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The quadrupole-quadrupole interaction between shallow acceptor impurity centers in a cubic 
semiconductor is studied. When the distance R between the impurity centers is large, this 
interaction decreases more slowly with R than the dispersion interaction or the interaction 
associated with the overlap of the wave functions. The problem of "molecular" terms and of 
the wave functions of a pair of acceptors is solved exactly for R %a, where a is the effective 
Bohr radius. Estimates are obtained for shallow acceptors in germanium. 

1. INTRODUCTION 

Experimental investigations of the interaction between 
shallow impurities in semiconductors are currently being 
made on materials in which the concentration of the main 
impurity is high, but the degree of compensation K is mini- 
mal (see, for example, Ref. 1 ). In this case at low tempera- 
ture when the impurities are frozen-out, almost all the impu- 
rity centers are neutral, the Coulomb fields are weak, and the 
interaction between neutral impurity centers can be ob- 
served in a fairly pure form. Materials of this kind are of 
interest also as sensitive extrinsic photodetectors with a rela- 
tively long photocarrier lifetime (because of the low concen- 
tration of charged impurity centers acting as traps). 

We shall consider a cubic semiconductor doped with 
shallow acceptors and uncompensated. We shall assume 
that the impurity concentration N is low compared with the 
concentration N,, corresponding to a semiconductor-metal 
transition, so that we can ignore the overlap of the wave 
functions of neighboring impurity centers, but insufficiently 
low to regard impurity centers as isolated (a  semiconductor 
with such an impurity concentration can be called moder- 
ately doped). A special feature of acceptors with the T, sym- 
metry (substitutional impurities) in cubic semiconductors is 
that their ground state is quadruply degenerate (T, level) in 
the absence of deformation and of electric and magnetic 
fields. The following problem arises: what is the ground state 
of a system of neutral acceptors for such moderate impurity 
concentrations N and how do the neighboring acceptors 
with a complex ground state affect one another. A solution 
of this problem is required, in particular, to determine the 

tor in each of the four levels of the ground state includes not 
only a function of the s type (L = O), but also a contribution 
from a spherical function with L = 2 (see Sec. 3).  

If we ignore the overlap of the wave functions, we find 
that at absolute zero a system of impurity centers is in a state 
corresponding to the minimum of the energy of the quadru- 
pole-quadrupole interaction (QQI) and of the dispersion in- 
teraction. In view of the random distribution of impurities, a 
cubic semiconductor which is doped with shallow acceptors 
and uncompensated represents a form of quadrupole glass in 
which the quadrupole moments of the particle are not fixed 
but are determined by the interaction between the particles. 

The main interest lies not in the reduction of the energy 
of the ground state of a system of impurity centers compared 
with the energy of isolated impurities, but in the whole struc- 
ture of levels formed from degenerate levels of the individual 
impurities under the influence of the impurity-impurity in- 
teraction, i.e., the structure of the impurity energy band. It is 
this structure that determines the thermodynamics of a 
doped crystal and the absorption of phonons in it. In con- 
trast to the usual case of a compensated semiconductor, for 
which the width of an impurity energy band is governed by 
the fields of charged imp~r i t ies ,~  in the case under discussion 
the width of the band is governed by the QQI (and also by 
the dispersion interaction). We shall find the energy spec- 
trum of two acceptor impurity centers formed from the 
ground states of these centers when they approach each oth- 
er. This will allow us to determine in particular the scales of 
the effects which appear in an acceptor-doped semiconduc- 
tor as a function of the impurity concentration. 

low-temperature thermodynamic properties of a semicon- 
ductor doped with acceptor impurities, and to determine the 2- OF THE MULTIPOLE lNTERACTlohl 

vhonon absorvtion svectrum of such a semiconductor. BETWEEN TWO NEUTRAL ACCEPTOR IMPURITY CENTERS 

Any neutral atoms separated by a sufficiently large dis- We shall consider two acceptors impurity centers 
tance R from one another experience a dispersion (van der which are separated by a fairly large distance R %a from one 
Waals) interaction proportional to R p6 and also an interac- another (a is the effective Bohr radius of an impurity cen- 
tion which decreases exponentially with R and is due to the ter). We shall user, and r, to denote the radius vectors mea- 
overlap of the wave functions of the atoms. A special feature sured from the impurity ions, XI, and x,, to denote their 
of neutral acceptor atoms in a cubic semiconductor is that components, and X,  for the components of the vector R 
there is also a quadrupole-quadrupole interaction between joining the two impurity centers. The energy of the multi- 
them which decreases on increase in the interatomic dis- pole interaction between impurity centers is generally given 
tance as R - 5 ,  i.e., more slowly than the other two interac- by (we shall retain only the first two terms of the multipole 
tions. In fact, although the average (over all four levels of the expansion) 
ground state) quadrupole moment of an atom vanishes like 
the dipole moment, the quadrupole moments of the individ- H=Hdd+HQQ, (1)  

ual levels are nonzero because the wave function of an accep- where 
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Here, Hdd and HQQ represent the dipole-dipole and the 
quadrupole-quadrupole interaction, respectively; tt is the 
permittivity of the semiconductor. 

We shall use $, ( r )  to denote the wave function of an 
isolated acceptor corresponding to the mth level of the 
ground quadruplet. Ignoring the overlap of the wave func- 
tions of the acceptors, we shall find the molecular wave func- 
tions in the form of a linear combination of products: 

The matrix of the interaction energy derived using the func- 
tions described by Eq. ( 3 )  includes contributions from the 
first approximation with respect to HQQ and from the sec- 
ond approximation with respect to Hdd : 

The indices n, and n, are used to label the excited states of 
the acceptors (including the states in the continuous spec- 
trum) to which dipole optical transitions from the ground 
level Eo are allowed; E, are the energies of these states. The 
first term on the right-hand side of Eq. (4)  is the QQI matrix 
and the second is the dispersion (the van der Waals) interac- 
tion matrix. 

3. QUADRUPOLE-QUADRUPOLE INTERACTION MATRIX 

Since the Laplacian is A (  l / R )  = 0, we can represent 
the operator HQQ in the form 

The parameter S = (y, - y,)/y, (the y, are the Luttinger 
parameters of the valence band) describing the correlation 
of the constant-energy surfaces of holes is small for almost 
all cubic semiconductors. An important exception to this 
rule is silicon. We shall therefore consider only the spherical 
approximation (S = 0)  for acceptors. In this approximaton 
the states of an acceptor are described by the parity, the 
quantum number Fof  the total angular momentum, and the 
quantum number F, representing the projection of the total 
momentum. In the ground (even) state we have F = 3/2 and 
m mF, = + 1/2, _+ 3/2. In the spherical approximation, 
we have 

where 

Ja are the familiar matrices of the momentum of order 
2F + 1, and Q is the quadrupole moment given by 

Here, a = A2xy,/moe2 is the effective Bohr radius; L is the 
quantum number of the orbital momentum which is either 
F - 3/2 or F - 1/2, depending on the parity (L = 0 in the 
ground state); RL are the radial functions ofan acceptor; the 
radial variable in the integrand is dimensionless (it is ex- 
pressed in units of a ) ;  the brace contain the 6j symbols char- 
acterized by J = 3/2, whereas the parentheses contain the 3j 
symbols. 

It follows from Eq. (7)  that in the ground state (F = 3/ 
2, L = O), we have 

4 
Q = - dfrlr r4R0 ( r )  R ,  (r) , 

5 0 

i.e., a nonzero quadrupole moment of an acceptor appears 
because the "spin-orbit" term in the Hamiltonian of holes 
mixes the states I yL ) and I y,L + 2) ( y is the set of all other 
quantum numbers). 

Using Eq. (8)  and the explicit form of the matrices Ja , 
we can represent the matrix HQQ quite simply using the 
functions of Eq. (3)  (this will be a 16 x 16 matrix). Let us 
assume that 

where B, ( q  = 0, +_ 1, -+ 2) are the components of an irre- 
ducible second rank tensor (with zero trace) derived in the 
usual manner3 f rop  the components of the gradient d / J X .  
Then, the matrix HQQ in Eq. (4)  is 

Here, E, = m0e4/A2x2y, and the symbol 8 represents the 
Kronecker multiplication of matrices. 

If the direction of the quantization axis is parallel to the 
radius vector R joining two impurity centers, then in the case 
of a tensor VaBy8 symmetric with respect to any pair of in- 
dices [see Eq. (2a) l  has components which v%nish except 
for those of the Vaapp type. Then the matrix HQQ of Eq. 
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( 10) becomes greatly "rarefied," can be factored, and is easi- 
ly diagonalized. However, we shall diagonalize directly the 
total matrix (4)  representing the interaction of two accep- 
tors. 

4. DISPERSION INTERACTION 

In the spherical approximation the numerator of Eq. 
(4a) can be represented in the form of a product of two sums 
over F, and F : 

Here, n labels the energy levels of the states with F, the in- 
dices n,,Fo of the ground state are omitted for the sake of 
simplicity, and the values of L are not given because they are 
determined uniquely by the parity selection rule and by the 
magnitude of F for a given state. 

We can show that the sum over F, in Eq. ( 1 1 ) is 

Here, f(nF) is the oscillator strength of a dipole optical tran- 
sition from the groun state to a state nF. In the spherical 
approximation these transitions are allowed only to the 
states with F = 1/2, 3/2, and 5/2. The coefficients /Z ( F )  for 
such values Fare  - 1, 4/5, and - 1/5, respectively. 

We shall define a matrix BF with the following ele- 
ments: 

B1iF=B4IF= [I-'Izh ( F ) ]  (Vx,+-I-Vn,n) + [l+h. (F)  I V2.2, 

BzzF=BssF=[ 1+'/2h ( F )  ] (Vr,r+Vn,n) + [ I - A  ( F )  I VZ,Z,  

The quantities Va,B introduced here obey the following mul- 
tiplication rule: V,,, Vm = VVap Vys . 

It follows from Eq. (2),  (4a), and ( 12) that 

n,FlnlF~ ..--- 

where 

In the expression for A the energies are measured in units of 
Ea . 

If the quantization axis is parallel to the vector joining 
the impurity atoms, then the only nonzero diagonal elements 
are V&, where V,, = Vyy = R - 3  and V,  = - 2R -3. In 

h 

the case of the matrix H,, of Eq. ( 142 the nonzero elements 
are the same as those of the matrix HQQ of Eq. ( 10). They 
can be expressed in terms of linear combinations of three 
dimensionless constants: 

5. MOLECULAR TERMS AND WAVE FUNCTIONS OF AN 
ACCEPTOR PAIR 

The matrix (4)  of the interaction between acceptor im- 
purity centers deduced using Eqs. (10) and ( 14), can be 
factored and is easily diagonalized. We shall classify the re- 
sultant "molecular" terms on the basis of a general theory of 
terms of diatomic  molecule^.^ Since we are assuming that the 
distances between the atoms are large, the interaction 
between them is weak compared with the spin-orbit interac- 
tion in each of the atoms and the system then represents the 
case of Hund c-~oupling.~ Since the system consists of identi- 
cal atoms located at identical distances, the molecular terms 
can be described by the absolute value of the projection 
of the total angular momentum of a molecule along the axis 
joining the atoms, by the parity of the relative change of the 
signs of the coordinates of holes (indices g or u ) ,  and if 
a= 0-also by the + and - sign corresponding to whether 
the sign of the wave function does not change or changes as a 
result of reflection in a plane containing the axis of the mole- 
cule. There is a total of (2F  + 1 ) X (F + 1) = 10 terms: one 
of the 3, ,  2,, 2,, 1, each and two terms of the 1, , O:, and 
0; types. All the terms with f l # O  are doubly degenerate, 
whereas those with = 0 are nondegenerate. 

We shall now define the following characteristic quan- 
tities with the dimensions of energy 

Then, the molecular terms of an acceptor pair originating 
from the ground states of the acceptors are (in the order of 
increasing energy of the QQI) : 

We shall see from the estimates given below that for the 
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distances between the impurity centers under consideration 
the order of the terms given by Eq. ( 18) is retained when we 
allow not only for the QQI, but also for the dispersion inter- 
action. 

In view ofthe complexity of the expressions (in particu- 
lar, in the expression for the wave functions the coefficients 
of the 0: and 0; terms at dependent R ), we shall give only 
the wave functions of two orders of the ground state (be- 
cause we either take all the upper signs or all the lower 
signs) : 

and also the wave functions of the terms E, ( 1, ) and E, ( 1 , ) : 

6. ESTIMATE OF THE SPLITTING OF THE MOLECULAR 
TERMS OF A PAIR OF ACCEPTORS IN Ge 

We shall estimate the energies of Eq. ( 18) in the case of 
acceptors in Ge, because the spherical approximation for 
shallow acceptors is satisfactory for Ge and, moreover, in 
the case of acceptors in Ge we know quite well both the 
spectrum, including the oscillator strengths and the photoef- 
fect cross sections5 and the quadrupole moments and the 
p~lar izab i l i t~ .~  We shall obtain estimates for the minimum 
distance R = R, at which these approximations are still val- 
id. In accordance with a criterion used in molecular spec- 
t ro~copy,~ we can represent the energy of the interaction 
between two atoms A and B in the form of a sum of the 
first terms of the multipole expansion for 
R > 2 [ ( 4  ) 'I2 + ( r i  ) 1 / 2 ] ,  where ( 4  ) is the mean-square 
value of the distance of an electron from a nucleus in the 
atom A .  A calculation carried out using the wave functions 
obtained earlier5 gives R, = 4(r2)'l2 = 350 A for Ge. Sub- 
stituting the known value of the quadrupole m ~ m e n t , ~  we 
find that EQQ ( R o ) ~ 0 . 8  peV. If R = R,, then Ed, = 3.9 
peV. 

In calculating the coefficients Ci one would need to de- 
termine multiple sums over the states in a discrete spectrum 
and integrate the continuous spectrum, which is a difficult 
task. One can use the London approximation to estimate the 
dispersion interactions by approximating each sum in Eq. 
( 16) by just one term. Such an estimate is valid because the 
polarizability of shallow acceptors in Ge considered in the 
spherical approximation is governed largely by one contri- 
bution from the strongest dipole transition to the level with 
F = 5/2 (Ref. 6). We then have 

where lE I is the characteristic energy usually assumed to be 
equal to the ionization energy of an atom. In the case of 
shallow acceptors in Ge, we have IE / =. 1.25 and the polari- 
zabilities a and a, have been calculated earlier6: a/ 
a, = 0.36, a,/a, = - 0.092. 

Substituting the above values of the parameters in Eq. 
( 18), we can find the energies of the molecular terms origi- 
nating from the ground levels of shallow acceptors in Ge 
when they approach each other to a distance of R, = 350 A 
(these energeis are in peV) : - 6.4, - 4.1; - 2.5 1; - 2.49; 
- 0.96; - 0.14; 1.2; 1.7; 3.8; 5.3. We can demonstrate that 

the depth of the ground state and the width of the whole 
impurity band are determined primarily by the QQI and are 
of the order of 10,ueV. The dispersion interaction is impor- 
tant only for the terms 5 and 6; it slightly splits the terms 3 
and 4, and 7 and 8. The difference between the energies of 
these terms is - 1 peV. It follows from these estimates that at 
the acceptor concentrations such that the influence of the 
overlap of the wave functions of the ground states can be 
ignored, compared with the multipole interaction, this inter- 
action may be manifested in the thermodynamics of accep- 
tor-doped Ge crsytals only at temperatures below 1 K. One 
would expect the absorption of sound to manifest the molec- 
ular splitting of terms due to the QQI and the dispersion 
interaction also at higher temperatures. 

We shall conclude by noting the relationships analo- 
gous to Eqs. (6)  and (12) (see Ref. 6) and, theref%re, the 
method of co~structing the perturbation matrices HQQ of 
Eq. ( 10) and Hdis of Eq. ( 14) can be generalized to the case 
when the spherical approximation is invalid and the quanti- 
zation axis is linked to the cubic axes. 
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