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When a superconductor is described by the time-dependent Ginzburg-Landau equations, the 
current consists of normal, superfluid, and interference components. It is demonstrated in the 
example of weak links that an interference current can play an important role in describing the 
physics of nonequilibrium superconductors. 

1. INTRODUCTION 

The behavior of electrons in nonequilibrium supercon- 
ductors is fundamentally different from that in the equilibri- 
um case, in which there is only a superfluid motion, which 
can be described by the Ginzburg-Landau order param- 
eter. In nonequilibrium cases, the normal component also 
becomes involved in the motion. 

It can be shown that the simultaneous involvement of 
an electron system in two types of motion gives rise to a 
specific (interference) component of the current. The exis- 
tence of this component, which is the subject of the present 
study, not only underscores the arbitariness of partitioning a 
superfluid system into two components (as was pointed out 
even by ~ a n d a u ~ )  but also demonstrates the restrictiveness 
of the two-fluid description (since in addition to the normal 
motion and the superfluid motion interference between 
these two motions occurs). 

An expression for the current in the nonstationary case 
is included in the system of time-dependent Ginzburg-Lan- 
dau equations. On the other hand, the additional interfer- 
ence term is not found in the final expressions for the current 
which have been used in several studies in which time-depen- 
dent equations have been derived for T- T, (Refs. 4-9). As 
we will show below, the interference component of the cur- 
rent must be taken into account, since it is generally not 
small and may play a fundamental role. 

The equations of nonequilibrium superconductivity un- 
derlie a microscopic derivation of an expression for the cur- 
rent in the time-varying case.10311 General relations for the 
current were derived in Refs. 4-9 in the "dirty" limit (in the 
sense of Ref. 12) under the customary conditions of a semi- 
classical treatment." Schmid's results9 contain a term not 
present in Refs. 4-8. Since the various results must be re- 
checked and compared, and since the expressions which 
have been derived for the current in all of these studies have 
been calculated in a gauge with a real order parameter, it is 
worthwhile to rederive a general expression for the current. 
This procedure, which is carried out in an aribtrary gauge, is 
the content of Section 2. In Section 3 we make the transition 

ponents. It can thus be asserted that the interference term 
which arises in a "gap" superconductor is a consequence of a 
strong correlation between the system of one-particle excita- 
tions and condensate pairs (this correlation turns out to be 
suppressed in the gapless case). 

The expression derived for the current can be used to 
reanalyze certain well-known time-dependent problems. In 
this connection, we examine in Section 4 the behavior of 
weakly linked superconductors in a resistive state on the ba- 
sis of the model of Aslamazov and Larkin.14 In our ap- 
proach, phase-dependent dissipative terms appear in the 
current even if we do not use a time-dependent equation for 
the order parameter." It turns out that instead of the "co- 
sine" term16 there is another term, large in magnitude and of 
the same nature. 

Further analysis, in Section 4, shows that it is the inter- 
ference term which is responsible for the well-known "ex- 
cess" current in weakly linked superconductors. The struc- 
ture of the resulting expression is reminiscent of that found 
in the theory of Artemenko et at.'' near T,. It is shown that 
the excess current in weakly linked structures oscillates in 
time (periodically vanishing, at the same time as the modu- 
lus of the order parameter). 

In Section 5, the final section, we also discuss certain 
other aspects of manifestations of an interference current, in 
particular, in a problem related to the "cos p-term paradox" 
in weak-link systems. 

2. GENERAL EXPRESSION FOR THE CURRENT 

According to the microscopic equations of nonequilib- 
rium superconductivity,lO~'l the current density is given by 
the expression ( e  = f i  = c = 1 ) 

to a closed expression for the current (i.e., an expression where $ (r,t) is the vector Keldysh part of g, the matrix 
which does not explicitly contain distribution functions of Green-Gor,kov function integrated over the energy, which 
the excitations). Like the time-dependent equation for the is itself a matrix element: 
order parameter,' the expression for the current becomes the 
expression for a gapless supercond~ctor '~ when the gap in gR &? 
the excitation spectrum is "smeared out" (formally-when i= ( 6 gA)a (2) 

the excitation decay values are quite large). In this case the 
current consists exclusively of normal and superfluid com- In the Usadel approximation,12 the functionican be written 
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in the form 

P ;=L + ;:.. ( 3  

In expression ( 1 ), N(0) is the density of the levels of normal 
electrons at the Fermi surface, and .i, is the Pauli matrix. 
The function I: given by (2) satisfies a kinetic equation 
(which we will not reproduce here, to avoid overburdening 
the derivation; see Refs. 9-1 1 ) and also the normalization 
condition 

In the semiclassical approximation, which is understood to 
be employed below, the asterisk(*) in this equation has the 
following meaning: 

where the terms in braces correspond to so-called convolu- 
tion corrections (cf. Ref. 8).  Taking these terms into ac- 
count corresponds to the approximation of the next higher 
order in the semiclassical theory." In the normalization (4),  
the solution of the kinetic equation for the vector harmonic 
I:,, is 

., " " " "  
gp=--~(g~*d*g.-d),  (6)  

where T is the transport mean free time of an electron in the 
metal, and the isotropic part is is given by 

From (1)-(8) we find 

where 

D is the diffusion coefficient in the normal state, and the 
spectral functions p'A) are defined by2' 

Here y = 2~: ' is the energy decay of the electrons, and the 
complex order parameter is introduced by means of 

In the further manipulations of (9),  we assume that Tis 
close to T,, so that the following inequalities hold: 

Under these conditions, we can assume, in particular, that 
the function y does not depend on E. We also adopt the fol- 
lowing approximations: The "distribution functions" f, and 
f2, which satisfy kinetic equations, depend on the time only 
implicitly (this is the so-called local equilibrium approxima- 
tion). We omit terms with the derivatives Ri,, ( =dRi /dc), 
N,,,, and Vf ,,, ( -d 2f,/drd&) and also terms with deriva- 
tives of higher orders and their products, which make only a 
small contribution to the current. We take into account the 
symmetry properties of the expression in the integrand (Ri 
is an odd function of E ,  and N, is an even function of E ) .  We 
also note that when we take the trace in (9)  several of the 
terms reduce to total differentials, which vanish upon inte- 
gration. Furthermore, it follows directly from ( 1 1 ) that the 
following identities hold: 

On the basis of the above arguments and after some 
calculations, we find an expression for the even significant 
part of the trace in (9): 

The superior dot denotes a partial derivative with respect to 
the time, and a2 =d(a2)/dt. Defining the "superfluid mo- 
mentum" 

we can write expression (9)  for the current as 

where the normal conductivity (T is defined by 

In this step we find that in the 8 = 0 gauge expression 
(17) is the same as Schmid's r e ~ u l t . ~  The last term in (17 
with the time derivative), which was omitted from Refs. 4- 
8, vanishes if we ignore the dispersive dependence off ,,,. 
Substitution of the equilibrium value f, = f y  ( E )  into this 
term leads to a nonzero value containing an additional small 
factor IAI/T. Since this term is also small in proportion to 
the parameter w/T, we will omit it below. Expression ( 17) is 
the basis for the analysis below. In contrast with Refs. 4-9, it 
has been derived here in an arbitrary gauge, so that we can be 
convinced that this calculation approach is self-consistent. 
The functions fl ( E )  = ( 1 - n, - n - , ) .sign E and 
f2(&) = - (n, -n-,)/N,.sign&in (17) shouldbedeter- 
mined in general by a kinetic equation for the distribution 
function of the nonequilibrium electron-hole excitations, n, . 
In many cases, however, it is sufficient to substitute the equi- 
librium function n, = nz = [exp( IE(/T) + 1 ] -' into ( 17). 
We believe that this procedure was not carried out alto- 
gether correctly in Refs. 4-9, with the result that certain 
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terms whose contributions are not small were left out of the 
expression for the current. At this point we turn to an analy- 
sis of these terms. 

3. "EQUILIBRIUM" AND "LOCALLY EQUILIBRIUM" 
APPROXIMATIONS FOR THE CURRENT 

To transform the terms containing e and Vf2 in ( 17), 
we introduce the gauge-invariant potential 

! ~ = ' / ~ e - q ~  (19) 

and the associated electric field 

E = - A - v ~ = ~ / ~ Q + v ~ .  (20) 

When there is a potential p, the function f2 is nonzero; under 
the condition E )  (A( it is 

fi=-qfi,. (21 

[relation (21 ) is discussed in more detail in Ref. 181. Substi- 
tution of (21 ) into ( 17) leads to 

m 

In the equilibrium theory, the current in a "dirty" su- 
perconductor is given by the first term in (22), where we 
should set f, = f: (E)  = t h ( ~ / 2 T )  (cf. Ref. 19). In the non- 
equilibrium case, two more groups of terms arise when we 
substitute the equilibrium function f (E) into (22). The rea- 
son for this result is the following relation, which can be 
established directly from ( 1 1 ) : 

Under inequalities (13), the integral (22) together 
with (23) can be evaluated by q~adra ture .~ '  In the time- 
dependent theory it is necessary to evaluate this interval for 
an arbitrary relation between lAl and y (although the equi- 
librium value of ( A( in a "gap" superconductor is large in 
comparison with y, in the time-varying case IA(r,t) / may in 
fact vanish!). As a result of a direct integration in which we 
make use of the definitions of Ni and Ri in ( 1 1 ) , we find, 
omitting small terms of higher order, 

where the functions K(x)  and E (x )  are complete elliptic 
integrals of the first and second kinds. 

Expression (22) can be written in the form 

j=j.+j,+ jint, ( 2 5 )  

where the superfluid and normal components of the current 
are given by the standard relations 

and the "interference" component is 

The terms in (27) are characterized by quantities which are 
properties of both the superconducting condensate and the 
normal metal. Actually, these terms include some interfer- 
ence of the motions which occur in the electron system of the 
superconductor. 

Comparison of (27) with (26) shows that the interfer- 
ence component of the current is not small. Using the well- 
known asymptotic expression for the elliptic integrals, we 
can easily show that (24) takes the following form in the 
specified limiting cases: 

. 4161 l=-QIAlz+o~{i+-!$(ln 4T y - l ) }  for y < l A I l  

no (28) 
j=-QIAIZ+oE for y > l A l .  

4T (29) 

Using (28) and (29), we can write the following rough ap- 
proximation for the behavior of the functions in braces in 
(24) : 

This approximation turns out to be convenient for practical 
calculations. 

We used the equilibrium approximation for the func- 
tions f, and f2 above. In the time-dependent t h e ~ r y , ~ - ~  non- 
equilibrium contributions are taken into account in the de- 
termination of these functions: 

The current component due to the function 6 f , ( ~ )  in (32) is 
vanishingly small and can be ignored. In contrast, the func- 
tion 6 f, (E)  in ( 3  1) contributes a current component which, 
although small in comparison with j,, is not of a dissipative 
nature. In general, this component may not be small in com- 
parison with j, . As a result, the current is given by the fol- 
lowing expression in the local equilibrium approximation: 

This expression should appear in the Ginzburg-Landau 
equations instead of the expression presented in Refs. 4-9 
[by way of comparison we note that in those other papers 
relation (29) was given instead of (33) for the current in the 
local-equilibrium approximation]. 

4. CURRENT IN WEAKLY LINKED SUPERCONDUCTORS 

To illustrate the distinctive features of the expression 
derived here for the current, we consider the resistive state 
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which arises in weakly linked superconductors. To describe 
it, we make use of the Aslamazov-Larkin model.I4 In accor- 
dance with that model, we assume that the order parameter 
near the weak link can be written 

The picture is assumed to be one-dimensional here; the coor- 
dinatex in the vicinity of the weak link varies from - a to a; 
A, = const is the modulus of the order parameter in the bulk 
superconductor; and 8, and 8, are the time-dependent val- 
ues on the left and right "banks," respectively, of the phases 
of the order parameter [we recall that the phase 8 was intro- 
duced by (12)l.  

Since the model is one-dimensional, it is sufficient to 
calculate the current at the point x = 0. It follows from (34) 
that we have (in the A = 0 gauge and at x = 0)  

In the bulk "banks" we can setp = 0; assuminga 46( T),  we 
find from ''9) and (20) 

The condition a < l ( T ) ,  which is typical of experiments 
on weak-link structures, means that an analysis based on 
equations of the Ginzburg-Landau type (which assume that 
the spatial derivatives are quite small) would not be applica- 
ble here. Nevertheless, the expression for the current in the 
form in (24) is applicable in this situation, since f , ( ~ )  in 
(22) can be assumed to be an equilibrium function because 
of the rapid diffusive dissipation of the nonequilibrium exci- 
tations by the banks. Substituting (35) and (36) into (26), 
(271, we find 

o v  
i=ia+in+jint, j ,= jo  sin (2Vt+B0) ,  j = - (37) 

2a ' 
oV I C o s ( ~ f + ; ) I  in 4Ao 1 cos (Vt+O0/2)  I + y 

lint = -- 
3 

Y 2a 2T 

where 8, is a constant phase difference, and j, = raA; /8aT. 
It follows from (38) that the interference current does in- 
deed have a phase-dependent dissipative nature (as was 
stipulated in Section 3) .4' 

The relationship between the interference contribution 
(38) and the familiar phenomenon of an "excess current" is 
a curious one. Taking an average of (37) over the time, we 
write the result in the first approximation as 

where o* is an effective conductivity. The second term in a* 
describes an excess conductivity which stems from the inter- 
ference component of the current. An excess current has 
been observed in several experiments on weak-link struc- 
tures. Artemenko et al." have explained this phenomenon 
using the model of short bridges. Equation (39), which we 
have derived in another model and by another method, has 
much in common with the expression given in Ref. 17 under 
the conditions Vk A, and T- T, . Specifically, the tempera- 
ture dependence Li,,, cx ABcs ( T) ] is essentially the same, as 

are the absolute values of the excess current. At the same 
time, other aspects of this phenomenon can be seen: primar- 
ily, the fact that the excess current is actually of a "pulsat- 
ing" nature, as can be seen from (38). Furthermore, while it 
was concluded previously (cf. Ref. 2 1 ) on the basis of Ref. 
17 that the excess current in the bridges of a weak link arises 
because of the massive banks (i.e., the excess current is more 
of the nature of a boundary effect), in our own analysis we 
see that the effect should also occur in the interior. It thus 
may also be manifested in experiments with bulk samples. 

According to (39), experiments carried out to deter- 
mine the excess conductivity would make it possible to 
evaluate the energy relaxation time T, = 2y-' of single-par- 
ticle excitations in superconductors. 

5. DISCUSSION 

The presence of an interference term in nonequilibrium 
superconductors may be related to qualitative features in 
other time-dependent phenomena, e.g., the "cos p-term par- 
adox" (Ref. 22, for example). For weak-link bridges this 
paradox arises when one attempts to interpret experimental 
data on the basis of the expression found for the current by 
the method of a tunnelling Hamiltonian.16 This problem 
must obviously be reexamined in light of the expression de- 
rived in Section 4. 

As an example, we consider the interpretation of the 
experiment reported in Ref. 23. The fluctuating value of the 
derivative of the voltage with respect to the current was mea- 
sured in that study. A theoretical analysis of that quantity is 
based on a Fokker-Planck equation,24 which can be written 
for fluctuations in weak-line superconductors by analogy 
with the motion of a Brownian particle in an external poten- 
tial field.25 AS a result, the following expression is found for 
the quantity (dZ/'/dx), =, 

2n LX 

Here T =  V/jSR, x=j/jo, f (8) = e x p ( l / 2 y ~ 0 ~ 8 ) ,  
y = j$/T, S is the cross-sectional area of the weak link, R is 
its resistance in the normal state, and the parameters ai are,5' 
according to Section 4, 

For a comparison with experimental results, Falco2, used, 
instead expressions (40) and (41), the quantities which 
arise when the ordinary Josephson expression is used for the 
current [in the latter case, we should set a,  = 1, a, = a, = 0 
in (41 ) 1. The experimental data were found to lie well below 
the theoretical curve (they were close to the curve with 
a ,  = - 1 ), and that result was preceived as paradoxical. If 
we instead use expressions (40) and (41 ) for the comparison 
with the experimental results, we find that theoretical curve 
(40) runs well below that in the case a, = 1, a, = a, = 0, 
and it may be close to the experimental results of Ref. 23. 
There are thus grounds for expecting that a paradox will not 
occur in this case. On the other hand, it would be difficult to 
claim accurate agreement with experimental results at this 
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point, since Falco et did not report sufficiently detailed 
data on the quantities determining the voltage-current char- 
acteristic of the weak link. It is not clear, for example, how 
the measured voltage compared with y; this is an important 
question, since it determines the applicability of the theoreti- 
cal expressions. 

The use of expression ( 3 3 )  for the current may also 
affect the results of a theory for the resistive state of "one- 
dimensional" (see the review by Ivlev and KopninZ6) and 
"two-dimensionalu2' superconductors. That question, how- 
ever, requires further study. 

In conclusion we would like to point out that a logarith- 
mic renormalization of the conductivity analogous to (39) 
has also arisen previously in the theory for the linear (Refs. 
28 and 29, for example) and nonlinear3' responses of a su- 
perconductor to a time-varying external electromagnetic 
field of frequency a,. Those studies, however, dealt with fre- 
quencies a,%y. For this reason, the logarithmic factors 
which appeared, reflecting the occurrence of interference 
between normal and superfluid motions, had a slightly dif- 
ferent structure. 

We wish to thank S. N. Artemenko, A. G. Volkov, B. I. 
Ivlev, A. M. Kogan, K. K. Likharev, Yu. N. Ovchinnikov, 
and G. M. ~ l i a s h b e r ~  for useful discussions. 

"Similar terms in the current were found previously'5 from equations for 
gapless superconductors through the use of an equation for the order 
parameter. For short bridges, that approach would not be justified, since 
equations of the Ginzburg-Landau type do not apply in this case. 

"In writing the spectral functions ( 11 ) we have completely ignored the 
effect of the external fields A and e, on them, since expression ( 11 ) actu- 
ally correspond to thee, = 0 gauge. For an arbitrary gauge with e, # 0, 
the functionsY(*) (and, in particular, N, ) change. l X  This change, how- 
ever, produces no substantial effect in the expression for the current. 

"The difference which we mentioned between our result and that reported 
in Refs. 4-9 stems from the circumstance that the quantity N: + N:, 
given by (23), was set equal to one in the corresponding integral in Refs. 
4-9. 

4'Near the weak link (1x1 < a ) ,  there is some number of "captured" non- 
equilibrium excitations with energiesZ0 E < A,. Those excitations lie out- 
side the scope of our analysis. As Schmid et have shown, the pres- 
ence of these excitations at voltages V<y contributes a current 
increment Sj =jop1[(8 ,  - 8,)/2] V y ' ,  wherep, is some nonnegative 
even function of period .R with a maximum value of 2/5. The magnitude 
of the same dissipative phase-dependent structure could also have been 
derived formally by substituting (35) and (36) into the second term in 
(33). The interference term which would arise in this approach would 
not be small in comparison with j, in (37) (Sj-j, 1AI2/yT). As was 
mentioned earlier, there should be no "locally equilibrium" increments 
in the current in the case of short bridges ( a  <(( T) ) (because of the fast 

diffusion processes associated with the presence of the banks). In other 
cases, however, this term may prove important. 

5'The value given here for a ,  is found in the case in which a term 
z - joVT -'cos(2 Vt + B0), deriving from the last term in ( 17), is re- 
stored in (37). Incorporating this term in the expressions for the current 
would go beyond the accuracy of this treatment, however, so that the 
"cosine" term should be discarded. 
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