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The probability distribution of the parameters of random local atomic potentials in glasses is 
considered. It is argued that the parameters of soft atomic potentials correspond to a 
probability density proportional to the absolute local quasielastic constant. This behavior 
results in a very rapid rise of the density of quasilocal vibrations with energy and suggests the 
possibility of their collectivization. This makes it possible to account for the experimental data 
on the excess specific heat of glasses. 

The concept of two-level systems, identified with tunnel 
states of atomic particles in two-well potentials, is used wide- 
ly in the physics of noncrystalline  substance^.'-^ An ap- 
proach has been proposed435 to account for the existence of 
two-well potentials in glasses by fluctuations of microscopic 
structure parameters. As a result of these fluctuations there 
is a finite probability for soft atomic potentials to occur for 
which the quasielastic constant is small for at least one of the 
local modes. When the local potential is expanded in terms 
of a soft mode 

an allowance for the anharmonic terms plays a fundamental 
role because of the smallness of 17 1 ,  It I 4 1 (here and later the 
dimensionless displacements x will be expressed in terms of a 
unit atomic length a - 1 A; we then have Z? - 10 eV, which is 
a characteristic atomic energy in a solid). If 7 < (9/32)t 2, 

the potentials described by Eq. ( 1 ) are of the two-well type 
and two-level systems may then occur. An approach based 
on an expansion of Eq. ( 1 ) reproduces all the results of the 
usual model of two-level and also leads to a num- 
ber of new con~lusions.~-~ In particular, it predicts the exis- 
tence of soft one-well atomic potentials [characterized by 
7 > (9/32)t *]  and in this case excitations are not described 
by the two-level m0de1.~-~ 

One of the important topics related to the concept of 
soft atomic potentials of Eq. ( 1 ) is the form of the probabili- 
ty distribution P(7, t )  the random parameters 7 and t. The 
distribution P(7,t)  as a function of 7 is assumed to be cen- 
tered near the value 7 - 1, corresponding to the standard 
(nonsoft) atomic potentials which are encountered most 
frequently. The soft potentials then occur in the region of the 
tail of the distribution P(7, t )  falling in the range of low val- 
ues of 7. The distribution P(7,t)  of the parameter t is as- 
sumed to be even because of the absence of preferred direc- 
tions in a glass. It is also assumed that in the limit 7-0 the 
distribution P(7,t)  becomes f i r~ i t e .~ .~ -~  

We shall consider the form of P(7,t)  in the limit in 

Our aim will be to obtain an expansion of the type de- 
scribed by Eq. ( 1 ) beginning from a more general expression 

which contains, in contrast to Eq. ( 1 ) , random linear terms. 
We can go over from the expansion of Eq. (3)  to that of Eq. 
(1)  by shifting the origin of the reference system: 
x' = x + ( t  ' - t)/4. This gives the following relationship 
between the parameters: 

q-318t2=q1-3/8tfZ, 

Weshall now replace thedistribution G '(h ',7',t ' ) in theran- 
dom parameters of the expansion (3) by a distribution 
G(v,t,t ' ) in three other parameters 7, t, and t '. The Jacobian 
of this operation found from Eq. (4)  is 4/71. We consequent- 
ly have 

We note now that for given values of 7 and t the energy 
spectrum of the potential ( 1 ) is independent of the param- 
eter t '. Consequently, we can calculate the average quantities 
associated with the energy spectrum of an ensemble of the 
potentials of Eq. ( 1 ) using the distribution density averaged 
over the parameter t ': 

The function G ' (h ',vf,t ' ) is a~~umedtobenonsingular on the 
basis of physical considerations. Therefore, the integral in 
Eq. (6)  is finite in the limit 7-0, in agreement with the 
result given by Eq. (2).  

We shall now consider the difference between the ex- 
pansion ( 1 ) and (3) .  We shall do this by examining an en- 
semble of slightly different atomic configurations, each of 
which has a soft local atomic potential. A soft mode 

which the first parameter is small, 171 9 1. We shall give ar- 
guments to support the conclusion that x = x 6 p E i u  

<,= 
, , for q+0, (2)  represents in each configuration a superposition of Cartesian 

wherePo (7,t) is a smooth function which is finite in the limit components 6 of different atomic displacements. In each of 
7 - 0 and we shall consider some consequences of this behav- the units of this ensemble a mode x, in terms of which the 
ior of P(7,t) .  expansion ( 1 ) is performed, is characterized by its own set of 
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coefficients b a because equilibrium positions of atoms in 
these units are different. We shall select one of the configura- 
tions of the ensemble as the reference point and determine 
the corresponding set of the coefficients b p. This defines 
uniquely a normal soft mode x' used in the expansion of Eq. 
( 1 ) for a reference unit. Obviously, in the case of the other 
(nonreference) units of the ensemble the expansion of the 
potentials in terms of the selected mode x' contains linear 
terms, i.e., it is described by Eq. (3).  Therefore, Eq. (3) 
represents the expansion of different soft atomic potentials 
in terms of the same fixed mode x',  whereas in the expansion 
of Eq. ( 1 ) a soft mode x is specific to each individual poten- 
tial. Since the mode x in Eq. ( 1 ) depends on the parameters 
of the potential, it follows that in general we cannot regard g 
and t as statistically independent; this follows directly from 
Eq. (6) .  The behavior 

P(rl3 t )a I r l l  

also reflects the dependence of the definition of the mode x 
on the parameters of the soft potential. 

We note that the expressions in Eq. (4) describe the 
combinationsI, = q - zt 2andI, = l t (q  - jt 2),fromwhich 
the parameters q and t can be found uniquely only if q > (9/ 
32) t 2, when the potential of Eq. ( 1 ) is ofthe one-well type. If 
g < (9/32)t ', then for each pair of the quantities I, and I, 
there is a single form of the two-well potential of Eq. ( 1 ), but 
this form can be described by three different pairs of the 
parameters (g,t). This indeterminancy reflects simply the 
possibility of expansion of two-well potential of Eq. ( 1 ) near 
one of its three extrema. We shall consider the specific case 
when the origin of x for the two-well potentials of Eq. ( 1 ) is 
selected at the maximum of the barrier. Then the potentials 
of Eq. ( 1 ) correspond in the (g,t) plane to a region defined 
by g > (9/32)t (one-well potentials) and by a half-plane 
g < 0 (two-well potentials). Using the arguments employed 
at the beginning of this paper and the results represented by 
Eq. (2) ,  we can plot the distribution P(g,t)  as shown in Fig. 
1. 

We shall now consider some physical consequences that 
follow from the behavior ofP(g,t) described by Eq. (2).  The 
energy spectrum of the potential ( 1 ) can be represented in 
the form En = WE,, where E,  are the dimensionless eigen- 
values of the Schrodinger equation6s7 

-$n"+(ay23-py3+y4)$n=~I$n, n=1, 2 ,  3, . . . , 

Typical parameters are 

where h, = (2?fi2/2ma2)'12 is the characteristic Debye 
energy (40, -E, when 77 - 1 ) and m is the mass of an atom- 
ic particle in the potential of Eq. ( 1 ). An analysis of the 
spectrum of E ,  given in Refs. 6 and 7 shows that the model of 
two-level systems is valid if the first energy gap obeys 
E,, =E2 - E, 4 w. We then have 

FIG. 1 .  a )  Dependence of the probability distribution P(q,t)  on 71 for a 
fixed value o f t .  The dashed curve is the corresponding dependence for 
P,(17,t) taken from Eq. (2) .  b)  Possible form of the dependence of P(7,f) 
on t for a fixed value of q: there are two distributions with a maximum or a 
minimum at t = 0. 

where A is the asymmetry and A, is the amplitude of tunnel- 
ing in a two-well potential. The density of states of two-level 
systems 

is independent of E (as usual, this is based on empirical re- 
s u l t ~ ' - ~ )  if the scales Sq and St of the decrease in the distribu- 
tion Po(q,t) in terms of the parameters q and t are large in 
the sense that Sg ) qL and St ) qL . Assuming that in this 
case we have Po(q,t) = const, we obtain 

It therefore follows that the result of Eq. (2)  does not alter 
the conclusion which follows from the concept of soft poten- 
tials4p7: the density of states of two-level systems is con- 
stant.'' 

Moreover, the previous estimate of the deformation po- 
tential of a two-level system7 is retained: 

where u is the dilatation. This estimate is obtained in Ref. 7 
by a fairly complex process. We shall justify it in a simple 
manner. We note that 

The parameters q and t vary by amounts of order unity for a 
unit dilatation that significantly modifies the potential, i.e., 
destroys its softness; therefore, lag/duI - / a t  2/du I - 1. The 
derivatives are given by ldE /13g I - (dE /at 1 - w/qL, be- 
cause it follows from Eq. (7) that the dimensionless energies 
E ,  vary by amounts of order unity when a ofB is altered by 
unity. The large value of the deformation potential 1 yl is on 
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the order of tenths of electron volts, in agreement with the 
experimental results reported in Refs. 1-3, and this is due to 
the softness of the investigated local potentials (in the case of 
nonsoft potentials, we would have 

The behavior P(v, t )  a 177) predicted by Eq. (2) has a 
strong influence on the results relating to excitations in one- 
well almost-harmonic potentials, which are encountered 
when a )  1, i.e., when v)vL (but still ~ & 1 ) ,  and which 
have the spectrum En = 2w(n - 1)  (1;1/v= ) 'I2. In Refs. 7 
and 8, we found in the case of excitations that the depend- 
ence of the excitation density n (E) a E * corresponds to the 
assumption P(q,t)  = const in the limit 7-0. Using Eq. (2),  
we obtain a different energy dependence of the density of 
excitations in this part of the spectrum: 

n ( E )  ='lz;no(qL/6q) '"(E/w)* for E>2w. (12) 

We can expect the strong dependence n (E) of Eq. ( 12) 
to be manifested in the temperature dependence of the spe- 
cific heat c(T) .  Figure 2 shows the temperature dependence 
of the reduced specific heat c/T3, which is calculated by nu- 
merical solution of Eq. (7).  In the limit of low temperatures 
T-0 the behavior of c/T3 to the left of the minimum repre- 
sents the contribution of two-level systems. To the right of 
the minimum the behavior of c/T3 is due to the dependence 
n (E)  of the type described by Eq. ( 12). The existence of a 
minimum in the temperature dependence of c/T has been 
demonstrated experimentally (usually at T-2-10 K )  for 
those materials which at the very lowest temperatures TS. 1 
K exhibit a linear temperature dependence of the specific 
heat c a T due to the presence of two-level systems., The 
origin of this minimum has not yet been explained. 

Measurements demonstrate also that the rise of c/T to 
the right of the minimum is followed by a fall, as shown 
schematically by the dashed curves in Fig. 2, i.e., the depend- 
ence c/T3 exhibits a maximum (usually at T- 10-30 K) ,  as 
reported in Ref. 3. A possible explanation of this maximum 
is as follows. An increase in E increases the density n (El  of 
quasilocal vibrations of Eq. (12) and their width 
l? a E 4(+imD ) -3 SO much9 that vibrations become collecti- 
vized. The energy Ed at which this happens can be estimated 
roughly from the condition 

h31' ( E )  n ( E )  = I ,  

where A = 2m/w is the characteristic wavelength of a quasi- 
local vibration of frequency w = E /+i; s is the velocity of 
sound. lo For n ( E )  described by Eq. ( 12) and typical experi- 
mental values no- erg-' cmP3 (Ref. 3), this gives 
Ed - 3w. Delocalization of vibrations in the range E 2 Ed 
suppresses the dependence n (E)  of Eq. (121, so that the 
density of states now obeys the usual Debye law. Since vibra- 
tions characterized by E > Ed make practically no contribu- 
tion to the excess (compared with the Debye value) specific 
heat, the rise in the temperature dependence ofc/T3 changes 
to a fall when T 2  Ed/5 [this estimate is obtained if, subject 
to Eq. ( 12), the spectrum of quasilocal vibrations is replaced 
by a monoenergetic peak at E = Ed 1. Our estimates of the 
positions of the minimum and the maximum in the tempera- 
ture dependence of c/T3 are in qualitative agreement with 
the experimental data for typical values w - 10 K. 

FIG. 2. Temperature dependences of the reduced specific heat for a sys- 
tem of oscillators, described by Eq. (1 ) with a probability distribution in 
the parameters given by Eq. (2):  the curves are calculated by numerical 
solution of Eq. (7) .  The dashed curves represent the fall, which agrees 
with the experimental results. The calculations were made for two differ- 
ent forms of the distribution of Eq. (2) :  curve 1 corresponds to 
P,(v,t) = const and curve 2 corresponds to Po(?,!) a e x p ( ~ / 6 ~ ) ,  where 
6 7  = 0.1. We can see that the positions of the mlnlma are not very differ- 
ent for these two distributions. 

If the dependence (2)  is obeyed,'' allowance for this 
dependence may alter some of the results of earlier investiga- 
tions6-' based on the assumption that P(v,t)  = const in the 
limit 7-0. We have demonstrated this for the density of 
quasilocal vibrations. Moreover, instead of a logarithmic 
Van Hove singularity predicted in Ref. 6 for the density of 
excitations n (E , , )  corresponding to the first interlevel gap 
E*,, when Eq. (2)  is allowed for, there is only a singularity in 
the derivative dn (E,, )/dE,,. On the other hand, the conclu- 
sion about a discontinuity of the excitation density at E,,, 
corresponding to transitions between the first and third lev- 
e l ~ , ~  is still retained. Moreover, the conclusion about the pre- 
dominant role of subthermal phonons7 in the thermal con- 
ductivity and its temperature dependencex a Tin the range 
T >  w still remains valid. 

There are therefore grounds for assuming that random 
soft potentials in glasses correspond to the probability den- 
sity of Eq. (2) ,  which depends linearly on the absolute local 
quasielastic constant. This behavior is responsible for the 
very fast rise in the density of quasilocal vibrations with en- 
ergy and for the possibility of the collectivization of these 
vibrations. This accounts for the experimental data on the 
excess specific heat of glasses at moderately low tempera- 
tures ( T 2  10K) .  

The authors are grateful to V. L. Gurevich and Yu. M. 
Gal'perin for valuable discussions. 

"In the preceding investigations the assumption 611, 6t&vL has been 
made for the scale of the decrease in the distribution P(v,t)  (Refs. 4 and 
6-81. 

 his is true if fluctuations of the coefficient in front of the linear term in 
Eq. ( 3 )  relative to the average value ( h  ') = 0 are sufficiently large: 
Sh ',vr. 3'2. 
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