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The mobility of strongly-coupled polarons is investigated in conducting polymers and other 
quasi-one-dimensional conductors. Interaction of electrons with optical phonons is treated, 
taking into account dispersion of the optical phonons; the mobility of polarons is also analyzed 
in three-dimensional crystals, again including in the analysis optical phonon dispersion. The 
spectrum of acoustic polarons is studied in one-dimensional conductors. 

1. INTRODUCTION 

Recently there has been a notable growth in interest in 
the theory of one-dimensional polar on^,"'^ in conjunction 
with intensive experimental investigation of the electric, 
magnetic and optical properties of quasi-one-dimensional 
organic semiconductors and conducting polymers1-" with 
strong electron-phonon The foundation of this 
theory was laid in the papers of Rashbal' and Holstein19 (see 
also the review in Ref. 20). This new interest is a conse- 
quence both of the interesting experimental data on the 
properties of polarons in conducting and of 
the possibility of finding exact solutions to a whole range of 
polaron  problem^.^-'^ Among the most interesting theoreti- 
cal results obtained in this area, we should mention results 
on autolocalization of an electron in a Peierls diele~tric,~-' 
on bound states of a polaron plus phonons,'* on the spectra 
of acoustic polarons9,'4-'6 and on bound states of two polar- 
o ~ s . ' , ' ~  

The great progress made in the theory of such states6-l7 
allow us to explain a number of important experimental re- 
sults related to magnetic and optical properties of polyacety- 
lene (CH), 22 and other conducting polymers14 by invok- 
ing polaron and soliton At this time, the mobility 
p has not been calculated, nor has its high value ( ,LL - 10-lo2 
cm2/V-sec) in (CH), 1-4323324) been explained; note that p 
can reach values - lo4-lo5 cm2/V-sec in polydiacetylene 
(PDA).'l Some estimates for p were made in Refs. 11, 15- 
17; however, as we show below, they are qualitative in char- 
acter and have limited ranges of applicability. 

The effective dimensionless constant a which charac- 
terizes the interaction of electrons with phonons in polymers 
of polyacetylene type is fairly large: az4-5,25,26 while in 
polydiacetylene it can reach 12." Therefore, the strong-cou- 
pling approximation a ,  1 is applicable in these compounds, 
a situation which is encountered relatively rarely in three- 
dimensional semiconductors and ionic crystals. This is relat- 
ed to the fact that the criterion for strong coupling in the one- 
dimensional case is a > 2, which is much weaker than the 
criterion a > 6 in the three-dimensional case." 

In the present paper, the mobility ,LL is calculated for 
strongly-coupled polarons in one-dimensional conductors, 
and also in three-dimensional ionic crystals. The interaction 
of electrons with optical phonons is investigated, along with 
the energy spectrum E (  p )  for one-dimensional strongly- 
coupled acoustic polarons; this spectrum possess a charac- 
teristic saturation velocity u (  p )  which for large momenta 

p-  UJ is close to the sound velocity s, a feature which is 
typical of all acoustic polar on^^'.^^ ("condensons" in the 
terminology of Deigen and PekarZ9). A similar saturation 
effect in the velocity of current carriers is observed in a num- 
ber of conducting p ~ l y r n e r s , ~ ' . ~ ~  molecular crystals and oth- 
er organic corn pound^.^'-^^ The asymptotic behavior of 
E ( p )  and v ( p )  forp b a2ms (m-electron mass) in the case 
of three dimensional piezopolarons was evaluated by Volo- 
vik and Ede1'~htein~~: 

In the one-dimensional case the spectrum of an acoustic 
polaron in the presence of a deformation interaction with 
one-dimensional acoustic phonons was evaluated by Whit- 
field and Shaw. l4 

The correct general approach to the mobility problem 
for strongly-coupled polarons in three-dimensional systems 
was developed in the papers of Volovik, Mel'nikov and 
~ d e l ' s h t e i n . ~ ~ - ~ ~  In the present paper, this method is used to 
calculate the polaron mobility in one-dimensional systems. 
As will be shown below, in calculating ,LL for a one-dimen- 
sional system it is necessary to take into account the disper- 
sion of optical phonons, which usually is not considered in 
polaron theories." 

This effect also turns out to be extremely important in 
the case of three-dimensional crystals, where taking into ac- 
count phonon dispersion significantly simplifies the calcula- 
tion of p and leads to a marked change in the low-tempera- 
ture asymptotic behavior of p ( T )  in comparison with the. 
results of Volovik, Mel'nikov and Edel'shtein3': 

where w, is the phonon frequency. 

2. INTERACTION WITH OPTICAL PHONONS 

The Hamiltonian for the interaction of electrons with 
phonons in units f i  = m = 1 takes the form 
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where Q, is a phonon coordinate and P, = - id /dQ, is a 
quantity which is canonically conjugate to Q, , and which 
plays the role of a momentum. An analysis of experimental 
data on lattice heat capacities39 shows that both one- and 
three-dimensional modes are present in one-dimensional 
polymer chains; hence the sum over k in the Hamiltonian 
( 3 ) is three-dimensional. 

In this section we will investigate the interaction 
between electrons and optical phonons in quasi-one-dimen- 
sional organic compounds. There are two basic types of 
optical phonon modes in the vibrational spectra of such sys- 
t e m ~ ~ ' ~ ~ :  intramolecular vibrations which have very small 
dispersion A(k) (o, z o o ,  and intermolecular vibrations 
which possess significant dispersion wo(kx ) along the 
chains. Since in the continuum approximation which is 
usually employed in polaron theories2' the quantity Ak, is 
much smaller than the Bragg momentum k,, at low tem- 
peratures we can make use of a quadratic expansion for 
wo(k,) near its minimum, which can be attained at 
k, = ko-k, 41 

In the case of intramolecular modes with very small d i s~er -  
sion A(k),  we can neglect the dependence of w, on k, by 
virtue of the smallness of k, compared to k, and for T 2 A 
take into account only the transverse dispersion A (k, ) . For 
the simplest case,4' which gives a good description of the 
phonon spectrum in organic compounds,42 this spectrum 
takes the form 

ma (k)  =mo+Ai ( C O S  kr+cos k,) , A l e @ o .  (5)  

Here the transverse periods of the lattice satisfy a, = a, = 1, 
while the quantity A, can have either sign. 

The effective constant V ,  depends weakly on k for the 
case of non-polar interactions, and is connected with a (in 
units in which oo = 1 ) by the relation 

For the case of polar interactions, which can occur in ion- 
radical compounds such as TCNQ salts,I4 V ,  has a singular- 
ity at small k 20343: 

Here and henceforth we set the crystal volume R = 1; i.,, i., 
are the dielectric permittivities at low and high frequencies. 

In all cases, the function w,(k) is slowly varying for 
k, 4 k, , and we can neglect its k-dependence in calculating 
the polaron spectrum. As was shown by Pekar,43 in the 
strong-coupling limit a % 1 the effective number of phonons 
participating in the creation of a polaron is given by 
N-a2% 1, SO that to lowest order in a-' the phonons can be 
treated classically. Minimizing the Hamiltonian H in(3) 
with respect to Q, , we obtain 

Here, 11, (x )  are the wave eigenfunctions of an electron in 
the polaron well, which are determined by the minimum of 
the Hamiltonian for Q , = Q E (8  ), while for the corre- 
sponding eigenvalues of an electron in the well we find that 
E ,  -a2 B 1. 12.201363X*43 The renormalization of the polaron 
mass M * is determined from the equilibrium of Q;, and 
takes the form12.20.36-38.43 

K =x k 2 Q k o Q - k a .  (91 
k 

For the case of the contact interaction ( 6 ) ,  the ground state 
of Ho and the quantities E ,  , 11, (l) in units l = a x  and 
E,  = a2Zn take the 

where 

In this case there is only one level E,, in the polaron well, 
and the continuous-spectrum wave function t+hp (6) contains 
no scattered wave. This is connected with the reflectionless 
character of the potential 441; (l) = 2 chK2 ({).44 The 
quantities v,,, ( k )  have the form 

The quantities M * = 8a4/15 and H, = - a2/6 contain nu- 
merical coefficients which are larger than their analogues in 
the three-dimensional c a ~ e , ~ ~ . ~ '  for which M * =: 0.023a4 and 
Hoz - 0.1 l a 2  [here we must also take into account the fac- 
tor 2'12, introduced for convenience into the definition of a ,  
(6)  1. From the formulae obtained for H, and M * it follows 
that in the one-dimensional case the region of applicability of 
the strong-coupling approximation begins at a > 2 and not at 
a > 6 as in the three-dimensional case.20 

3. SCATTERING OF POLARONS 

Calculation of the mobility p is one of the most difficult 
problems in polaron theory (see the review in Ref. 20). The 
correct method of solving it was developed by Volovik, 
Mel'nikov, and Edel'~htein."-~"n their papers, with the 
help of either the transformations of Bogolyubov and 
Tyablikov4' and Lee, Low, and Pines4' or the Feynman path 
integral method,47 they carried out a separation of the cen- 
ter-of-gravity coordinate of the polaron in the Hamiltonian 
and derived terms which describe its scattering. For small 
velocities u < a - '  and neglecting recoil effects, the effective 
Hamiltonian which describes phonon-polaron scattering 
takes the 
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Here Zi, = w, - kv, v = p/M * is the polaron velocity; the 
Born amplitude for two-phonon scattering V,,, is expressed 
in terms of the quantities v,, ( k )  given in Eq. (8)  by 

The Doppler shift in the phonon frequencies w, -65, is 
caused by the transformation to the center-of-gravity system 
of the polaron. It can be included in the original Hamilto- 
nian (3)  by a transformation to a comoving reference frame 
moving with velocity v. For values of v-a-' 4 1 which are 
not too small, this leads to a dependence of E,  and M * on 
velocity. This dependence was investigated by Davydov and 
Enol'ski for the case of a three-dimensional ionic crystal. 

The case of dispersionless optical phonons w, = oo was 
investigated in Refs. 36-38; however, the derivation of the 
Hamiltonian ( 13) does not depend on this, as follows from 
analogous results on the p iez~polaron .~~ 

In the Hamiltonian ( 13 ) terms have been eliminated 
which describe one-phonon emission and absorption 
processes. For temperatures T 4 a 2  these processes are ac- 
companied by large momentum transfers k, 
)a[k, - ~ * ' / ~ - a ~ f o r  T 5  1 and k, - ( M * / T ) ' / ~ $ ~  for 
1 5 T4(r2]. Therefore they give an exponentially small con- 
tribution to the amplitude of one-photon scattering 

and can be d i s ~ a r d e d . ~ ~ , ~ '  In the case of the contact interac- 
tion (6)  co = 71/2 and therefore the probability of one- 
phonon processes I W0I2 contains a numerically small factor - lop3 even for a = 2. Therefore, for all a > 2 we can limit 
ourselves to terms quadratic in the phonon operators b , , b ,+ 
for the Hamiltonian ( 13), which describe "Compton-like" 
scattering processes. The equation for the full amplitude 
Wkxk: for such phonon scattering processes by the heavy 

polaron has the 

For T <  1 the mobilityp is determined by a kinetic equation, 
which has the Fokker-Planck form due to the large polaron 
massM * and small momentum transfers k, <p  - ( M  * T) 'I2 

(Refs. 36-38) : 

The coefficient B is expressed through the amplitude WkVk, 
" - 

and the Planck form of the phonon occupation number N, 
(N, -exp( - 1/T) for T <  1): 

The mobility p in weak fields E < E, - ~p~ is determined by 
the quantity B according t o p  = eT/B. 

4. POLARON MOBILITY IN ONE-DIMENSIONAL 
CONDUCTORS 

The basic mechanism of interaction between electrons 
and optical phonons in conducting polymers is the contact 
interaction (6).  In the case of intermolecular vibrations (4)  

the quantity Mo-10-102m 42 is small compared to 
M * - 102m for a > 3. Therefore for low temperatures T g  1 
the magnitude of thermal-induced fluctuations in the 
phonon momentum Ak, - (TMo)'12 is small compared to 
the polaron momentump- ( TM *)  'I2. This ensures the cor- 
rectness of the Fokker-Planck expansion (16). In the case 
ko-k, we can make use of the asymptotic expansion38 for 
V,,, at large momenta k, ,k : =: k, % a : 

4a k,- k,' 
k,-k,' -a<k,, k,'. 

Neglecting terms Ak, v 4 Ak /Mo in Go (k, ), we reduce 
( 15) to an equation for elastic scattering49 of quantized par- 
ticles with effective mass M0/2 in a potential U(<) 
= [2$o(S)/ko]2. This Schroedinger equation with $,(S) 

given by (11) can be solved exactly,44 and Wkx,, for 

k : = Mov - k, =: - k, has the form 

wkx, - k x = ( l + ~ h Z  nEElch2 % ) - I ,  x='12n (-1+16M0/k0~)'"-l. 

(19) 
The mobility p ( T) = poyn ( T) for T< To = a2/Mo < 1 is de- 
termined in the usual units by the relations 

It contains the small parameter am/Mo< 1 and differs from 
expression (2)  by a pre-exponential temperature-dependent 
factor in the three-dimensional case. In the temperature re- 
gime To< T< 1 the quantity p is described by formula (2),  
while the numerical coefficient yo depends on the parameter 
X-1 (19): 

m 

yO=n3//4, (x) ,  f ,  (x) = ch4 X S  h d k ( e h  Zk + c l2x) - l .  
0 (21) 

For x = 0, we have f, (0)  ~ 0 . 0 7 3  and yo=: 106, while for 
x % 1 we have f, ( x )  =:x2/8 and yo-- 2r3/x2. The condition 
To< 1 is not restrictive, and is necessary only to determine 
the numerical coefficients. Therefore in real systems with 
a = 5 and Mo = 50m, the quantity To = 0.5 is not too small 
and we can assume it is of order unity. For these values of the 
parameters T- To-wo, Eq. (21 ) for k = Mooo gives 
p -po - lo2 cm2/V-sec, while Eq. (20) gives a smaller esti- 
mate-p -0. lpo- 10 cm2/V-sec. The quantity Mo was esti- 
mated for the values a = 5, w, = 0.01 eV and m = O.lm, 
(m, is the free electron mass) appropriate to (CH), ( ~ e f .  
25). 

In the case ko = 0, the characteristic values k ,  ,k : 5 a 
for T 5  To, and we cannot use the asymptotic expansion 
(18). This complicates the solution of the scattering prob- 
lem due to the nonlocal potential U(l,{') whose Fourier 
transform is Vkxk, ( 14). Therefore, in order to calculate p 

for T< To we make use of a simpler method to solve equation 
(15), analogous to the procedure used by Volovik and 
Ede1'~htein~~ for the piezopolaron problem. 

For T<  To the thermal momenta k,, k for phonons 
are small compared to k :-a, and to lowest order in these 
small quantities we have Gk , =: 1. We use the expansion ( 14) 

of VkXk: for k, , k : < 1 in this region, 
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and the well-known identities which connect Vkx,, and Q : 
(Refs. 36, 45): 

to obtain the following solution for W, , , to lowest order in 
i X 

T/T,< 1: 

%,2 xco 
W,  x k ;  =2EXkzf (Q,O=/QOO) - -. 

Mo a 

Substituting the solution (24) into equation ( 15) reduces its 
right-hand side to zero tolowest order in T/T,; its left side is 
of the same order as a consequence of the conditions 
k;/M,-T4T041. Using Eqs. (17), (24) we obtain the 
following expression for p: 

For the same parameter values and T-a, we obtain the 
somewhat smaller estimate p - 10-2p,- 1 cm2/V-sec. It is 
necessary to take into account the fact that, due to the pres- 
ence of the exponential factor ewolT and the temperature- 
dependent coefficient in Eq. (25), this estimate will increase 
rapidly for T<o,; for T = w0/2 it givesp -0. lpO- 10 cm2/ 
V-sec. 

In the case of small longitudinal dispersion (5)  we can 
make use of the method employed in Ref. 38 for dispersion- 
less optical phonons. In the integrals over k, , k :, ( 17), as 
will be shown below, large k, , k : )a are present with small 
transfer (k, - k : -a, and we can use the asymptotic ex- 
pansion ( 18) for Vkx,,. Carrying out a Fourier transform in 

k, - fc : in equation ( 15 ) and introducing the correspond- 
ing variables 2 and function g(f ,k : ), 

we obtain in the units a = 1 [cf. Eq. ( 11 ) ] the equation 

The quantity B in ( 17) is connected with g by the relation 
m 

Separating the modulus and phase of the function g, 

and - using the asymptotic expression (18) for V(2, 
k : - id /a%), we obtain the following equation for a and x 

From equation (3  1 ) it follows that a(  + w ,I%: ) 

= a ( - , fc : ) = 1 and the mobility ,u are expressed entire- 
ly in terms of the function X: 

where 

The function x(<) is found from equation ( 30) : 
m 

For << 1 the function x(<) a < ,  while for <> 1 it is propor- 
tional to < ' I 3 .  The value of the numerical coefficient 
C ,  ~ 2 1 . 5  determines the value of y in formula (32). Along 
with numerical factors, y contains the large nonnumerical 
parameter ( w,/aA, ) % 1. This is related to the fact that for 
very small values of the dispersion A, -0, the forward scat- 
tering in one-dimensional systems is purely elastic and gives 
no contribution to the mobility ,u. Its value in this limiting 
case is determined by the exponentially small backward scat- 
tering, p -' cc e - 2ffp/a < 1 for T%aP2.  In real systems, the 
quantity A, -O.lw, and the parameter (wo/aA1 ) 2  are not 
very large. Therefore, for a = 5 we have y - 1 and for T-w, 
the mobility satisfies p -,u,- lo2 cm2/V-sec. 

For weak dispersion, the characteristic k, - a T  - ' I 6  is 
small compared top -a2T 'I2 for a-312 < T< 1. Because of 
these small powers of T the region of applicability of results 
in these limits is appreciably reduced. In connection with 
this it is necessary to emphasize the wider region of applica- 
bility of Eqs. !20), (21 ), (25). We remark that estimates of 
the value of p based on Eqs. (20), (211, (25), (32) give 
reasonable values of mobility which agree with experiments 
on (CH), .'4323.24 This confirms the correctness of the mod- 
el used to describe the kinetics of electrons in conducting 
polymers. 

In conclusion, we note that an estimate of the contribu- 
tion of one-phonon emission and absorption processes to the 
mobility p in the absence of phonon dispersion was made by 
Holstein." This estimate coincides with our results for these 
processes and leads to p a em.  These processes, however, 
can only play a significant role when A, <a-1e-"/2, 
which even for a > 3 imposes too strong a limitation on the 
quantity A,, and which is in poor agreement with estimates 
of this parameter in real quasi-one-dimensional conduc- 
tors.5,6,25,40,42 

We remark that for low temperatures T <  w, the value 
of the dispersion A, is assumed to be rather large compared 
to the probability of polaron scattering per unit time 
r - ' -  T 2/Bv2<Al. This ensures enough inelasticity in the 
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scattering to eliminate effects of localization for electron 
scattering by dispersionless phonons.50*51 

5. POLAR INTERACTIONS 

The polar interaction (7)  is apparently absent in con- 
ducting polymers; however, it can arise in ion-radical com- 
pounds similar to the TCNQ salts.I4 

An estimate of the quantity Vkk, in this case give 
V,,. 5 a-2 < 1 according to Eqs. (8)  and ( 14), and the inte- 
gral terms in Eq. (15) turn out to be small, at least when 
T B ~ - ~ .  Therefore, for Wkk, the Born approximation Wkk. 
= Vkk, is correct. In the case of large longitudinal dispersion 
(4),  the condition T s a p 2  implies that the Born approxima- 
tion is correct for all temperatures T < 1. When we consider 
large ko-k, $a ,  we can use the asymptotic value (18) of 
= Vfpr large k, k ' - k,,. For T< To we obtain the following 

expression for p :  

y = p o y n ( T ) ,  y=(16x)-'(ko2/Mooo)4(Molm)2, 

I L  ( T )  =emoIT. (35) 
From this expression, for the parameter values y- 10 and 
for T-w,, we havep- lopo- lo3 cm2/V-sec. This estimate 
is somewhat higher than for the case of the contact interac- 
tion, and points to the ineffectiveness of this sort of scatter- 
ing in quasi-one-dimensional conductors. 

In the case ko = 0, for T< T, we can use the expansion 
of Vkk8 for small k, k ' -  (MoT)''2<a. Since there are no 
exact expressions for the wave functions $, ( x )  for the case 
of polar interactions, there remains an undetermined nu- 
merical coefficient of order unity in this asymptotic expan- 
sion. Therefore, we can obtain an order-of-magnitude esti- 
mate for p :  

From this expression, for a - 10 and M, - 102m in the region 
T-w,, we obtain forp the estimatep -po- lo2 cm2/V-sec. 
In the case To< T <  1 the estimate forp turns out to be even 
simpler: y -a2m/Mo, n ( T) = no( T) and for T-w, we ob- 
tain an estimate forp of the same order of magnitude. In the 
case of small dispersion the value of p can be found up to a 
numerical factor in accuracy: 

Therefore, for a - 10 and A, - 0. lw,, we have y - 1 and for 
T-w, the mobility satisfies p-po- lo2 cm2/V-sec. Thus, 
estimates of p for the polarization interaction overestimate 
the mobility, comparable to the maximum value p - lo2 
cm2/V-sec in TTF-TCNQ (Ref. 52). We note, however, 
that in certain cases [see e.g. (37) ] the simplest estimates of 
the mobility coefficient in the expression for p lead to a de- 
crease in mobility by a factor of one to two orders of magni- 
tude. The values ofp obtained in this way are - 1-10 cm2/V- 
sec, and agree better with the well-known value ofp - 1 cm2/ 
V-sec in conducting TCNQ salts at room t empera t~ re .~~~"  
These overestimated values of mobility point to the relative 
ineffectiveness of electron scattering by polar optical phon- 
ons in quasi-one-dimensional organic conductors. 

6. POLARON MOBILITY IN THREE-DIMENSIONAL 
CRYSTALS 

As was shown in the previous sections, in one-dimen- 
sional conductors the phonon dispersion plays a significant 

role in calculating the mobility. These effects are also impor- 
tant in three-dimensional crystals in which the magnitude of 
the optical phonon dispersion is not  mall.^' Including it 
leads to changes in the expression for p, and simplfies the 
problem of polaron scattering by phonons. In many cases 
this allows us to solve the mobility problem completely and 
find the numerical coefficients, which cannot be done for the 
case of dispersionless phonon models.38 

In the papers by Volovik, Mel'nikov, and 
Edel '~h te in~~-~ '  the effective Hamiltonian ( 13), ( 14) was 
obtained for scattering of polarons by photons. The mobility 
p was described by an equation of Fokker-Planck type ( 16), 
while the two-phonon scattering amplitude Wkk. for a po- 
laron satisfied the three-dimensional equation (15). The 
general solution of these equations remains unknown, even 
when optical-phonon dispersion is taken into account 

In this section we will calculate p for the case of large 
phonon dispersion Mo 4 M * - a4m. In the strong-coupling 
case a =  10, this condition is usually fulfilled, since4' 
Mo- 102m. As an exmple we consider the crystal NaCl, in 
which a = 8, M * - 300m (Ref. 20), while the quantity 
M o z  30m (Ref. 54). In crystals with the NaCl type of simple 
cubic lattice, there are optical modes with ko = 0 and 
ko- k, ; therefore we investigate both cases. 

In the first case, for T<  To-a2/Mo the thermal phonon 
momentum k- is small compared to a and to 
p - ( M  * T) 'I2.  Therefore the mobility p is described by the 
three-dimensional Fokker-Planck equation, while we can 
expand the quantity Vkk, in the first term of the three-dimen- 
sional equation ( 15 ) in k, k ' <a 

(22 (kk ' )  Vkk, w - - (22-1. 

a3 kk' ' 

In addition, we can neglect the small k ' < k " -a in the de- 
nominator of the second term and use the three-dimensional 
identities (23). As a result, we obtain to lowest order in T /  
To 4 1 and To< 1 a solution for Wkk, : 

analogous to formula (24). The equilibrium phonon coordi- 
nate Q is determined by the three-dimensional equations 
(8) .  Substituting this expression for Wkk, in Eq. ( 17), we 
obtain for p 

This expression differs3' from Eq. (2)  by the functions y ( a )  
and n (T) .  We note that in Eq. (40) these functions are 
grouped into a large factor ( T,/T)4 > 1; however, for a z 10 
and T-w, this factor turns out to be rather small. We should 
emphasize that expression (40) is correct for all tempera- 
tures T <  To and does not involve any lower bounds of the 
type ap2< T< 1 which might restrict the region over which 
formula (2)  is accurate at low  temperature^.^^ 

In the case ko- k, we can use an asymptotic expansion 
of the type (18) for Vkk, when k, k ' -k , sa .  An estimate of 
the integral term in the three-dimensional equation ( 15 ) 
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shows that it is small when a2/Mo< 1 and a/k,< 1, and 
therefore for 

the Born approximation is correct. The finale expression for 
p has the form 

In this case k -M@, and y - 1. Thus, the expression for p 
(41 ) differs from Eq. (2 )  (Ref. 38) only by the temperature- 
dependent factor n(T)/n,(T) = (w, /T)~.  We note that the 
smallness of the Born-approximation W,,. - a k  ; <ap3 
does not imply thatp  -p, for T-w,. This is explained by the 
fact that inclusion of the integral term in (15) leads to a 
decrease in the total amplitude W,,. < V,,., since only by 
virtue of this smallness can the small denominator in this 
term be canceled. Hence, the smallness of W,,, is balanced 
by the large phase volume in the integral over k, k' ( 17), and 
the non-numerical expression fo rp  when T-a, turns out to 
be the same as (2 ) ,  (4  1 ) . Usually, the case k, - k, is more 
often encountered in ionic  crystal^,^' and therefore formula 
(41 ) gives the most general expression for p .  

In conclusion, we note that for a=. 10, m zO. lm, and 
wozO.O1 eV, the quantity p-p, for T-w, amounts to lo2 
cm2/V-sec for all the cases (2) ,  (40), (41 ) in agreement 
with the experimental data for alkali-halide compounds.20 

7. INTERACTION WITH ACOUSTIC PHONONS 

The deformation interaction with one-dimensional 
acoustic p h ~ n o n s ~ ~ ' ~ ~ ' ~ - ' '  is an important mechanism which 
gives rise to formation of polaron states in quasi-one-dimen- 
sional organic conductors and conducting polymers."' 
These phonon modes are observed in experiments on the 
low-temperature lattice heat capacity of (CH), .39 

The Hamiltonian for the deformation interaction of an 
electron with one-dimensional acoustic phonons has the 
form (3)  if we substitute k-k,, w, = sJk,  1 and 
V ,  = Ik, 1 (as2w, ) ' I 2  The dimensionless interaction con- 
stant a is expressed through the deformation potential D, the 
mass M ,  of a unit cell and the lattice constant a:  

Substituting into (42) the typical values D = 3 eV, 
s = 1 0 ~ m / s e c ,  a = 1.4 A, M I  = 13 a.u. for ( C H ) , , 2 h e  
obtain a-4.  In the case of PDA," for D = 3.7 eV, 
s = 3.6X lo5 cm/sec, a = 4.9 A, M I  = 420 a.u. we have 
a=. 12. 

In order to calculate the acoustic polaron spectrum 
E ( p )  for any velocity u < s, we must transform to a reference 
frame moving with velocity u in the original Hamiltonian 
(3 ) .  This leads to a Doppler shift in the phonon frequency - w, -w, = w, - kv. The spectrum ~ ( p )  in such a system 
fo ra  % 1 is determined by the classical minimum of the Ham- 
iltonian (3)  and in units f i  = m = s = 1 has the form 

Here the momentump = M *u is determined by the effective 
mass M * given by (91, which because of the Doppler shift 
depends on u: 

The expressions (43), (44) so obtained determine E (  p )  and 
agree with the results of using the Lagrangian formali~rn.~' 

Minimizing the functional J with respect to $, leads to 
Eqs. ( lo) ,  ( 11 ), in which it is necessary to include the renor- 
malized interaction constant Zi = a / (  1 - u2). This leads to 
the well-known expressions for M * and J 14: 

For v -  1 the quantitypu-a2( 1 - u) - 3  is large compared to 
J - a 2 (  1 - U )  -', and therefore the polaron spectrum has a 
linear character, E (  p )  z p .  The asymptotic expressions for 
~ ( p )  and v( p )  = &/dp have the following forms in this 
limiting case: 

E (p) "p (2aZ/3p) 'IJ) , v ( I ) )  I-'/, (2aZ/3p) "', pBa2.  

(46) 
We note that the asymptotic values of ~ ( p )  and u (  p )  for 
p % a 2  are attained more slowly than for three-dimensional 
piezopolarons ( 1 ) .27 

As follows from Eq. (46),  u ( p )  - 1 asp + w , since only 
for u < 1 can the polaron well manage to move together with 
the electron. For velocities u > 1 there is no polaron state, 
which is obvious from Eq. (43) in which for u > 1 the inter- 
action changes sign. In this region a free electron state can 
exist with energy p2/2 for a given momentump. This state 
possesses a much higher energy for a given p than the po- 
laron; moreover, this difference grows rapidly asp increases, 
since forp  - w the polaron energy satisfies E (  p )  =.p <p2/2. 
Thus, for low phonon bath temperatures T 4 a 2 ,  free elec- 
trons will rapidly accumulate in the polaron well in a time on 
the order of an inverse phonon frequency. In the high-tem- 
perature case T 2  a2 ,  the polaron states can decay in a ther- 
mal fashion; however, because of their large energetic advan- 
tages 1/2p2-E( p)  2 T an electron will be found in the 
polaron well for an appreciable fraction of the time. 

In conclusion we note that because of the strong renor- 
malization E = a / ( l  - u2), the effective interaction con- 
stant i5 can become quite large as u - 1 even for a small bare 
a< 1. It is curious that in one-dimensional systems this effect 
turns out to be much stronger than in three-dimensional sys- 
t e m ~ , ~ '  where the renormalization has a logarithmic form. 

Saturation of the velocity u( p )  of an acoustic polaron 
asp-  w leads to a characteristic saturation of the drift ve- 
locity u, in strong electric fields E. This effect has been ob- 
served recently in polydiacetylene PDA2' and was analyzed 
in Ref. 55. 

8. CONCLUSION 

In the present paper we have investigated the mobilityp 
of polarons in one-dimensional conductors, and have shown 
that its characteristic value in polymer materials2'." agrees 
with the experimental data.'4,2's2',24 Let us note that the 
quantity p - lo2 cm2/V-sec 23.24 is found to be quite large, 
and in PDA2' it can reach 10' cm2/V-sec. The correspond- 
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ing mean free path is found to be quite sizable, and extends 
from 10Za in (CH), to 105a in PDA. In this connection a 
question arises as to the role of impurities in these systems, 
since their concentrations in doped (CH), can reach a few 
percent.I4 However, it is possible to show that at room tem- 
perature the scattering probability by impurities in (CH), is 
small, and does not seem to have any appreciable influence 
on the polaron mobility. 

As is well-known from x-ray data,14 the doping impur- 
ities in (CH), are located between polymer chains and in- 
teract with electrons via Coulomb's law. Therefore, the Born 
amplitude Wp for backscattering by these charged impuri- 
ties for a polaron with a thermal momentum 
z (M *T) ' I2 - k ,  for M * - 102m and T--, 300 "K can be 

quite small: - 

The quantity a ,  in (54) is half the spacing between chains 
a, = 4.4 A (Ref. 25), while the quantity p for T = 300 "K 
and M * = 8a4/15 = 500m ( a z 6 )  works out to be about 
0.7 X lo8 cm-' for m Therefore, pa, z 1.5, 
K0(3) ~ 0 . 0 3  56 and Wp - 10-'e2 <e2 for 2,- Thus, 
the inverse mean free path 1; ' relative to scattering by im- 
purities contains a small factor of order 10W4 in addition to 
the small concentration ci - lop2. For this reason the quan- 
tity li is quite large, and does not lead to Mott localization 
effects,50 which are suppressed at high temperatures 
T- 100 "K because of inelastic scattering by phonons. In the 
case of PDA, the impurity concentration ci - 10V5 is found 
to be extremely small,z1 due to the fact that this material 
polymerizes directly in the solid phase, and its crystals are 
dintinguished by their exceptionally high quality.2' 

The authors express their gratitude to S .  A. Brazovski, 
G. E. Volovik, V. I. Mel'nikov and E. I. Rashba for useful 
discussions of the results of this paper. 
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