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We investigate three-dimensional degenerate systems (incommensurate phases, crystals with 
charge density waves, two-component Heisenberg magnets) with frozen-in point defects which 
interact with the phase of the order parameter. A generalized susceptibility is determined for 
such a system relative to a homogeneous change in the phase of the order parameter-the 
"phason gapM-in the case where the value of the phase at the location of the defect is 
determined primarily by the defect field (the "strong-pinning" case). Using an effective 
Hamiltonian involving only the phase change, we show that the system in question possesses a 
large number of metastable states which are essentially collective in character with respect to 
the defects. We obtain conditions for strong pinning in a three-dimensional system, and 
determine the phason gap in the limit where transitions between metastable states are 
neglected. We discuss the conditions under which these transitions can be neglected. In order 
to find the temperature dependence and to estimate numerically the coefficients of the effective 
Hamiltonian, we make use of a continuum model for the incommensurate phase. The model 
we have chosen is the sort most commonly encountered in dielectric crytals, namely, that of 
potassium selenate. We show that defects like these can suppress scattering of light by phasons 
even at low concentrations, making the observation of this scattering extremely problematical 
in real crystals. 

It is well-known that a degenerate system (here we are 
concerned with incommensurate phases, charge density 
waves and thex-y model) offers no resistance to a homogen- 
eous change in the phase of its order parameter (i.e., a shift 
in the position of a displacement or charge density "wave," 
or a rotation of the magnetization vector). In other words, 
gapless modes of oscillation (phasons or spin waves) are 
present in the spectra of such systems. It is natural to expect 
(and many authors have noted) that a gap will appear in the 
spectrum of such oscillations in the presence of defects. The 
presence of such a gap should be detectable in a number of 
experimentally observable phenomena: neutron and light 
scattering, local magnetic relaxation, etc. At the same time, 
there are serious difficulties connected with theoretical cal- 
culations of this gap. The theory of one-dimensional systems 
has been the most while for three-dimensional 
systems the situation is much more ill-defined. Different ex- 
pressions for the gap have been derived by various authors; 
the conditions under which these expressions are applicable 
remain unclear. 

Let us explain the latter statement in more detail. We 
distinguish two regimes in which defects interact with the 
phase e, of the order parameter-the strong- and the weak- 
pinning regimes. In the first case, the value of e, at the loca- 
tion of a point defect is determined only by the characteris- 
tics of this defect. In the second case, the value of e, is 
determined not so much by a given defect as by all of the 
defects collectively. However, there is confusion even in the 
formulation of conditions for strong and weak pinning in a 
three-dimensional system. The appropriate conditions for a 
three-dimensional system were first presented (without 
proof) in the frequently cited Ref. 4. In contrast to analo- 
gous conditions for a one-dimensional s y ~ t e m , ~ . ~  these con- 

ditions do not involve the defect concentration N. At the 
same time, the formulae (actually estimates) for the thresh- 
old fields presented in Ref. 4 for these two regimes contain 
different powers of N. For some reason, this contradiction 
has not been noted in subsequent papers: thus, for example, 
in the recent Ref. 5 and the review Ref. 6, these formulae are 
cited for the threshold field, and it is tacitly assumed that the 
strong-pinning conditions are the same in one and in three 
dimensions. In a recent paper7 an attempt was made to ob- 
tain a strong-pinning condition in the same form as in Ref. 4; 
however, the author's argument is not compelling (see Sec- 
tion 1 ) . The expression for the gap given in Ref. 7 for the case 
of strong pinning differs in its dependence on N from that 
presented in review Ref. 6 (for the same case). In the well- 
known Ref. 8 an expression is obtained for the gap as the 
limit of the frequency-dependent part of the inverse suscepti- 
bility when the frequency approaches zero. Although this 
procedure is clear, the authors do not point out that in fact 
the results pertain to the case of weak pinning. We note that 
in this case also the corresponding expression in the review 
Ref. 6 differs substantially from the results of Ref. 8. 

In the present work, we present calculations from first 
principles of the magnitude of the phason gap in the strong- 
pinning regime. The paper is organized as follows: in the first 
section we use an effective Hamiltonian which is suitable to 
describe (in the long-wavelength approximation) both sinu- 
soidal incommensurate phases (including charge density 
waves) and the x-y model in the presence of defects. We 
demonstrate explicitly that such systems possess a large 
number of metastable states which are essentially collective 
in character with respect to the defects. For the low-energy 
states we calculate the magnitude of the phason gap. We 
prove the correctness of the strong-pinning condition given 
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in Ref. 4. In the second section, the parameters of the long- 
wavelength Hamiltonian are estimated for a specific kind of 
incommensurate phase which is often encountered in dielec- 
tric crystals. We elucidate the question of how these defects 
can lead to strong pinning. In the third section, we make 
estimates of the intensity of light scattering by phasons. It 
turns out that even for small impurity concentrations 
(N = 10'5-101" ~ m - ~ )  this scattering can turn out to be un- 
observable. 

1. LONG-WAVELENGTH APPROXIMATION 

Since a degenerate system presents no resistance to a 
homogeneous change in the order parameter phase p,  the 
influence of defects can lead only to changes in p in the long- 
wavelength approximation. The corresponding effective 
Hamiltonian is w e l l - k n ~ w n ' ~ . ~ :  

C x = Jdr {- ( ~ r p )  ' - vla (r-r,)  coa (qi-*) -h ,=Iq} .  
2 

(1 
Here, Cis a constant of the ideal crystal, $, is the phase of the 
"field" of the ith defect, while V ,  is its amplitude; he,, is a 
generalized external field coupled to the phase. The Hamil- 
tonian ( 1 ) is suitable for describing sinusoidal incommensu- 
rate phases, charge density waves, and the x-y model. For 
charge density waves, he,, has the sense ofan electric field; in 
this case, it is necessary to add to ( 1 ) a long-range Coulomb 
term,8 the expression for which is not needed by us here. The 
form of the term corresponding to defects is most easily 
clarified by the example of the x-y model with a randomly 
oriented local magnetic field h, . Each term in the sum ( 1 ) is 
then simply - h, M(ri  ), where the magnitude of the vector 
M is assumed to be the same everywhere in the crystal. 

For point defects of the "random anisotropy" type (for 
this terminology see, e.g., Ref. 9),  cos(p, - $i ) in formula 
( 1 ) should be replaced by cos [m (p, - $, ) 1,  where m is the 
degree of anisotropy; the investigation then proceeds in an 
analogous fashion. 

It is necessary to note at once that questions regarding 
the actual parameter values of the Hamiltonian ( I ) ,  their 
dependences on temperature, etc., must be answered sepa- 
rately for each specific system."' In the following sections we 
will study these questions for a specific type of incommensu- 
rate phase. 

Let us turn to the Hamiltonian ( 1 ) and begin our analy- 
sis with the limiting case V, + cc . Then the value of p at the 
defects coincides with the phases of the random field 

Refs. 2-4 also refer to this case as strong pinning. 
Let us assume that topological defects can be neglected, 

and consider the function p to be uniquely defined over the 
whole crystal. In our case, the only possible topological de- 
fects are dislocation lines; a circuit around one of these lines 
leads to an "advance" of the phase by 2~-see, e.g., Ref. 10. 
The usual dislocations in the theory of elasticity lead to de- 
struction of long-range order in the atomic positions, a situa- 
tion which apparently occurs in spin glasses. It is believed 
that in general the states of a Heisenberg spin glass contain 
many dislocations, " so that there is no magnetic long-range 
order in these glasses. As for incommensurate phases near 
structural phase transitions, any washing out of the reflex of 

the incommensurate structure in such systems is practically 
~nnot iceable . '~~ '~  This can be considered as indirect evi- 
dence of the fact that, if there are dislocations in these struc- 
tures their number is not large. 

In order to find the function p we must solve the La- 
place equation 

with the boundary conditions (2)  at each of the defects. 
(For charge density waves, we find a more complicated 
equation due to the Coulomb term8). 

The various choices of the ni correspond exactly to the 
various possible states. These states are separated by bar- 
riers; in fact, we will investigate changes in phase along a line 
connecting two defects. In the language of the x-y model, the 
change in n,  at one of the defects corresponds to a change in 
the number of "windings" of the magnetization vector 
around the dislocation line. In order to accomplish this, it is 
necessary to "detach" the vector M from the direction of the 
local field at one of the defects, which implies a transition 
through a barrier. Thus, the states differ in the number of 
windings of the vector M between any pair of defects, i.e., 
they have a collective character. Each of them correspond to 
a minimum energy, which is as yet undetermined. 

Let us now turn to the case of large but finite V,. At the 
same time, we will also obtain an expression for the gap. The 
variational equation corresponding to the Hamiltonian ( 1 ) 
has the form 

car = v,a ( r - 4 )  sin (qz-$i) -h..t. (4)  

For large values of Vl it is natural to assume that the solution 
to Equation (4)  is small relative to the solution to Equation 
( 3 )  with boundary condition (2 ) .  We remark that for any 
particular choice of ni , the problem (2),  (3)  is simply a prob- 
lem of electrostatics for the "potential" p ( r ) .  As is well- 
known, any problem with given potentials at the defects (2) 
can be cast as a problem with given charges qi at each defect: 

AT=-4nq ( r ) ,  (5) 

Let p, be the solution to Equation (5 ) , while p is the solu- 
tion to Equation (4) .  Then for p, = p - p, ,  taking into ac- 
count ( 2 )  we obtain 

C ~ r p .  = EV,~ (r-r i )  sin p2+4nCq ( r )  -he.,. ( 7 )  

Since we are seeking q2 as a small correction to p,, we re- 
place sin p, by p,, and then do perturbation theory with 
respect to V,. In the usual "cross" techniqueI4 the terms in 
the perturbation series can be cast in diagrammatic form 

The lines correspond to G,(k) = (Ck ') -'. The term of or- 
der n contains n crosses, each of which is associated with 

V(r) = V,S(r - r i ) .  The small circles are associated 

with q ( r ) ,  given by (6)  (we assume that he,, = 0 for the time 
being ) . 
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The principle contribution to the mean square of the 
local fluctuation e,, comes from small wave vectors k. Hav- 
ing calculated the correlation functions for long-wavelength 
fluctuations, we must exclude the most strongly divergent 
graphs for k-0. In the three-dimensional case these are 
graphs which in general do not contain intermediate integra- 
tions over k, in which we can simply replace V(r) by - 
V = NV, (here and below, the bar denotes averaging over all 
defect configurations). These we will re-sum; it is necessary, 
however, to take into account two inessential complications 
connected with the fact that the quantity V, is not small in 
our case. First of all, there is a renormalization of 7 in the 
self-energy part of the Green's function by graphs of the 
form 

obtained by joining together two crosses, three crosses, etc., 
in (8) .  In (9), we include the fact that the correlation func- 
tions for V(r) are 6-functions. The open circles in (9)  corre- 
spond to the factor NV;", where n is the number of lines 
which converge on a given open circle. The graphs (9) are 
usually associated with the process of multiple-scattering by 
one and the same center. In order to evaluate these graphs, 
we proceed to introduce a cutoff wave vector k, = n/2r0 .  
The meaning of the cutoff parameter ro will be clarified in the 
next section when we investigate the case of small spacings. 
The result of summing these graphs is to replace the original 
Green's function Go by the following: 

Another complication connected with the large value of V, 
consists in the fact that in joining crosses in (8)  we can also 
link with a small circle, i.e., all refer to one and the same 
defect. This will no longer give the renormalized Green's 
function, but will renormalize the charge qi . It is not hard to 
calculate this: 

As a result, we find for the mean square fluctuation 

Let us clarify the meaning of the above calculation us- 
ing different language: if it is meaningful to add to the right 
side of Equation (7)  Ap, + Be, : (and, as previously, to set 
sin p ,zp , ) ,  this equation coincides with the equation for 
the distribution of a single-component order parameter 
p,(r) near a phase transition point in a crystal with defects. 
These defects have a component of the "random phase tran- 
sition temperature" type with a "strong" V,, which there- 
fore leads in particular to a shift in the phase transition point. 
In other words, the singularity in the susceptibility is "shift- 
ed" from the point A = 0 to a new transition point A $0. As 
for the susceptibility at the point A = 0, which is the only 
point of interest here, it is given by a simple expression from 
Landau's theory, taking into account only the renormalized 
temperature of the phase transition. 1 5 3 1 6  That is, this circum- 
stance allows us to limit ourselves only to the simplest 
graphs. Expression ( 10) for the inverse susceptibility (at 

k = 0)  corresponds exactly to the magnitude of the shift in 
the phase transition obtained in Refs. 15,16 (a  detailed deri- 
vation of this expression was not presented there, so we will 
give one here). We note that for a charge density wave the 
original Green's function has an additional angular depen- 
dence in k-space due to the Coulomb intera~t ion.~ However, 
for these simple graphs, which we have re-summed, this is 
not important. 

Let us now estimate the magnitude of the fluctuations 
( 13 ). The following inequality holds: 

Here, we denote by El the "electrostatic" energy of the field 
p,.  Inequality ( 14) is obtained by discarding in one of the 
brackets in the denominator ( 13) the term NVl ( 1 + f)  -', 
and in the other bracket the term Ck ,. There is at least one 
state for which E ,  can be calculated. This is the state in 
which all the ni in formula (2 )  are zero. The calculation of 
El for this case was in fact carried out in Ref. 15, and we 
make use of the result derived there: 

Comparing ( 14) and ( 15 ), we can convince ourselves that 

We do not know what state corresponds to a minimum in the 
electrostatic energy; however, for this state El can only be 
smaller than the value ( 15), and the inequality ( 16) under 
condition ( 17) is all the more correct. Inequality (16) justi- 
fies using the approximation sin e,, ze,,. Thus, the suscepti- 
bility (7)  of the system with respect to he,, does not depend 
on q, and is defined by formula ( 10). 

Thus, when condition ( 17) holds the correction p, is 
small, at least for the low-lying states of the system. This 
implies that in place of the value at the position of the defect 
the phase of the order parameter coincides with the phase of 
the "random field" of a given defect (2).  Hence, condition 
( 17) is the condition for strong pinning as it is usually under- 
stood.24 

It was pointed out to us in private discussions that the 
strong-pinning condition ( 17) was obtained by A. I. Larkin 
and L. P. Gor'kov. Condition ( 17) and an expression for the 
gap in the form ( 10) were also obtained in a recent paper.' 
However, in this paper an unjustified assumption was intro- 
duced into the problem, reducing it at once to the single- 
particle case. As our analysis shows, in fact, the states of the 
system have a collective character. Nevertheless, the simi- 
larity between the two formulae warrants attention, al- 
though the cutoff parameter introduced in ( 10) is certainly 
not the lattice parameter, as the authors of Ref. 7 assumed. 
The determination of this parameter requires a first-princi- 
ple analysis in the regime of small defect spacing. For our 
case, it is now clear (see next section) that ro is determined 
by the magnitude of the force at the defect itself. There is also 
no way to reconcile these results with the frequency depen- 
dence of the susceptibility given in Ref. 7. 
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2. SMALL SPACINGS 

As we have already mentioned, any determination of 
realistic values of the parameters C, V, and r,, as well as their 
temperature dependences, must originate with an analysis of 
the small-spacing regime. We now turn to this problem. Let 
us note that a detailed analysis of vortex lattices in supercon- 
d u c t o r ~ ' ~ ~ ' ~ e a d s  to a number of nontrivial consequences. 
Thus, for example, the constant which is analogous to our V, 
can in this case have an oscillatory dependence of magnetic 
field." 

We will investigate this question within the framework 
of the basic continuum model for the incommensurate phase 
(see, e.g., Refs. 19,20). We will regard the incommensurate 
phase as a distinct region of some commensurate phase. The 
effective Hamiltonian as a function of the two-component 
order parameter (7, = p cos $ 5 , ~ ~  = p sin $5) for the phase 
transition from a high-symmetry phase to the above-men- 
tioned commensurate phase has in the simplest case the 
formI9 

Here the term with coefficient B '  is "responsible" for the 
subsequent transition from incommensurate to commensur- 
ate phase (for the basic family of incommensurate dielec- 
trics, i.e., crystals of the potassium selenate type, n = 6); the 
term with coefficient r is a Lifshitz invariant. The presence of 
the Lifshitz invariant shows that a second-order phase tran- 
sition from high-symmetry to commensurate phase is impos- 
sible, and that for small values o f 2  the inverse phase transi- 
tion occurs. It is significant that in this case it is not 
necessary to include terms with higher derivatives up to val- 
ues of k on the order of an inverse lattice vector. 

Assume that defects give rise to the appearance of a 
local random field relative to one of the order parameters, 
say 7,. Then 

Let us neglect terms proportional to B ' in ( 18). For the sinu- 
soidal regime, which is realized near the symmetric-incom- 
mensurate phase transition, its role is insignificant due to the 
smallness ofp. We will study just this regime. Then the equa- 
tions which correspond to a minimum in the energy 
(18),(19) take the form 

Here we have gone to the variables p = @ + k+,k, = r/D; - 
A = A  - ?/D,qi = k g i .  As usual, we let A = A,(T - Ti ), 
where Ti is the transition temperature from the incommen- 
surate to the high-symmetry phase for a defectless crystal. 

Due to the presence of a finite "stiffness" A, the pertur- 
bation of the amplitude p near each defect decays over a 
distance r, = [D / (  - 2 A )  ] 'I2. Therefore, for moderate de- 

fect concentrations and for temperatures not too close to the 
6phase transition point, when 

it is sufficient to investigate the problem of a single defect to 
determine the parameters C, V, and r,. Since we are interest- 
ed in the case of strong pinning, i.e., when pi z+bi + 2 m i ,  
we set cos (pi - qi ) = 1 in Eq. (2  1 ). We also discard the 
term with Vp in (21) (we will justify this approximation 
below). Then the solution to Eq. (21 ) (including only one 
defect at the coordinate origin) takes the simple form 

the condition that these expressions be applicable is the in- 
equalityI5 

Here h  ,,, = 47rD 3 1 2 ~  - 'I2 is the atomic, i.e., the maximum 
possible value of h,, whiled is the size of the "nucleus" of the 
defect-a quantity which usually appears in the continuum 
theories of defects in crystals (see, e.g., Refs. 4,15). The size 
d (on the order of a lattice constant) serves as a cutoff pa- 
rameter for the distribution p ( r )  for small spacings, i.e., 

If along with (24) the condition which is the inverse of 

is also fulfilled, then the perturbationsp and p at each defect 
are in general inde~endent .~ This case of extremely small 
fields h ,  necessarily corresponds to weak pinning and is of no 
interest to us. Therefore we will assume that although the 
field is small compared to its atomic value (24), condition 
(25) holds. We now substitutep(r) given by (23) into Eq. 
(20); substitution of p ( r )  into the right-hand part of Eq. 
(20) gives the value of the parameter V ,  from formula ( 1 ). 
Taking into account (24a) and (25), we have 

Substitutingp ( r )  into the left-hand side of (20) determines 
the "bare" Green's function 

An exact solution to (27) cannot be found; however, this is 
not required to estimate the values of the parameters C, V, 
and r,. It is not hard to convince oneself that terms with h ,  in 
general have no bearing on the behavior of Go for large spac- 
ings; therefore they are important only in determining the 
cutoff parameter r,, while C = DpL. Turning to the deter- 
mination of the quantity r,, we remark that a naturally im- 
portant distance contained inp( r )  is the spacing a for which 
the two terms in Eq. (23) are comparable in magnitude: 

For conditions (24) and (25), d (a ( r, . The spacing a also 
serves as the cutoff parameter r,. Actually, in determining 
the asymptotic behavior of Go for r g a  we find 
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and thus verify that it ensures convergence of the integrals at 
short distances. 

The correction p ' ( r )  to solution (23), connected with 
the discarded terms with Vp in (21), takes the form 

pf (r) = j drf 
1 

4 n  1 r-r' 1 p(r') [ Vcp(rf) 1'. 

Since at a distance a the phase p cannot change by more than 
27, we estimate Vp to be 27/a for r < a and 277a/r2 for r > a. 
Estimating the integral (30) usingp ( r )  in the form (23) we 
confirm the fact thatp'gp both for r 4 a  and r)a  when con- 
dition (25) holds. For r-a it turns out that p' -p; however, 
this situation can change only the numerical coefficients in 
estimates of C, V, and r,,, which these estimates cannot claim 
to predict. 

Thus, we have the following estimates for the param- 
eters introduced in the previous section: 

V1=hIZ/4nDd.  (33) 

Rewriting the strong-pinning condition in the new notation, 
we verify that it coincides with condition (25). Incidentally, 
the strong-pinning condition was also presented in just this 
form in Ref. 4. We also present the complete formula for the 
susceptibility relative to he,, (4),  i.e., the Green's function. 
Using formula ( 10) and estimates (3 1 )-(33) including con- 
dition (251, we have 

Let us discuss (34). It is noteworthy that the stiffness of 
the system G - ' ( k  = 0) turns out to be additive in the de- 
fects, although the field p ( r )  over large length scales satis- 
fies the Laplace equation and the states carry an essentially 
collective character. Let us try to explain this result qualita- 
tively. It is natural to suppose that the stiffness of the system 
is determined by contributions from those regions in which 
the phase p is most weakly varying under the action of the 
field. In the case of strong pinning, this region is the immedi- 
ate neighborhood of each defect. Consequently, the stiffness 
of the system is proportional to the defect concentration N, 
the size r,, (32) of a region of fixed phase at one defect, and, 
naturally, the crystal constant C (3 1 ) . We note that in for- 
mula (34) the defect parameter d does not enter in; however, 
it figures into the conditions of applicability of this formula. 

The estimates presented here allow us, in particular, to 
clarify under what conditions strong pinning can take place. 
The quantity p m  appearing in (25) reduces to zero at the 
incommensurate-symmetric phase transition point (at 
T = Ti 1. Therefore, near Ti and in the absence of defects 
which have a component of the random-field type (19), the 
strong-pinning regime is always realized. The width of this 
region is especially large for systems of displacive type, in 
which the parameterp,, /pm is large even far from the tran- 
sition. For defects which do not have the random-field type 
of components because of their high symmetry, the situation 
is entirely different. Thus, if at a defect there is only a compo- 
nent of the random-anisotropic type, in place of ( 19) we 
need to write 

All the analysis is carried out in full analogy with the case 
investigzted earlier. As a result, in place of condition (25) 
we obtain 

which in fact implies that the quantity A ,  must significantly 
exceed its atomic value. This is improbable, i.e., for random 
anisotropy we are dealing with weak pinning. 

Let us emphasize that we have not included the possibil- 
ity of thermal "hopping" between the various states ( 2 ) ,  i.e., 
we have in fact investigated the case T = 0. For T # O  the 
gap, strictly speaking, is absent and the results for the sus- 
ceptibility (34) are correct only for sufficiently high fre- 
quencies, when jumps between states do not occur. Clarify- 
ing the character of the dispersion of the susceptibility due to 
jumps is a very difficult task, and in this article we will not 
consider it. It is possible only to confirm that for T = T, the 
barriers between states disappear, whereas sufficiently far 
from Ti the relaxation time must be extremely long. We note 
that in experiments on incommensurate phases one often 
observes slowing-down of the relaxation (in the course of 
many hours). It is entirely possible that this is precisely a 
consequence of hopping. 

We also draw attention to the fact that the susceptibility 
(34) is related only to the low-lying states. One may expect 
that for slow cooling from the symmetric phase the system 
necessarily finds itself in one of these low-lying states. It is 
reasonable to suppose, however, that the temperature and 
concentration dependences of the high-frequency suscepti- 
bility will be qualitatively the same for all states. 

3. SCATTERING OF LIGHT BY PHASONS 

As we noted in the Introduction, the presence of a gap 
must make itself felt in many observable quantities. This 
must lead to especially strong effects in scattering of light by 
phasons. The scattering of light by phasons is difficult to 
observe even in an ideal crystal, since it must lead to a very 
narrow and weak-intensity central peak in the scattering 
spectrum.21 Experimental errors (misprint?) of such a peak 
have not yet been crowned with success.22 We will show that 
under conditions in which the "gap relaxation time" is suffi- 
ciently long, defects of the type we have discussed here, even 
at low concentrations, can make light scattering by phasons 
practically unobservable. 

In the simplest case the coupling of the dielectric per- 
mittivity in the region of optical frequencies with the phase 
fluctuations has the form2' 

from which, taking (34) into account, it follows that 

This quantity determines the integrated intensity of light 
scattered by phasons. Equation (38) differs from the analo- 
gous expression for scattering in a perfect crystal by the pres- 
ence of the first term in the denominator. As a result, the 
scattering intensity of light off of phasons turns out to be S 
times smaller than in an ideal crystal: 
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For a concentration N = 10" cm-3 characteristic of nomi- 
nally pure samples and for h,/h ,,, = 0.1, p, /pa, = lo-', 
d = lo-' - lov8 cm, k = cm-' we obtainS=: 10'-lo3 
and correspondingly S z  1 for N = 1015-1016 cmP3. As far as 
we know, crystals of such perfection are practically unob- 
tainable at the present time. Let us also note that for concen- 
trations of 1015-10'6 ~ m - ~ ,  in a nondegenerate system de- 
fects play no role either in generating anomalies of 
thermodynamic quantities or in elastic light s~at ter ing. '~. '~  
Naturally, we cannot claim this is true for all defects: it ap- 
plies only to those which have a random-field component 
like ( 19). We emphasize that defects need not suppress the 
scattering of neutrons by phasons so strongly, since in this 
case the characteristic value of k is considerably larger. In 
this case the phason can be observed as a phonon mode with 
a gap (34). 
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