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The selection of a structure during the eutectic crystallization of a thin film is studied. This 
selection occurs as a result of a competition between the appearance and disappearance of 
lamellae. Equations of motion are constructed for an irregular structure. They are analyzed in 
the long-wave approximation, in which it is assumed that the length scales of the structural 
irregularities are greater than the lamellar spacing A,. The size distribution of the lamellae is 
found as a function of the parameters of the growth process and the noise level. As the 
composition of the initial phase deviates progressively further from the eutectic composition, a 
transition takes place to the growth of a random structure, characterized by a high frequency 
of events in which lamellae appear and disappear. The period of the selected structure, A,, can 
fall anywhere in an interval of values, depending on the particular model adopted for the 
splitting of the lamellae. This interval is found. Its lower boundary is derived under the 
assumption that the splitting of the lamellae occurs primarily at the size corresponding to the 
maximum of the distribution function. The upper boundary of the interval corresponds to the 
splitting of lamellae at the point at which the crystallization front becomes unstable. For the 
Pb-Sn eutectic system, this interval is 1.4 <&/Arn < 2.2, where R ,  is the lamellar spacing 
corresponding to the minimum of the supercooling at the given growth rate. The experimental 
values are in the interval 1.2 <R, /Rrn < 2.0. 

INTRODUCTION 

The evolution of an inhomogeneous state of a nonequi- 
librium system and the mechanisms by which its pattern is 
selected have recently been the subject of active research, 
including some research pertinent to crystallization pro- 
cesses.'.' A general characteristic feature of such processes 
as the growth of dendrites, eutectic crystallization, and cel- 
lular crystallization is the existence of a range of inhomogen- 
eous states which may arise in the course of the process. The 
problem here is to describe the time evolution of an inhomo- 
geneous state and ultimately to determine the parameters of 
the structure which is realized after a long time. The theory 
of steady-state eutectic growth3s4 predicts only a relationship 
between the growth velocity and the lamellar spacing A of a 
regular structure: 

Alternatively, if we are dealing with crystallization at a fixed 
rate in a temperature gradient, this theory predicts a rela- 
tionship between the parameter A and the supercooling at 
the crystallization front, AT. In order to determine which 
value ofA actually prevails during the growth of the eutectic, 
it is thus necessary to appeal to other considerations. 

We first note that, as was pointed out by J. W. Cahn and 
discussed by Jackson and Hunt,4 steady growth will be un- 
stable under the condition A < 2A,, where A = 2A, is the 
point of the maximum on the V(A) curve. On the other 
hand, as Jackson and Hunt pointed out,4 an instability of 
another type arises if A is sufficiently large. The crytalliza- 
tion front bends near a lamella, forming deep "pockets," 
with the result that initiation of a lamella of a second solid 
phase becomes possible. A hypothesis of marginal growth 
was then formulated. This is the assertion that the growth 
occurs under conditions corresponding to a stability bound- 
ary. Langer5 confirmed the result A = 2A,, which corre- 

sponds to an instability of the first type and which agrees 
with the earlier suggestion6 of a maximum of the velocity (or 
a minimum of the supercooling). Sundquist7 has suggested 
that A corresponds to a threshold for an instability with re- 
spect to the nucleation of new lamellae, i.e., an instability of 
the second type. The condition that the derivative of the 
entropy reach a maximum and also certain auxiliary consid- 
erations8 lead to a different result, R = 3A,, which corre- 
sponds to an inflection point on the V ( A )  curve. Finally, 
Datye et formulated a systematic approach to the analy- 
sis of selection based on the two types of structural instabili- 
ties mentioned above, at small and large values ofA. The first 
of these instabilities leads to the disappearance of lamellae of 
small dimensions, with the result that the structure becomes 
coarser. An instability of lamellae of sufficiently large di- 
mensions results in their splitting and thus the creation of 
new lamellae. This process has the opposite result of reduc- 
ing the average lamellar spacing A. The steady-state struc- 
ture which arises as a result of the selection corresponds to a 
dynamic equilibrium between these processes of the splitting 
and termination of lamellae. The evolution and the selection 
of a eutectic structure is a many-body problem; the effective 
interaction between lamellae occurs through a diffusion field 
in the melt. Since this problem is so complex, it is useful to 
construct some simple but physically meaningful models. To 
describe the dynamics of a eutectic structure, Datye et ~21.~ 
accordingly used a simplified model in which the evolution 
of the structure results from curvature of the macroscopic 
crystallization front which runs along triple junctions of la- 
mellae with the melt. Here it was postulated that the lamel- 
lae are perpendicular to the line of the macroscopic front. So 
far, no justification has been found for this postulate. Datye 
et al.%rote an equation for1 (x,t) in the long-wave approxi- 
mation, according to which the local supercooling at the 
front, AT(A ), depends only on the local value of A, not on 
the average characteristics of the structure: 
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FIG. 1. Eutectic phase diagram. 

The problem nevertheless remains a many-body problem. 
In the present paper we consider the situation in which 

the additional assumption that the lamellae are perpendicu- 
lar to the macroscopic front is not required. Specifically, if 
the surface energy between the melt and the solid phases is 
large in comparison with the surface energy of the boundary 
between solid phases, then-as we will see below-we can 
ignore the curvature of the macroscopic front, and the evolu- 
tion and thus structure selection will occur at a macroscopi- 
cally planar front. Assuming this front to be statistically uni- 
form, and using the long-wave description, we find a 
single-particle equation of motion, A = f(A ), but one which 
depends on the average structural characteristics as param- 
eters. Also incorporating the fluctuations which arise in the 
system in the analysis, we describe the process of the evolu- 
tion and selection of a structure, allowing for the disappear- 
ance and appearance of lamellae. As a result we find the 
mean value and variance of the lamellar spacing in a eutectic 
structure. We compare the results with experimental data. 

EQUATIONS FOR THE GROWTH OF AN IRREGULAR 
EUTECTIC 

We consider the isothermal crystallization of a thin film 
in a eutectic system with the phase diagram shown schemati- 
cally in Fig. 1. Figure 2 shows the structure of the solid 
phase, which consists of alternating a and P lamellae. This 
process is controlled by diffusive redistribution of the com- 
ponents in the liquid phase and is described by the two-di- 
mensional diffusion equation 

where CL is the atomic fraction of component B, and D is the 
interdiffusion coefficient in the melt. We ignore diffusion in 

the solid phase. At the crystallization front, z = l ( x , t )  mat- 
ter is conserved: 

where v, = (dc/dt) / [ l  + (dg/dx)'] ' I 2  is the normal 
growth velocity, dCL /dn is the derivative along the normal 
to the front, and C, is the composition of the crystal, which is 
equal to C z  in an a lamella or C ;  in a f l  lamella. We also 
assume that the conditions of a local equilibrium hold at the 
curved front: 

CL - CLa - r a K  = 0 at an a lamella, (3a) 

CL - CL, + rp K = 0 at a p lamella, (3b) 

where K is the local curvature, C,, and CLp are the equilibri- 
um compositions on the continuation of the liquidus lines 
(Fig. 1 ), and r,  and T p  are capillary lengths,'' given by 

Here a,, is the specific free energy of the interface between 
the L and S phases, a, is the atomic volume and f; is the 
second derivative with respect to the composition of the free 
energy per atom of the liquid phase (the derivative is taken 
at the eutectic point). The meanings of the various composi- 
tions are explained by Fig. 1. 

The equilibrium conditions at the triple junctions, 

( S L ~  sin O,+oLB sin f&=oaA, uLa cos Oa=oLB cos 0, 

determine the angles 8,  and OD (Fig. 2);  oap is the free 
energy of the interface between the a and 0 phases. The 
inclination of the front at the triple junctions is determined 
by the relations 

where u, is the inclination of the interface between the a and 
p lamellae (Fig. 2a). Equations ( 1 )-(4) along with the ini- 
tial conditions determine the process by which the eutectic 
crystallizes. 

The problem formulated above is extremely complicat- 
ed. At this point we adopt the approximation of a plane crys- 
tallization front which is moving at a constant velocity V 
(Fig. 2b). In seeking the concentration field ahead of a 
growing irregular eutectic, we solve the diffusion equation in 
the coordinate system moving with the front. We consider 
boundary condition (2 )  at a plane front, i.e., at z = 0 (Ref. 
4).  

FIG. 2. Irregular lamellar structure. a-Region of curved 
macroscopic front; &region of plane m a r m ~ m n i r  frnn, 

where a 0  lamella is disappearing a ~ -- .~ .- 

;+; 

- 
---.- "-",.l ..".A, 

.nd an n lamella is ap- 
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The quasisteady approximation, in which a macroscop- 
ic crystallization front (a  front drawn through triple points) 
is actually planar and is moving at a constant velocity V, can 
be based on the linear analysis of structural perturbations 
which was carried out in Ref. 11. At small values of the 
angles 6, and Bp at a section of the front spanning a large 
number of lamella, n - 1/19 % 1, with lamella dimensions 
which are essentially constant, it is found that a steady-state 
front with a shape only slightly different from planar can be 
established. If weconsider a statistically uniform crystalliza- 
tion front (i.e., if we assume that the size distribution of the 
lamellae does not depend on the coordinate along the front), 
then we can assume that the front is planar and is moving at a 
velocity Vwhich depends only on the mean characteristics of 
the eutectic structure. 

In this case the concentration field found from the solu- 
tion of ( 1 ) and (2)  can be written 

CL=Cm+ (CL-C,)  esp  (-VzlD) +CL, ( 5  

where cL is the mean composition along the crystallization 
front, and C ,  is the initial composition of the melt far from 
the front. 

If the supersaturation is small (and, correspondingly, if 
the growth velocity V is small), and if the length scales I of 
the structural irregularities are not too large ( VZ /D < 1 ) , we 
can find EL from the steady-state diffusion equation, 
heL = 0 and 

V (CpE-CaE) 
CL ( x ,  Z=O) = ( x - x x .  (6)  

nD - rn 

The function g(x)  depends on the particular sequence of a 
and lamellae along the front: 

I g, - ( 1 - 70) at an a lamella, 
g(x) = 

gs =TO at a ,8 lamella. (7)  

Here 7, is the mean fraction of the a phase, which can be 
found from the obvious relation 

Knowing the concentration distribution, we can work 
from Eqs. (3)  and (4)  to find the shape of the crystallization 
front. In particular, integrating (3)  once, we find, for small 
values of 8, and Si , 

.k 

1 
62,-.62n-,=-20a - - r j [ c L ( x ) - c L a ~ d x ~  (gal 

am-, 

At small angles i f i ,  the rate of change of the dimensions of 
the lamellae is 

Substituting relations ( 8)  into ( 9 ) ,  we finally find 

'kg, , , = V { - - ~ @ B T  [ha, ( ~ L - C L ~ )  +]E ,  n] / r s ) ,  (10) 

where S = a,& the upper sign refers to an a lamella; and the 
lower sign refers to the p lamella. 

At a plane crystallization front, two conservation con- 
ditions must hold. These conditions enable us to express e= 
and V in terms of the mean characteristics of the structure. 
The first conservation condition is the conservation of the 
total length of the macroscopic front: 

The second condition guarantees that the mean composition 
of the solid phase be the same as the composition of the origi- 
nal melt: 

[CaEhm,n+CpEha,n-C. (hcz,.i.h0,,,) ] =O. 

These conditions are equivalent to the conditions 
(A,,, ) = (is,, ) = 0, from which we find 

Here we have used 
, 

-, 
and the angle brackets mean an average along the front. 
Equations (10) describe the dynamics of the structural 
transformation. An analysis of these equations in their gen- 
eral form is very complicated, so we will examine them in the 
long-wave approximation, to which we now turn. 

EQUATIONS OF MOTION IN THE LONG-WAVE 
APPROXIMATION 

In the case in which A , ,  are slowly varying functions of 
n (or of the spatial coordinatex), we writeg(x) in (7)  as the 
sumg(x) = g ( x )  + g(x) ,  where 

- [I - q ( x ) ]  at an a lamella, 
q ( x )  at a B lamella, 

(13b) 

and 7 (x) = A, (x)/A (x). The function g(x) is the mean 
value ofg over the period A, ; it varies slowly along the coor- 
dinate x. The function g(x)  varies sharply at the transition 
from an a lamella to a p  lamella, but its mean value over the 
period An is zero. From (6),  and ( 13), we can put the con- 
centration EL (x)  in the form 

m 

If we ignore the small terms which contain derivatives of 
A, (x),  we find that in calculating the integrals J, (x) from 
( 11 ) the first term in ( 14) makes the same contribution as in 
a regular eutectic, but with local values ofA, ( x ) .  The second 
term in ( 14) varies substantially over distances on the order 
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of the scale of the irregularities, 1 ~ 2 ,  and it can be assumed 
constant in the evaluation of the integrals over A,. As a re- 
sult we find 

m 

x j dXf[.q ~ ~ ~ ~ - q o l l n l ~ - ~ ~ l ]  , 
-- 

(15) 
where 

m 

S = a$; the upper sign refers t o S  = a; and the lower sign to 
S = p.  It can be seen from expression ( 15) that a substantial 
deviation from local behavior arises if the phase fraction 
q (x )  deviates from its mean value 77,. This deviation from 
local behavior enters Eq. (10) for A , ,  , so that one of the 
combinations of these two equations is purely local: 

The other, which describes i ( x ) ,  reflects the nonlocal na- 
ture of this situation in a fundamental way. This nonlocal 
behavior implies that long-wave perturbations of 7 (x)  relax 
rapidly to their average value vO, and in describing the 
changes in A we can set 71 = 7, in Eq. ( 17). To verify this 
assertion, we consider Eqs. ( 10) in the approximation linear 
in the deviations from the average values. Substituting the 
variables A7 = 7 - r],, M = A - A, in the form 

rn - 

into (10) and using (15), we find 

where A, and 7, are average values. 
It can be seen from ( 18a) that the eutectic structure is 

unstable in the case A, < U, , where A = U, is the point of 
the maximum on the V(A) curve which describes the growth 
velocity of a regular eutectic4: 

Since the time scale for 7 to approach its mean value is signif- 
icantly shorter than the time scales for the changes in A (0, / 
0, -A lk 1 ( 1 ) in the long-wave limit, we can set 7 z v O  in 

Eq. ( 17). As a result we find from ( 17), using (i ) = 0, an 
equation for the rate of change of A: 

We also find an expression for the growth velocity: 

where A = A /A,, and V(A,) is given by ( 19a). When the 
variance of A is small, and the relation (A2) z A 0 2  holds, we 
find 

and V= V(A,), as for a regular eutectic. Equation (20c) 
has two stationary points: at A = A, and at A = A,/ 
(A, - 1 ). At A, > 2, one stationary point is stable, while the 
other is unstable. 

SELECTION OF STRUCTURE 

In the preceding section we derived Eq. (20) for the 
rate of change of the size of the lamella in the long-wave 
approximation. We will use that equation here to analyze the 
process by which a structure is selected. In addition to the 
governing equation of motion we will need to consider fluc- 
tuations in the system and the processes by which lamellae 
appear and disappear9 (Fig. 2b). To describe these processes 
we introduce the size distribution of the lamellae, f(A,t), 
which obeys a Fokker-Planck equation with a source: 

This distribution function is defined in such a way that 
fdA is thenumber oflamellae in the interval fromil toA + dA 
per unit length of the front. It has been normalized by the 
natural condition 

rn 

In Eq. (2 1 1, is determined by Eq. (20), and the diffusion 
coefficient B refers to the size diffusion of the lamella. It is 
proportional to the effective temperature and is assumed to 
be independent of A. The source I ( A )  arises from the split- 
ting of lamellae. We denote by W(A ',A ") the probability per 
unit time for a lamella of size A ' to split into two lamellae 
with sizes A " and A ' - A ". We can then write 

I @ ) =  f (A1) W(Lr,  l )dhf-f  ( L )  j W(L,  L")dL". (23) 

Datye et used a model in which a lamella splits in half 
when it reaches a certain critical size A,. In this case we 
would have 

where j, is the flux of lamella with A = A,, and S is the Dirac 
8-function. This critical splitting can be linked with an insta- 
bility of the crystallization front4 when the lamellae are 
large. We will postpone for a moment an evaluation ofA, for 
this splitting mechanism. At this point we wish to examine 
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FIG. 3. The potential U(A) in three possible cases. a-Ad/2 > A,; b- 
Ad/2 = A,; c-Ad/2 = A, = A,. In cases a and b, the mean period of 
the structure, A,, coincides with the point at which the potential reaches a 
minimum; in case c, it coincides with a maximum of the potential. 

the steady-state solution of Eq. (21) with the source I(R) 
from (24) and with the boundary conditions 
f(0) = f(Rd ) = 0: 

where U(R) = - JAdR is a potential which has extrema 
coinciding with the stationary points of Eq. (20) (Fig. 3). 
The constantj, is found from normalization condition (22). 
The condition that f ( R )  is continuous at R = Rd/2 can be 
used to determine the value of A,, on which the potential 
U(A ) depends parametrically. 

A .  Low noise level. In the limit B+O the condition that 
f (R)  is continuous can be written as follows for R = Rd/2: 

where A- and A +  correspond to the highest values of the 
potential in the regions R <Ad/2 and R >A, /2. There are 
' two possibilities here. 

1 ) Rd/2 >,I.,, where AM is the coordinate of the poten- 
tial maximum (Fig. 3a). In this case we have R + = Ad and 
A - = A,, and Eq. (26) leads to the solution 

which exists if A,>l6I5. 
2) Rd/2 = A,. In this case we have R- = Rd/2, 

U(A, ) < U(Rd /2), and thus A + =A, /2. This situation 
holds if Ad(16/,, and if A, is found from the equation 
A, = A,/2. In the solution of this equation there are two 
possible cases: 

lio=&/(&-2) for 3<AdGi6/5, (28) 

A0=A,,/2 for 2GA<r<3. (29) 

Solution (28) corresponds to the case in which A, coincides 

with a minimum of the potential U (Fig. 3b), while for solu- 
tion (29) A, coincides with a maximum of U (Fig. 3c). 

At Ad >3 the value found for A, thus corresponds to a 
minimum of U (Fig. 3, a and b). This result means that at a 
low noise level there is actually a regular stable structure 
with a period A, (with a sharp Gaussian distribution func- 
tion near A,). Events in which lamellae split and collapse 
occur exponentially rarely in such a structure and maintain 
the given steady state. 

For 2 < A, < 3, solution (29) holds, for which A, corre- 
sponds to a maximum of the potential U Lamellae smaller 
than the mean size decrease and ultimately collapse, while 
lamellae of size greater than the mean increase; when they 
reach a size A,, they split. In contrast with the preceding 
case, the splitting and collapse processes do not require the 
attainment of certain dimensions by means of fluctuations. 
The rates of these processes do not contain an exponentially 
small factor, and the distribution function is a power law. 

In the limit B-0, distribution function f( A) for solu- 
tions (27) and (28) is concentrated near A,. If there is even 
a small probability for the splitting of such lamellae, then it 
will be primarily the lamellae with a size close to A, which 
split. This statement means that we should set Ad = A,. We 
then find from (28) 

This universal result does not depend on the parameters 
characteristic of the fluctuations and of the splitting of la- 
mellae. The same result could be obtained by solving Eq. 
(21) with a source of a general type as in (23); i.e., we could 
discard our model assumption of a splitting precisely in half 
at the size A,. 

For simplicity we assume that the splitting of the lamel- 
lae occurs in arbitrary proportions with equal probability, 
i.e., that the function W(R ',A " ) does not depend on its sec- 
ond argument. Under the assumption that in the limit B-0 
the distribution function is localized near A, and that the 
function Wis smoother, we find the following expression for 
the source I ( R )  from (23) : 

h W(h,) /h,  for h<h, 
I(h)=-f(h)  W ( h )  - +{ 

2 0 for P A o .  

Solving the steady-state Equation (2 1 ) with this expression 
for the source, and without a flux at large values ofR, we find 
the following expression for the function f(R): 

A 

W(ho) f 0.) = ___ e - ~ ( ~ / ~  (Ao-2hf)eu(")/B A' for h<ho. 
2Bho 

0 

ForR >A, the distribution function is described by the same 
expression, except that the upper limit of2 on the integral is 
replaced by A,. The value A, in which we are interested is 
found from normalization condition (22). Near A,, the dis- 
tribution function is 

In the limit B+O the first factor increases rapidly, so that the 
normalization condition can be satisfied only if the expres- 
sion in parentheses vanishes. We thus find 
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in agreement with (30). 
B. Evaluation ofA, . The splitting of the lamellae occurs 

through the formation, ahead of a lamella of one of the 
phases (say B), of a lamella of the other phase ( a ) .  This 
process is facilitated when a splitting lamella reaches a cer- 
tain critical size4 ilad, at which a deep concave section forms 
at the front, highly supersaturated with respect to the a 
phase. As in Ref. 4, we define& as the size at which a point 
with a vertical slope, d< /dx = co, first appears at the /3 
front. The front of a P  lamella in this case clearly consists of 
three approximately identical regions, and the central con- 
cave region has a curvature on the order of 6/ABd. Conse- 
quently, the curvature in the middle of the0 lamella can be 
written as K = 6ap/A,, with a coefficient a@ on the order of 
1; this coefficient may depend on the parameters q and 8,. In 
our long-wave approximation, the composition of - the melt - 
above the middle of the criticalp lamella is Cf = CL = Cf , 
where cL is the mean composition, given by ( 12b), and cf 
is calculated from the expressions for a regular eutectic with 
the parameters vO, A = Ad --Apd/(l - v,), V: 

sinnn ( I - q o )  
~ ( 1 - 4 0 )  = Z 

n-1 

Substituting this composition and the curvature into the 
equilibrium equation (3b), we find 

Here we have used expressions ( 12b) and ( 19b) for EL and 
A,. Comparing (33) with the results of the numerical calcu- 
lation of A, which was carried out in Ref. 4 for a regular 
eutectic with A, = A, and with 7, = 0.1 and 0.5, and using a 
very simple interpolation formula for the function ap (q,, 
OB 1, we find 

as=0.72+0.1 I t l o +  (0.33-0.42qo)sin O n .  (34) 

As expected, the coefficient as is close to 1 in order of magni- 
tude. Jackson and Hunt4 considered the case of finite-not 
small-values of Op. In the case at hand, we should replace 
sin OD simply by Op . In (33) we replace Vby its expression in 
terms ofA,, (20b). We also consider systems with identical 
surface energies a,, = aLB for which we have 6, = = 6 
and, according to (3c), 

ra=r/( I -qE) ,  r ? ' ~ / ? i E .  

Here y can be expressed in terms of A, [see ( 19b) 1. Here 

qE= (CBE-CLE) / (crE-caE) 
is the fraction of the a phase in the eutectic composition. In 
this case we find from (33) and (20b) 

M ( l  - q )  = q ( l  - q ) Q ( l  -q) /P(q) .  Expressions (34) 
and (35) were derived for the splitting of a f l  lamella. If a 
lamellae are splitting, then we can find the corresponding 
expression for a, from (34) by replacing by 6, and re- 
placing qo by 1 - qO; we find an equation for A, from (35) 
by replacing A, by 1 - % and by replacing qE by 1 - 7,. 

Solving Eq. (35) and Eqs. (27)-(29) simultaneously in 
the low-noise-level limit determines the mean period of the 
structure, A,, and that value ofthis period (A, ) at which the 
lamellae split in this structure. 

a. For a solution of type (27), A, is the larger of the 
roots of the quadratic equation 

i2Has 
+16M+8H + -- 8qo=O, 

sin 0 

b. For a solution of type (281, we have 

2M-H 
A 0 4  +' 

qo+3Hae/2 sin 8 ' 

c. For a solution of type (29) we have 

Ao=l + fI+3Hae/2 sin 0 
, & = ~ A o  and 2<.4*<3. 

2M-vo 

Here 

and M =  M(  1 - 7,). Figure 4 shows some results calculated 
from these expressions. The curves of A, and A, versus 7 in 
Fig. 4, a and b, are symmetric with respect to the composi- 
tion q = 0.5. In the case of the alloys of the eutectic composi- 
tion q, = qE (Fig. 4a), a lamellae split at 0 < ~ ~ 0 . 5 ,  whilep 
lamellae split at 0.5 < qE < 1. In the case of the symmetric 
eutectic, qE = 0.5 (Fig. 4b), B lamella split at 0 < 7, < 0.5, 
and a lamellae at 0.5 < 7, < 1. 

For the eutectic with 7, = 0.2 (Fig. 4c), 0 lamellae 
split at 0 < q, < 0.15, and a lamella at 0.15 < 7, < 1. 

C. Efect of the noise level. At a nonzero noise level, two 
important effects arise. First, all of the sharp transitions (the 
changes in slope and jumps in Fig. 4 )  from one growth re- 
gime to another become smeared out. Second, as the noise 
increases or (equivalently) as the variance in the thicknesses 
of the lamellae increases, the mean structural period A, de- 
creases. Figure 5 shows the results of a numerical calculation 
of A, and A, as functions of the variance of the structure for 
the eutectic composition 7, = qE = 0.38, which corre- 
sponds to the Pb-Sn system. 

To find the three quantities A,, A,, and the variance for 
a given B, we make use of the following: 

1)  The continuity condition for the distribution func- 
tion (25) with A = Ad/2. 

2)  The definition of A,, 
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(under these two conditions, the relation 
00 w 

in fact becomes a consequence of the Fokker-Planck equa- 
tion). 

3) Equation (35), which determines the stability 
boundary A,. 

In calculating the potential U(A) and the growth rate 
V( A), we use the general relations (20a) and (20b). At high 
temperatures ( B -  ), we can ignore in Eq. (21 ) the term 
containing A. It then becomes a simple matter to find ana- 
lytically that the variance tends toward a finite limit 
( (A - h,)')/Ai = 116, and we have A, = Ad/2. For the 
system under consideration here (Fig. 5),  this limiting value 
is A, = 3.4. 

DISCUSSION 

We have used the long-wave approximation to describe 
the dynamic evolution of the structure. This approximation 
is clearly an imperfect representation of the actual situation 
since, at least immediately after the splitting or collapse of a 
lamella, the distortions of the structure are not long-wave 

FIG. 5. A, (solid line) and A, (dashed line) versus the variance in the 
periods of the structure for v0 = r]= = 0.38(uL, = uw and 
8, = 8, = 7r/6). 

FIG. 4. The mean lamellar spacing A, and the distance at 
which a lamella splits, Ad, versus qo, which is the fraction of 
the a phase in the crystallizing structure. These results were 
found for equal surface energies, uLa = uLB, with 
8, = BB = 7r/6. Solid curves-Ao; dashed curves-Ad. a: 
q0 = vE. Throughout the region 0 <v, <0.5, a lamellae 
split, and the case shown in Fig. 3a prevails. b: qE = 0.5. 
Throughout the region 0 < q, < 0.5,P lamellae split. As 7, 
increases, the cases shown in Fig. 3 occur in the order c, b, a. 
c: qE = 0.2. In the region 0 < q, <0.15, lamellae split, 
while at 0.15 < r]  < 1 the a lamellae split. On the right side of 
the figure there are two regions of 7, with two solutions. 

distortions. On the other hand, the net role of the appearance 
and disappearance processes reduces to one of decreasing or 
increasing the period of the eutectic structure. In other 
words, the net role is ultimately one of causing long-wave 
changes in the structure. The "short-wave" splitting events, 
on the other hand, are dealt with by introducing a source in 
the Fokker-Planck equation. 

In contrast with Ref. 9, we have not considered any 
curvature of the macroscopic front. It follows from the lin- 
ear stability analysis in Ref. 11 that the curvature of the 
macroscopic front can be ignored if kA ) 8,. Since we have 
8, - aaS/oLs, in systems with a,, )a, the long-wave ap- 
proximation has a wide range of applicability, 1 ) kA ) e,, at 
a plane macroscopic front. Since the macroscopic front re- 
mains planar in our approximation, we have used no addi- 
tional assumptions of any sort regarding the perpendicular 
orientation of the lamellae with respect to the line of the 
macroscopic front. In this regard our study stands in con- 
trast with Ref. 9. There are experimental indications, shown 
in Fig. 5 of Ref. 8, that the macroscopic front does remain 
planar, despite the large scatter in the sizes of the lamellae. 

KirkaIdys concluded from considerations of the stabil- 
ity of a structure with regard to perturbations of a certain 
type that the structure which is selected is that which corre- 
sponds to the inflection point on the V(A) curve. For the 
function V(A) in (19a), that result agrees with our univer- 
sal result (30): A, = 3. This agreement, however, should be 
judged fortuitous, since the physical reasoning is different. 
According to our reasoning, this result corresponds to the 
condition V(A) = V(A0/2), and it does not coincide with 
the inflection point for a more general function V( A). 

We have been studying the growth of a eutectic struc- 
ture under isothermal conditions here. Essentially all of the 
results, however, can be extended to the case of growth in a 
temperature gradient, provided that the temperature drop 
over a length scale A, is much smaller than the supercooling 
required for the growth at the given velocity V and at the 
given lamella size&. This condition usually holds quite well. 
In this case Eq. (19a) determines the supersaturation 
AC= C,, - Cu (and thus the supercooling). During 
growth in a temperature gradient, the mean size of the lamel- 
lae which emerges as a result of the selection processes can be 
expressed more conveniently in terms of the characteristic 
dimension corresponding to the minimum of the supersatur- 
ation AC(A) from ( 19a) at a given growth velocity V, rather 
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than in terms of the size A,. This switch is made with the 
formula 

h,lh,= (aolh,-1) ". (36) 

The universal low-temperature result A, = 3Ac from the 
isothermal case thus takes the following form in the case of a 
temperature gradient: 

This analysis shows that the mean value A, which 
emerges as a result of the selection can lie anywhere in a 
certain interval of values, depending on the particular model 
used for the splitting of the lamellae. The upper boundary of 
this interval corresponds to the splitting of lamellae at 
A = A,, i.e., at the point at which the front of the lamellae 
becomes unstable. In this case there is a very large increase in 
the supersaturation at a concave section of the front, and the 
barrier for the thermal-fluctuation nucleation of lamellae es- 
sentially disappears. Values of A, corresponding to this up- 
per boundary are shown in Fig. 4. In principle, splitting can 
also occur at smaller values of A, as a result of thermal- 
fluctuation nucleation; the result would be to reduce A,. The 
minimum value of A, is reached when the splitting of the 
lamellae occurs not near the point of instability but near the 
mean value A,. This case corresponds to result (30) : A, = 3. 
For the Pb-Sn eutectic with 7, = 17, = 0.38, for example, 
we find 3<A,,/A, ~ 5 . 8 4 ;  according to (36), this interval 
leads to 21'2<Ao/A, ~2 .20 .  To compare this theoretical re- 
sult with experimental data, we used data on the crystalliza- 
tion of a eutectic in thin films from Ref. 12. From Fig. 10 of 
that paper we found values ofAo and V. The values ofAm for 

various values of V can be found from the formula 
Am = 4.82. v -'I2 (A is in centimeters and V in centi- 
meters per second), which follows from experimental re- 
s u l t ~ . ' ~  The values found for &/Arn in different experiments 
differ widely; they fall in the interval 1.2-2.0. Significantly, 
the structures studied in those experiments were essentially 
defect-free; i.e., the fluctuation level was low. In such a situa- 
tion the selection process may take a rather long time, and 
the observed structures may not correspond to the final 
steady state. If a selection process does not have time to oc- 
cur, the structures which result may have periods which lie 
between two stability 1 <&/Am 5 4. 
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