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Experimental and theoretical investigations were made of an orientational spin-flopping 
transition in a four-sublattice antiferromagnet (NH,), (CH,) ,MnCl,. The antiferromagnetic 
resonance and differential magnetic susceptibility methods were used to construct the (H,q,) 
diagram of this ferromagnet when an external magnetic field was inclined in the easy 
magnetization plane. The coordinates of the critical points of a first-order phase transition 
were H,, = 25.0 + 0.1 kOe and p,, = 7 + 0.25". The experimental results were described well 
by a theory developed by the present authors. 

1. INTRODUCTION 

In a recent paper1 we considered high-frequency and 
static properties of a quasitwo-dimensional four-sublattice 
antiferromagnet (NH,), (CH,) ,MnCl,. We found that the 
characteristics of the magnetoresonance properties of this 
Heisenberg antiferromagnet are primarily due to the forma- 
tion of a noncollinear four-sublattice structure of the mag- 
netic moments in the ground state. The feasibility of a new 
type of noncollinear structure with a large noncollinearity 
angle in low-dimensional Heisenberg magnetic materials 
was predicted in Ref. 2 on the following basis. A weak cou- 
pling between the separate layers (or chains) forming the 
magnetic structure in such compounds means that the orien- 
tation of the antiferromagnetic vectors is determined by a 
competition between the interlayer (interchain) exchange 
and intralayer (intrachain) relativistic interactions. This 
competition establishes a noncollinear magnetic structure of 
relativistic origin, which we shall call a relativistic noncol- 
linear structure (RNS). The strong noncollinearity of the 
structure arises because the strengths of the weak exchange 
and relativistic interactions are comparable. This mecha- 
nism of formation of noncollinear structures is manifested 
most clearly by low-dimensional magnetic materials for 
which the symmetry class of layers or chains is less than the 
symmetry class of the crystal as a whole. 

A surprising manifestation of the special nature of the 
static properties of an antiferromagnet with an RNS has 
been the observation in ( NH, 1, (CH,) ,MnCl, of a first-or- 
der phase transition' due to collective motion of magnetic 
sublattices belonging to neighboring magnetic layers cou- 
pled by a weak exchange interaction. In contrast to the spin- 
flopping transition in a two-sublattice antiferromagnet, 
which involves rotation of the antiferromagnetic vector by 
90", the phase transition in (NH, ), (CH,) ,MnCl, involves 
rotation of one of the antiferromagnetic vectors of a layer 
through an angle close to 180". The total antiferromagnetic 
vector rotates by 90", i.e., although the external features of 
the transition remain as before (rotation of the principal an- 
tiferromagnetic vector of the system), the physics of this 
effect is essentially different. 

We shall consider the nature and characteristics of such 
a spin-reorientation transition in inclined fields when an ex- 
ternal field is oriented at an angle q, to the easy axis b of the 

system and is within the easy plane. In the case of three- 
dimensional uniaxial antiferromagnets the range of exis- 
tence of a spin-flopping transition when H deviates from the 
easy axis in the easy plane lies within a narrow range of an- 
gles Ap -HA /He, where HA and He are the anisotropy and 
exchange fields. This problem was first considered theoreti- 
cally in Refs. 3-5 and experimental studies were reported for 
MnF, (Ref. 6) ,  a-Fe,O, (Ref. 7),  CuCl2.2H2O (Refs. 8 and 
9),  and GdAlO, (Ref. 10). It is natural to expect low-dimen- 
sional antiferromagnets with an RNS to be affected much 
less by a deviation of the field from the easy axis of a crystal. 
However, no investigations of this topic have yet been made. 

We shall report the results of an experimental and theo- 
retical study of the spin-flopping transition in 
(NH,), (CH,) ,MnCl, subjected to inclined fields when H 
was oriented in the easy plane of the system. 

2. EXPERIMENTAL RESULTS 

We constructed the (H,q,)  phase diagram of 
(NH,), ( CH,) ,MnCl, in inclined fields using the results ob- 
tained by two methods: measurements ofthe differential sus- 
ceptibility and antiferromagnetic resonance (AFMR). In 
both cases a magnetic field was created by a pulsed Helm- 
holtz solenoid which was rotated in a horizontal plane. The 
angle of rotation of the solenoid was measured using a spe- 
cial vernier scale; this was done with an error of less than 
0.5". 

The differential susceptibility measurements were car- 
ried out by an induction method. A sample was placed in a 
measuring coil which could be rotated in a vertical plane 
together with the sample. A compensation coil, connected in 
opposition to the measuring one, had a number of turns suffi- 
cient to reduce the signal proportional to d H  /at by a factor 
of 10, in the absence of a sample. The quantity 6'M /aH = x 
was determined as a function of the applied field using an S8- 
11 storage oscilloscope. A special circuit limiting the signal 
proportional to H made is possible to observe an extended 
part of the x(H) dependence. There was a susceptibility 
peak in the region of the spin-flopping transition. For the H 
orientation along the easy axis the width of the peak was -- 100 kOe and an increase in the angle of inclination in- 
creased H and reduced x,,, . The peak could no longer be 
observed for p > 9". The dependence of H,,, , deduced from 
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FIG. 1 .  Angular dependence of the field H, corresponding to the suscep- 
tibility maximum [ x ( H , )  =x,,,> The spin-flopping field is 
Hsf(0) = 24.6 kOe. The continuous curve represents a first-order phase 
transition described by Eq. ( 1 1  ). The critical point of this phase transition 
has the coordinates H,, = 25 $- 0.1 kOe and p,, = 7 + 0.25". The inset 
shows schematically the magnetic configuration of 
(NH,),(CH,),MnCI, and the geometry of inclination of an external 
magnetic field. 

We investigated the part of the spectrum of acoustic 
AFMR modes in the range between a,,, and wmin (Fig. 2) .  
We assumed that a first-order phase transition should have a 
transparency window in the frequency-field dependence of 
AFMR modes in the investigated frequency range and that 
the angle of inclination of the external field corresponding to 
disappearance of the transparency window in the frequency- 
field dependence could be identified with the critical angle of 
a first-order phase transition.".I2 The results of these experi- 
ments are plotted in Fig. 3. We can see from this figure that 
the investigated interval of frequency-field dependence of 
the AFMR modes was filled asymmetrically relative to w,,, 
and wmi,. An increase of the inclination of the external field 
to angles equal to pcr reduced the transparency window be- 
cause of bending of the dependence w, ,, (p) in the low-fre- 
quency range. In this situation the value ofp,, was governed 
by the angle corresponding to a,,, (p) = wmin (urnin/ 
y = 5.85 kOe) and the value of twice this angle was 
2p,, = 14 + 0.5". Comparing these results with the data de- 
duced from the dependence H,,, ( p ) ,  we concluded that the 
dependence of Hsf - Hx,-(0) on the angle p was identical 
with the devendence H ,  - Hsf (0)  in Fig. 1 in the angular 
interval + 7". The point with the coordinates H = 25 f 0.1 
kOe and p = 7 + 0.25" was the critical point of the first- 

the position  of^,,, , on the angle of inclination of the exter- order phase transition under investigation. In the range 
nal field was determined (Fig. 1 ) . Unfortunately, this de- P > PC, the magnetization disappeared abruptly although 
pendence was insufficient to determine reliably an important the susceptibility singularity was retained up to angles 
characteristic of the (H,p)  diagram, the critical angle for a P = 9' (Fig- 1 ) .  
first-order phase transition. 

As shown in Refs. 11 and 12, it was possible to deter- 
mine p,, by the AFMR method. We therefore investigated 
the AFMR in inclined fields. The angular dependences of 
the AFMR were investigated by a method basically similar 
to that described in Ref. 1. A measuring cell in the form of a 
cavity resonator was used in conjunction with an rf 
spectrometer and a pulsed magnetic field. Microwave radi- 
ation was provided by klystrons operating in suitable ranges. 
A sample could be rotated in a vertical plane inside the reso- 
nator. 

3. THEORY; COMPARISON WITH THE EXPERIMENTAL 
RESULTS 

We shall recall briefly the crystal stucture of the investi- 
gated compound." A crystallochemical cell of 
(NH, ) , (CH,) ,MnCl, contains four formula units and rep- 
resents a practically quadratic layer of Mn2+ atoms in an 
octahedral environment of chlorine ions between which 
there are NH,-(CH2),-NH, organic molecules. The dis- 
tance between the nearest Mn2+ ions in a layer is 5.2 A and 
the distance between the atoms in different layers is 9.5 A. 
The superexchange is weak because of the large distance 
between the spins in neighboring layers, and it is responsible 
for the quasi-two-dimensional magnetic behavior of the sys- 
tem. It is shown in Ref. 1 that all the experimental data on 
the field dependence of the AFMR frequencies and the ob- 
served spin-reorientation phase transitions can be explained 

FIG. 2. Frequency-field phase diagram of an antiferromagnet in the vicin- 
ity of a spin-flopping transition in a field of the HIlb ( p  = 0 )  orientation.' 
The frequencies om,, and om,, define the interval within which the angu- 
lar dependences of the antiferromagnetic resonance spectrum were inves- 
tigated. 

FIG. 3. Angular dependence of the resonance field of acoustic antiferro- 
magnetic resonance modes in the vicinity of a spin-flopping transition in 
(NH,),(CH,),MnCI,: A )  o / y  = 11.3kOe;O) o / y  = 10.55kOe;A)o/ 
y = 8.24 kOe; .) w/y = 6.75 kOe; 0 )  w/y = 5.85 kOe. 
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in a nonconflicting manner by ascribing the space group 
Pnma ( D  :; to this compound. 

In accordance with the layer structure of a crystal, we 
shall introduce the antiferromagnetic and ferromagnetic 
vectors for the first and second layers, respectively: 

where s is the atomic spin. Then, linear combinations of spin 
operators representing irreducible representations of the 
symmetry group of the paramagnetic phase are 

In the ground state of (NH,), (CH,) ,MnCl, the magnetic 
configuration is A,, C, , F, with the principal antiferromag- 
netic vector C (representing the easy axis y) . '  The inset in 
Fig. 1 shows schematically the sublattice spin orientations in 
the neighboring layerss, and s,; s, and s4 are the orientations 
in a magnetic cell. 

Applying the symmetry operations of the space group 
Pnma to the components of the vectors in Eq. (2) ,  we can 
classify them in accordance with the irreducible representa- 
tions of this group and write down an invariant expansion of 
the Hamiltonian of the system (the necessary expressions 
are given in Ref. 1 ). An analysis of a spin-reorientation tran- 
sition in an inclined field will be made using a Hamiltonian 
in which the Dzyaloshinskii interaction is ignored. 

This interaction may have a considerable influence on 
the nature of a spin-reorientation transition and in some 
cases it may change it from a first- to a second-order phase 
t ran~it ion. '~. '~  Where the nature of the phase transition does 
not change, the Dzyaloshinskii interaction may influence 
the sequence of phase transitions in a system. '"I8 For exam- 
ple, in (NH,), (CH,) ,MnCl, because of the Dzyaloshinskii 
interaction of the D,, (L ,,Fly + L ,,F,, ) type it is found 
that when the field Hll y reaches the spin-flopping value Hxf, 
the reorientation of the principal antiferromagnetic vector 
from they axis does not occur strictly to thex axis but results 
in some deviation toward the z axis. Moreover, the same 
interaction operating in the range of fields Hsf < H < Hc 
causes rotation of the pincipal antiferromagnetic vector 
from a direction parallel to the x axis toward the z axis. Our 
neglect of the Dzyaloshinskii interaction in a theoretical 
analysis of a spin-flopping transition in an inclined magnetic 
field is justified by the following considerations. Firstly, the 
investigated crystal exhibits first-order phase transitions. 
Secondly, the transition fields Hsf and Hc are separated 
quite widely in the case of (NH,),(CH,),MnCl, 
(Hsf = 24.6 kOe, Hc = 98 kOe-see Ref. I ) ,  so that an ad- 
mixture of a layer component I, can be regarded as small. 
Moreover, as shown below, this model describes satisfactori- 
ly the experimental results. The free energy system is 

@ = - t f  /2J~(Liz'+L2,Z)-t/2Ju(Li,2+L~,2)+1/2Z~(Fi2+F212) 

+'/zIu( Fi,Zf F,,Z) -8  (LtxLiu-LZrL2y) 
- J ~ L ~ L ~ + I ~ F ~ F , - ~ ~ B H ( F ~ + F ~ ) .  ( 3 )  
The constants of the magnetic interactions in Eq. (3)  can be 
described linearly in terms of the intrasublattice and inter- 
sublattice exchange interaction constants and in terms of the 
anisotropy. It is then found that J, and I, ( a  = x,y) include 

the isotropic exchange interaction and part of the anisotrop- 
ic interaction between spins within a layer; fl is the intralayer 
anisotropic interaction of monoclinic symmetry; only the 
isotropic exchange from among the interlayer interactions is 
included in Eq. (3).  We shall assume that the following in- 
equalities apply: 

which is in agreement with the experimental results on the 
investigated 

The free energy (3)  describes a four-sublattice antifer- 
romagnet with a structure in the form ofa planar cross. Since 
the Dzyaloshinskii interaction is ignored, when an external 
magnetic field is inclined in the easy plane of the system, the 
magnetic moments of the sublattices are rotated in the same 
plane. 

We shall introduce angles 6, and 6, describing devi- 
ation of the antiferromagnetic vectors of the layers of the 
easy axis in the xy plane. Then we find that ( i  = 1,2) 

Zix=Zi sin €Ii,  l il=li cos F),, 
( 5 )  

The relationships in the system ( 5 )  allow for the orthogona- 
lity conditions: l , -m,  = 0 and I,.m, = 0; substituting them 
in Eq. ( 3 )  and using the normalization condition 
I f  = 1 - m:, we obtain the free energy of the system as a 
function of the variables mi and Oi. 

Later we shall use the inequalities (4) which allow us to 
conclude that in the range of fields investigated we have m <I 
and hence we can simplify greatly the free energy of the sys- 
tem. We shall ignore above all the terms J,m; and I,m:. 
Then, minimizing @ with respect to mi we find that 

H ,  s in  0,-H, cos & 
m i  =. 

2H,- ( H A t - H A Z - H A f )  sin2 Ot+'12HA3 sin 2O1 ' ( A )  
\ " I  

H ,  s in  02-Hz cos O2 
m 2  = 

2H.- ( H A , - H A ~ - H ~ ' )  sin2 02-'/zHA3 sin 202 ' 

The following notation is introduced here He =s ( J  + 1 ) y- ' 
is the field of the intralayer exchange interaction; HA, 
- HA 2 s ( J y  - J, ) y-' is the anisotropy field stabilizing 

the antiferromagnetic vector of a layer along they axis; H :, 
-2s(Iy - I, )y- '  is the anisotropy field stabilizing the fer- 
romagnetic vector of a layer along the same axis; 
HA, r 2s.2fly- ' is the monoclinic anisotropy field; 
Y = ~ P B .  

Using Eq. (6) ,  we can represent the free energy as a 
function ofjust two variables, 6, and 6,. However, an analy- 
sis of this energy still presents considerable difficulties. 

We shall bear in mind that the angular dependences of 
the denominators in Eq. (6)  are proportional to the small 
ratio HA /He. In other words, the anisotropy of the suscepti- 
bility of the layers can be allowed for using perturbation 
theory. Then, expanding the denominators of Eq. ( 6 )  as a 
series up to the terms HA inclusive, we find that the free 
energy of the system becomes 

@=-sJ - * - - - -  H Z  ' ( H A 1 - H A 2 -  "' 4H.  2 
Ht-H2  ) cos x cos y 

2He 
1 -- HxHu 
2 

HA, s in  y cos x-He' cos y + - sin x cos y .  
2He 

( 7 )  
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Here, H: =2sJ3y-' is the field of the interlayer exchange 
interaction; x=8 ,  + 8,, y-8, - B,, and the angle x repre- 
sents the deviation of the principal antiferromagnetic vector 
C of the system from the easy axis. 

Equation (7)  is derived relying heavily on the circum- 
stance that H:  Z HA for (NH,),(CH,),MnCl,. Therefore, 
Eq. (7)  and the results that follow from it do not allow us to 
analyze the limiting case of the ultraweak interlayer ex- 
change H : 4 HA.  

The rest of the analysis of Eq. (7) is conventional. The 
equilibrium values of x and y are related by the conditions 

nets, for which the range of existence of a first-order phase 
transition is governed by low values of the angles Ap - HA / 
He,  many-sublattice antiferromagnets with a relativistic 
nonlinear structure are much less sensitive to deviations of 
the external field from the easy axis. The critical fields for 
these two cases differ by at least twe orders of magnitude. 

We found that a study of a spin-flopping transition in an 
antiferromagnet with a relativistic noncollinear structure in 
inclined fields provides a fairly direct and reliable method 
for the determination of the degree of noncollinearity of such 
structures. 

It is worth noting that the high critical angle of the 
phase transition may be realized not only in low-dimensional 
antiferromagnets. For example, if HA & H i  <He,  when a 
system is nearly three-dimensional, the critical angle of Eq. 

(12) is 

The phase transition field is given by 

X I ,  ( H A , - H A , )  =H,Z-H,Z (10) 

or, introducing the angle p of the deviation of the vector H 
from the easy axis, by 

H8~2(cp)=H.,2(0)/cos2~,H,~2(0)=2H,(HAi-H,,). (11) 

Figure 1 shows the angular dependence of the spin-flopping 
transition field obtained experimentally for 
(NH,), (CH,) ,MnCl,. The continuous curve represents the 
dependence ( 11 ) in the case when p<p,, . We can see that 
the experimental results are described well by the expression 
obtained above. The critical phase transition angle is 

tg 2 ~ , , = [  (He"+ HA,~)'~-H~']/(~~AI-I~AZ). (12) 

In the case of (NH,),(CH,),MnCl, we have H: = 0.46 
kOe, HA, =0.34 kOe, HA, =0.54 kOe, and HA, =0.09 
kOe from Ref. 1 and Eq. (12) yields 2pc, = 14", which is 
again in good agreement with the experimental results. 

It therefore follows that the critical angle of the spin- 
flopping transition in a low-dimensional antiferromagnet 
with an RNS is fairly large and exceeds by two orders of 
magnitude the corresponding angle for the three-dimension- 
al case. 

We shall compare p,, with the noncollinearity angle 0 
of the system found in Ref. 1. We then have 

t g  20=HA3(HA,-HAz+2H,')-' (13) 

[we have reproduced Eq. (6)  from Ref. 1 on the assumption 
that the Dzyaloshinskiy field is HD, = 01. Substituting the 
various parameters, we find that 28 = 14". The agreement 
between 8 and p,, is accidental, although in the case of low- 
dimensional antiferromagnets with an RNS these param- 
eters should be comparable. 

4. CONCLUSIONS 

Our investigation of an orientational spin-flopping 
phase transition in two-dimensional four-sublattice antifer- 
romagnets with a relativistic noncollinear structure 
(NH,),(CH,),MnCl, subjected to inclined fields oriented 
in the easy plane of the system shows that, in contrast to the 
familiar case of three-dimensional collinear antiferromag- 

Equation (14) differs from the familiar expression for 
tan 2p,, in the three-dimensional case found in Refs. 3-5. It 
should be noted that ifHA3 &HA , - HA,,  the angle given by 
Eq. (14) exceeds the noncollinarity angle of the system 
which is 

In other words, even if the magnetic structure of a many- 
sublattice antiferromagnet in the ground state is nearly two- 
sublattice, its properties in the course of spin-reorientation 
phase transitions may differ considerably from the proper- 
ties of a two-sublattice antiferromagnet. Consequently, spin- 
reorientation phase transitions cannot be generally de- 
scribed by a two-sublattice model even in the case of weakly 
noncollinear many-sublattice magnetic materials. 

We shall conclude by noting that a spin-flopping transi- 
tion in an external magnetic field inclined at a large angle to 
the easy axis has been observed in a one-dimensional four- 
sublattice antiferromagnet with a noncollinear magnetic 
structure CuCl,C,H,SO (Ref. 20). This behavior can natu- 
rally be explained by the ideas put forward above. 

The authors are grateful to V. G. Bar'yakhtar and V. V. 
Eremenko for valuable discussions and support, and to M. I. 
Kobets for the help in the experiments. 
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