes analytically a smooth tran- 
sition from the classical to the quantum Hall effect with in- 
creasing B. In deriving it we made essential use of a specific 
feature of this (see Sec. 1 ) . The smallness of the collisional 
broadening of the magnetic band in comparison with its 
width (more precisely, with EF ) made it possible to invoke 
intuitive ideas about the motion of the electrons, and trans- 
parent mathematical apparatus. We shall discuss the limits 
of applicability of the results obtained. 

Impurity scattering was taken into account in lowest 
order of perturbation theory; localization effects were there- 
by neglected. This is certainly incorrect near the band edges, 
when the parameter associated with the scattering ceases to 
be small.6 A rigorous solution of the problem of localization 
in this system, including a determination of the edges of the 
mobility gap, goes beyond the scope of the present work. 
Nevertheless, the behavior of 0,. for v = l  (the peaks of a,, 
and uyy , and the discontinuity of axy ), is qualitatively simi- 
lar to the behavior of uij in the regime of the quantum Hall 
effect in ordinary systems and gives grounds to suppose that 
near the center of the magnetic band there exists a band of 
delocalized states, within which the ideas used in the paper 
are applicable. 

Certain results in the paper can be obtained by means of 
the standard Kubo formula. This pertains to oyy (Ref. 6 )  
and oxy (Ref. 9) ,  and is connected with the fact that in they 
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direction the system is uniform. For a,, the result obtained 
by means of the Kubo formula6 differs from the correct re- 
sult (18) in that the last term in the curly brackets is absent 
(it disappears for 2r2A 2 / A  2 > )  1 ,  when the system becomes 
uniform). The role of this term increases in strong magnetic 
fields (with decrease of A  / A  ), when the nonuniformity of 
the system in the direction of the x axis becomes more and 
more important. This conclusion has a general character. 

The theory of uniform linear response and, in particu- 
lar, the usual (local) form of the Kubo formula are very 
widely used for the calculation of uij in the regime of the 
quantum Hall effect in ordinary (isotropic) 2 0  systems, 
which are often nonuniform. The present result casts doubt 
on the admissibility of such an approach. 

The authors express their gratitude to V. B. Sando- 
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sults of the work. 

"The expression for a,, in this case was obtained independently by Yu. B. 
Grebenshchikov, F. R. Ulinich, and N. A. Usov. 

'K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 
(1980). 

'E. I. Rashba and V. B. Timofeev, Fiz. Tekh. Poluprovodn. 20, 977 
(1986) [Sov. Phys. Semicond. 20,617 (1986)l. 

3V. A. Volkov, V. A. Petrov, and V. B. Sandomirskii, Usp. Fiz. Nauk 131, 
423 ( 1980) [Sov. Phys. Usp. 23,375 ( 1980)]. 

4M. J. Kelly, J. Phys. C 18, 6341 (1985). 
5A. M. Berezhkovskii and R. A. Suris, Zh. Eksp. Teor. Fiz. 86, 193 
(1984) [Sov. Phys. JETP 59, 109 (1984)]. 

6G. R. Aizin and V. A. Volkov, Zh. Eksp. Teor. Fiz. 87, 1469 (1984) 
[Sov. Phys. JETP 60,844 (1984)l. 

'A. V. Chaplik, Solid State Commun. 53, 539 (1985). 
'S. Titeica, Ann. Phys. (Leipzig) 22, 129 (1935). 
9G. R. Aizin and V. A. Volkov, Preprint No. 10 (428), Institute of Ra- 
dioengineering and Electronics, Academy of Sciences of the USSR, 
Moscow (1985). 

lop. S. Zyryanov and M. I. Klinger, Kvantovaya teoriya yavlenii elektron- 
nogo perenosa v kristallicheskikh poluprovodnikakh (Quantum Theory 
of Electron-Transport Phenomena in Crystalline Semiconductors), 
Nauka, Moscow (1976), Chaps. 7,9. 

"N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline 
Materials, Oxford University Press ( 1979), Chap. 2 [Russ. transl., Mir, 
Moscow (1982)l. 

I2V. M. Pudalov and S. G. Semenchinskii, Pis'ma Zh. Eksp. Teor. Fiz. 38, 
173 ( 1983) [JETP Lett. 38,202 (1983)l. 

''D. E. Khmel'nitskii, Pis'ma Zh. Eksp. Teor. Fiz. 38,454 ( 1983) [JETP 
Lett. 38, 552 (1983)]. 

I4T. Ando, Tech. Rep. Inst. Solid State Phys. Tokyo Univ. A, No. 1565 
( 1985). 

Translated by P. J. Shepherd 

193 Sov. Phys. JETP 65 (I), January 1987 G. R. Akin and V. A. Volkov 193 


