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A study is made of the influence of resonant scattering of carriers by quasilocal levels on the 
heating of electrons in a semiconductor. It is shown that a strongly nonmonotonic energy 
dependence of the relaxation time near a resonance may give rise to negative differential 
conductance (NDC) regions in the current-voltage characteristic. In the case of zero-gap 
semiconductors the characteristics may exhibit simultaneously both N- and S-shaped NDC 
regions. 

1. INTRODUCTION chemical potential with electron temperature. The second 
Narrow-gap semiconductors frequently have quasilo- situation is typical of zero-gap semiconductors with m,* 

cal electron states of different origin, and the energy levels of <mh* (such as HgTe) . I 3  

these states are superposed on the allowed bands.'-5 The ex- 
istence of such energy levels may have a considerable influ- 2. COND~T~ONS OF VALIDITY OF THE TRANSPORT 
ence on the transport properties of semiconductors. The EQUATION IN THE CASE OF RESONANT SCATTERING 
most thorough e~per imenta l~-~  and t h e ~ r e t i c a l ~ ~ ~ , ' ~ * l '  inves- 
tigations of these effects have been made in weak electric 
fields. In the interpretation of the experimental results an 
allowance has been made either for resonant scattering of 
conduction electrons by centers responsible for quasilocal 
states or for the possibility of carrier capture by these states, 
which is reflected in the electron statistics. 

The few available experimental results demonstrate the 
important role played by quasilocal states also in the pro- 
cesses of heating of a carrier gas by an electric A 
theory of nonequilibrium processes occurring under these 
conditions has not been completely developed, but Gel- 
'mont14 predicted the possibility of an S-shaped current-vol- 
tage characteristic for a zero-gap HgTe semiconductor con- 
taining acceptors, which give rise to resonance states in the 
conduction band. An S-shaped characteristic is mainly due 
to the capture of electrons by acceptors, i.e., it is a concentra- 
tion effect. The capture by quasilocal states is allowed for 
also in Ref. 15 where a calculation of the current-voltage 
characteristic of a zero-gap semiconductor is reported. 

Thus the influence of quasilocal states on electron 
transport properties can be interpreted in two ways, either as 
resonant scattering or as capture. We shall determine the 
conditions of validity of the two approaches and study the 
influence of quasilocal states on the form of the current-vol- 
tage characteristic of a semiconductor in the case when such 
influence gives rise to resonant scattering of carriers. We 
shall consider a situation in which the particle density is 
sufficiently high to apply the effective temperature method 
(i.e., the energy control approximationI6) and the lattice 
scattering mechanisms are quasielastic. For simplicity, we 
shall assume that the electron dispersion law is parabolic and 
isotropic. We shall consider two kinds of behavior of the 
carrier density during the heating of carriers: 1) the density 
of electrons remains constant, which is true of a semiconduc- 
tor with E~ # O  in electric fields that do not cause impurity or 
interband breakdown; 2) the density of electrons increases 
as a result of heating because of a linear rise of the electron 

From the point of view of kinetics a characteristic fea- 
ture of resonant scattering is its duration. As in resonant 
tunneling," the interaction time T, (collision duration) of a 
particle scattered by a center is related to the energy width y 
of a resonant state, T, a y- ', which is governed by the char- 
acteristic features of the internal structure of the scatterer 
and, therefore, T, may be considerably longer than the flight 
or transit time 7,. cc r/v, where r is the radius of action of the 
potential of the center and v is the velocity of the incident 
particle. 

One of the main conditions of validity of the Boltzmann 
transport equation is the requirement that the collision dura- 
tion be short compared with the mean time between colli- 
sions." In the resonant scattering case this means 

~ ~ ~ y - ' < < l /  (Nva) , 

where Nis the density of the scatterers and (T is the resonant 
scattering cross section. The condition ( 1) is most stringent 
at a resonance, where a is maximal, and (apart from the 
dependence on the characteristics of the scatterer) is of the 
order ~ f p - ~ ,  wherep is the electron momentum. l 9  Then, Eq. 
( 1 ) becomes 

wherep (E,) is the density of states in a band where the reso- 
nance energy is E,. Therefore, if the interaction of electrons 
with centers can be described using the transport equation, it 
follows from Eq. (2) that the density of states at impurities - N / y  is small compared with the density of states in a band. 
Consequently, in this range the influence of quasilocal states 
on the statistics is weak and the capture of carriers by such 
states is unimportant. The resonant scattering intensity at 
energies of the order of E, may be considerably higher than 
the intensity of other nonresonant mechanisms and it may 
have a strong influence on the transport processes. This is 
precisely the situation with which we will be concerned. 

When the inequality of Eq. (2)  is disobeyed, the trans- 
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port equation approximation is invalid and the problem has 
to be solved employing more elaborate methods. At present 
such methods are not yet available. The published calcula- 
tions carried out using the Green's function technique1' do 
not allow us to go to the range where N /y  2p(&,), particu- 
larly under highly nonequilibrium conditions. 

However, the transport equation can be used again in 
the case of a very small width y of a resonance level, when the 
duration of interaction of a carrier with a scatterer is so long 
that an electron can be considered to be captured by a steady 
state of a trap (attachment). The equation then describes 
not the resonant scattering, but the processes of the capture 
of electrons by centers and their release as a result of ioniza- 
tion of the centers by other carriers and phonons. Quasilocal 
states can then be regarded as localized, i.e., as stable and 
infinitesimally narrow (y-0). This picture is valid if the 
quantum-mechanical "lifetime" of a quasilocal state T, 
cc y-' is much longer than the lifetime of an electron at a 
center governed by the ionization processes. Mikheev and 
Pomort~ev '~ investigated theoretically the heating of carri- 
ers in a zero-gap semiconductor in this limit ( y = 0 )  allow- 
ing for the influence of quasilocal states only on the electron 
statistics. 

3. HEATING OF ELECTRONS UNDER RESONANT 
SCATTERING CONDITIONS 

As described in the Introduction, we shall consider a 
semiconductor with an isotropic and quadratic energy band 
and quasielastic scattering of carriers, and we shall use the 
effective temperature approximation. The reciprocal of the 
relaxation time of the carrier momentum in the case of reso- 
nant scattering Y, has it usual form: 

where v ~ ,  y, and E~ are regarded as parameters. It is as- 
sumed that nonresonant scattering is described by relaxation 
times which depend on the energy in accordance with power 
laws: Y(E)  = Y ~ ( E / T ~ ) ~  in the case of the momentum relaxa- 
tion processes and Y ( E )  = YO(~/TO)r-  ' in the case of the 
energy relaxation processes. Here, To is the lattice tempera- 
ture, and the power exponents q and r, as well as the expres- 
sions for yo and Go for different scattering mechanisms are 
known (see, for example, Ref. 16). 

Under these assumptions the electric current flowing in 
such a semiconductor can be described by 

where E is the electric field; v is the carrier velocity; 
r = [ Y, (E) Y (E)  ] - ' is the carrier momentum relaxation 
time; and fo = {1 + exp [ ( E  - p )/T) ] I-'  is the isotropic 
part of the distribution function. The quantitiesp and Tare 
found from the energy balance and electrical neutrality 
equations. The former equation is 

where 

is the energy flux to the lattice.I6 Introducing dimensionless 
variables 

we can reduce the energy balance equation to 

IF - Jaw o~wr-l(e-i)f. (1-1,) =o. 

The electrical neutrality equation in the case when the 
carrier density is not affected by heating has the form 

where o, = &,/To, and E, is the Fermi energy of electrons. 
However, as in the case of gapless semiconductors, as 

the heating increases the electron density in the conduction 
band grows because of the transfer of carriers from the va- 
lence band. (In this case the contribution to the conduction 
process made by holes created in the valence band can be 
ignored because of their large mass and low mobility.) We 
do not have to solve the exact electrical neutrality equation, 
but can replace it by theapproximate solution taken from the 
results of Ref. 13: 

The quantity C, dependent on the features of the spectrum 
and on the initial density of carriers, will be regarded as the 
parameter of the model. 

The system of equations (51, (6), or (5)-(7) deter- 
mines how T and p depend on E. When such dependences 
are available, we can readily find the form of the current- 
voltage characteristic from Eq. (3). Such calculations can be 
carried out only numerically. However, before giving the 
results of numerical calculations, we shall consider qualita- 
tively the nature of the solutions. 

4. QUALITATIVE ANALYSIS 

The width of a resonance level in the conduction band is 
usually small compared with its energy E, and since we are 
interested in electrons that undergo resonant scattering, in 
this region we can ignore the energy dependence of the non- 
resonant quantities v, p, Y, and Y and assume that they are 
constant. The width of the level is understood to be the quan- 
tity r introduced below. It need not be small compared with 
co, but at this stage for the sake of simplicity we shall assume 
that r 4 ~ ~ .  Then the energy balance equation becomes 

where the conductivity is described by 

a(T) = j d e i  (E)  (-afo/ae), (9 )  

and the units used to measure the field E are selected so as to 
eliminate the constants Y, 6, p, and v from the equations. 
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FIG. 1 .  Temperature dependences of 5 for a constant carrier density 
(p  = const): 1 )  ILL - E,/ > r; 2)  Ip - &,I < T. The dashed curve repre- 
sents the right-hand side of the energy balance equation ( 8 )  correspond- 
ing to a particular value of F. 

It is clear from the system (9) that scattering has a 
strong influence on the conductivity only if Ip - &,I, T- r, 
when the region of thermal "smearing" of the Fermi level 
overlaps considerably the resonant scattering region. There- 
fore, the special features of the current-voltage characteris- 
tics due to the scattering by a quasilocal level can be observed 
only at low temperatures To 5 r and only at carrier densities 
such that - E ~ I  - r. 

We can find the types of the current-voltage character- 
istic expected in different situations by approximating the 
functions which describe the thermal smearing and resonant 
scattering zones in the simplest possible way: 

t = ~ i  (V~,+V), I E - E ~  1 <r 
T (e) = 

1, I E - E ~ I  >r ' 

The forms of 5 ( T )  obtained then for the case p = E, 

= const are plotted in Fig. 1: they consist of sections of 
straight lines and hyperbolas (since we are interested in the 
range T- r 4p - E ~ ,  we shall ignore the temperature depen- 
dence o fp  under conditions of constant carrier density). 

The most important feature of the current-voltage char- 
acteristic which appears because of resonant scattering is the 
presence of an S-type region of negative differential conduc- 
tance (NDC) in the case when the Fermi energy lies in the 
region of a resonance: la, - ~~l < r. The rapid rise of a ( T )  
due to the escape of electrons from this zone as a result of 
heating is responsible for a thermal instability. [It is clear 
from Fig. 1 that a line representing the right-hand side of Eq. 
(8) can intersect the dependence 5 ( T )  represented by curve 
2 not only at three points, as shown here, but also at five 
points in the limit To -+ 0. This is a consequence of the use of 
the step function model ( lo),  when the emergence of each 
edge of the region where f ;, ( E )  # 0 from the resonant scatter- 
ing zone is accompanied by an instability. In a real situation, 
the two dependences merge into one.] As the level E, moves 
away from eo by an amount greater than r, the NDC region 
disappears because of a reduction in the influence of reso- 
nant scattering on the electron motion. 

The pattern of instabilities is "richer" whenp rises with 
T sufficiently rapidly while remaining below the resonance 
level at T = To. Then, the region where we have f ( E )  # O  
shifts with increasing temperature across the resonant scat- 
tering zone and this happens practically without broaden- 
ing. If To< T then 5 ( T )  effectively repeats the dependence 
7(&). The presence of regions of steep fall and rise of 5, when 

FIG. 2. Family of the current-voltage characteristics calculated for a con- 
stant electron density. The dimensionless field Fand the current density I 
are described by Eqs. (4)  and (5 ) .  The numbers alongside the curves 
represent the value of the ~ a t i o  vfl/vo. The other parameters were as , 
follows: w, = 50; w, = 50; y = 0.5; q = - 3/2; r = 3/2. 

the Fermi level enters and leaves the resonant scattering 
zone, is responsible for the simultaneous occurrence of N- 
and S-type NDC regions in the current-voltage characteris- 
tic. It should be pointed out that although for p = E ~  

= const and IE, - > r the dependence a( T) is also non- 
monotonic (curve 1 in Fig. 1 ), this does not give rise to an 
NDC region, because resonant scattering affects only some 
of the electrons since the resonant scattering zone now in- 
cludes the whole of the temperature interval in the vicinity of 
the Fermi level. 

5. RESULTS OF NUMERICAL CALCULATIONS 

Calculations were carried out for several cases differing 
in the nonresonant scattering mechanisms and the values of 
the parameters of the problem. The calculations confirmed 
the validity of the qualitative description given in the preced- 
ing section. The most typical current-voltage characteristics 
are shown in Figs. 2 and 3. Figure 2 gives a family of the 
current-voltage characteristics corresponding to different 
rates of resonant scattering in the case when the carrier den- 
sity remains constant, and the nonresonant dissipation of the 
electron momentum and energy occurs because of collisions 
with charged impurities and acoustic phonons, respectively. 
Similar families of curves are obtained also for other combi- 
nations of nonresonant scattering mechanisms. 

The results of the calculations for the case when the 
electron density rises as Tincreases are presented in Fig. 3. A 
comparison with Fig. 2 shows that because of the stronger 
dependence of ii( T) an S-shaped region now appears in the 
current-voltage characteristic at a much lower relative in- 

FIG. 3. Family of the current-voltage characteristics calculated for the 
case when the density of electrons rises as a result of their heating in 
accordance with Eq. ( 7 ) .  The dimensionless field F and the current den- 
sity I are described by Eqs. ( 4 )  and ( 5 ) .  The numbers alongside the curves 
represent the ratio v@/v,. The val_ue of the other parameters were as 
follows: w, = 10; C = 20; o, = 50; y = 0.5; q = - 3/2; r = 3/2. 
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tensity of resonant scattering than in the variant with a con- 
stant carrier density. An increase in the influence of resonant 
scattering in the initial part of the current-voltage character- 
istic gives rise to an N-type NDC region. 

In the case of the current-voltage characteristics in 
Figs. 2 and 3 we do not show the upper stable branches of the 
S-shaped region. These branches represent the mechanisms 
of electron scattering at higher energies, which may differ 
from the processes occurring in the vicinity of a resonance 
level. Determination of the nature of the current-voltage 
characteristic at high energies is a topic in itself, which is not 
related to the problem of resonant scattering. 

We are grateful to M. I. Kaganov and B. L. Gel'mont 
for discussing the results. 
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