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The long-wavelength approximation is used to analyze the way charges interact with the 
surface of a metal. The results obtained make it possible to identify the various reasons for 
changes in the image forces. It is shown that in discussing moving charges it is not sufficient to 
allow for the interaction with just longitudinal or transverse modes. A proof is given that 
surface Rydberg states are (like polarons) localized in all directions. 

1. INTRODUCTION 

The interaction of charged particles with the surface of 
a metal is of interest because it determines the characteristics 
of many important processes, particularly the laws govern- 
ing electron emission from a metal, electron diffraction,' and 
statistical and dynamic behavior of ions near the ~u r f ace .~  In 
recent years there has been considerable interest in observa- 
tions by the technique of inverse photoemission, and also 
two-photon photoemission from universal vacant surface 
Rydberg electron states on silver, nickel, copper, and some 
semiconductors, which are assumed to be confined by forces 
of the Coulomb For a long time the microscopic 
descriptions of the behavior of charges near a metal have 
been limited to the introduction of the image forces cut off in 
one way or another at atomic distances from the metal.' The 
need for such a cutoff which follows from general consider- 
ations, is confirmed also by an analysis of direct experi- 
m e n t ~ . ~  Recent investigations have required a fuller 
allowance for the way the properties of a metal affect the 
interaction with its surface than is possible with the use of 
classical image forces. A considerable stimulus for the devel- 
opment of a theory has been provided by a series of studies 
carried out on the assumption that the interaction of charges 
and dipoles with a metal reduces to the interaction with sur- 
face plasmons. Work of this kind carried out up to 1983 is 
reviewed by Schmeits and Lucas.' However, it is suggested 
in Ref. 8 that an analysis ofthe interactions only with surface 
plasmons without allowance for the bulk modes is incorrect. 
The important role played by bulk longitudinal modes is 
supported in Ref. 8 by the use in the calculations, on the one 
hand, of the general relativistic scheme for the quantization 
of an electromagnetic field with an indefinite metric and, on 
the other, of a very specific model of a metal. It would be 
desirable to check the conclusions reached in Ref. 8 by con- 
sidering a more general case and to extend them to the case of 
moving charges. 

The influence of the quantum nature of the motion of 
electrons near the surface requires special analysis because 
of contradictions in the published l i t e r a t ~ r e . ~ . ' ~  This prob- 
lem has become more urgent because of the need to describe 
the surface Rydberg states mentioned a b ~ v e . ~ . ~  

It is necessary to make clear the relationship between 
the contributions made by longitudinal and transverse 
modes, to the interaction between charges and a metal par- 
ticularly in the case of moving charges. This problem is relat- 
ed to objections against the use by some of the authors of the 
limit c+ co right from the beginning of the calculations. In 

some of the investigations (where retardation" is allowed 
for) the results predict, contrary to the conclusions reached 
in Ref. 12, departures from the usual expressions for the 
image forces, even in the case when a charge is at rest at large 
distances from the surface. It is not clear why only the inter- 
action with longitudinal modes is allowed for in some inves- 
tigations, whereas others allow only for the interaction with 
transverse modes, as is done for example in a recent paper. " 

The influence of the spatial dispersion has not yet been 
determined, although according to some  author^,^.'^ it can 
influence the interactions even when the charges are rela- 
tively far from the metal. 

It would be desirable to consider further the limitation 
on the long-wavelength approximation, which excludes the 
influence of short-wavelength modes or, more precisely, 
models it by means of a finite number of parameters. The 
corrections to the long-wavelength approximation used to 
describe the interaction of electrons with a metal at short 
distances, which are needed to allow for the exchange and 
correlation effects, have been considered frequently in the 
literature within the framework of the jellium model after 
the first studies (Ref. 15). In all such calculations (the more 
recent literature is cited in Ref. 16) only the influence of 
longitudinal modes (Coulomb interactions) has been al- 
lowed for, even when considering a moving electron. The 
proof that this restriction is unjustified within the frame- 
work of simple long-wavelength formalism, which allows 
analytic solution, means that corrections must be made to 
the calculations mentioned above. 

It follows from this discussion that it would be desirable 
to reconsider the interaction of charges with the surface of a 
metal. In the present case we consider a dynamic system 
with complex kinematics in the presence of spatial and tem- 
poral dispersion, and it seems to us that it is best to use the 
Lagrangian formulation based on the introduction of the ac- 
tion, but with integration with respect to the frequency w 
and not with respect to time. This action can be introduced 
either at T = 0 or under thermodynamic equilibrium condi- 
tions by going over to the Euclidean time (which varies from 
0 to T -I). We can then obtain an expression for the casual 
(at T = 0 )  and thermal Green's functions," which can be 
rewritten in terms of functional integrals. The most impor- 
tant quantities representing the response and distribution 
functions can be expressed in terms of these Green's func- 
tions. We shall consider only those problems which can be 
solved by means of functional integrals using simple shifts of 
the variables followed by calculation of Gaussian integrals. 
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There is no need then for the tedious writing down of the 
formulas with functional integrals: it is sufficient to consider 
only the action. The structure of the functional integrals is 
used only in the rules for choosing the contours of integra- 
tion with respect to w and for interpretation of the results. 

The main expression for the action is given in Sec. 2. An 
important feature of this expression is that it is given in terms 
of scalar dynamic variables that change over distances of the 
order of w/c, but are approximately constant over atomic 
distances. The expression for the action is used in Sec. 3 to 
consider various aspects of the interaction of charges with 
the surface of a metal and to analyze the reasons for the 
deviation in the image forces. In the last section (Conclu- 
sions) we shall summarize the physical consequences of the 
formulas derived and consider by way of example the prop- 
erties of surface Rydberg states. 

2. EXPRESSION FOR THE ACTION 

We assume that a metal occupies the left half-space 
x, < 0, whereas the right half-space contains a homogeneous 
structure-free insulator (vacuum) located at x, > I. At the 
distance I which is of the order of atomic dimensions there is 
a continuous transition from metal to an insulator. We shall 
assume that 1,s l<c/w,, where IF and w, are, respectively, 
the electron mean free path (coherence loss length) and the 
plasma frequency in the metal. We shall use the following 
expressions for the components of the action S, and S,,, 
corresponding respectively to a long-wavelength electro- 
magnetic field and its interaction with external charges: 

m +td 

- curl A*(o,x)curl A (o,  x) ), 
m+,a 

(1) 

where the identical indices i, j = 1, 2, 3 are understood to 
imply summation and the gauge is selected so that only the 
vector potential A, differs from zero. The choice of the con- 
tour of integration with respect to w below the real axis for 
w < 0 and above the axis for w > 0 corresponds to the condi- 
tion of the derivation of causal Green functions from the 
action. The spatial dispersion is usually allowed for in the 
literature by considering a longitudinal field. We shall there- 
fore represent E~ in the form 

where k, = id /ax,, E = E(w,x,) and the operator 
0 = 0(w,x3,k) are continuous functions of x,, which as- 
sumes that the following are constant: &, ( a ) ,  0, (w,k) when 
x, > I and E~ (W 1, f12 (w,k) when x, < 0. For simplicity, we 
shall consider only the case of cubic symmetry with the nor- 
mal to the surface coinciding with the symmetry axis. The 
averaging is carried out in the xl, = {x,,x,) plane, which is 
usually justified for values of c/w, much larger than the 
atomic dimensions. In writing down Eq. (2 ) ,  which includes 
a generalization of the expression for the longitudinal per- 
mittivity of the type &; ' = (&- '  +pk,  2 ) - '  described in a 

homogeneous medium, we have included only the plasma 
components in E ~ .  In a dynamic description of the behavior 
of additional charged fields (particles), which correspond to 
the components of the current ji, the expressions for S 
should include the action representing these particles. Simi- 
larly, additional inelastic processes may be allowed for." 
We can represent A(o,x) as follows: 

A(w, x) =E-'(o, x3) curl curlnu, ( o , ~ )  

+ curl na,(o, x)+grad a,(@, x) ,  (3 )  

where n is the normal to the surface; the scalars a , , , ,  de- 
scribe, respectively, thep- and s-polarized and longitudinal 
 wave^.^' In the case ofap-polarized wave we can use also the 
representation 

1 da, +---- I " ) a , + p d  -- . 
8 ((0, 24 axIlZ E (o, x,) ax, 

Substituting Eqs. (2)  and (3 )  in Eq. ( 1 ), and Fourier-ex- 
panding in terms of exp(ikll .xll ), we obtain 

1 da,' 
Sop -- ( ax, + a,.))}, 

Equation (5 )  is obtained using integration by parts and the 
conservation equation div j = - iwp. 

In the action ( 5 ) the fields are separable. When the 
boundaries of the metal are not planar and the specified sym- 
metry and/or homogeneity of E~ are not observed in a plane 
xll  in the region when x, <I, this separation is no longer 
possible and the waves a,,,, are coupled. This coupling can 
be included in our treatment employing perturbation theory 
in accordance with the scheme used in Ref. 18. Allowance 
for the dispersion in a longitudinal wave makes it possible to 
avoid the following complication. Without such an 
allowance the quantity wc-'a is not canonically conjugate 
and we are faced with the problem of a dynamic description 
of longitudinal waves which requires special measures. As 
pointed out earlier, this problem is solved in Ref. 8 by a 
relativistic formalism. In the nonrelativistic problem consid- 
ered here it is more natural to avoid this difficulty by intro- 
ducing in a suitable manner the dispersion, which can be 
given a relativistic meaning, or (in the case of vacuum) to go 
to the limit of zero dispersion at the end of calculations. 
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An important feature of the representation ( 3 )  and of c" 
the action described by Eq. ( 5) is that they are not affected ~ ( 2 :  KG: = 7 (KG:  -K(;: ), - 
by the simultaneous substitution 

wherex;,', ) are the solutions of the equations K,,, ) = 0 
1 dA 

ap(w, kll, xs) - tap  (w, kll, x3) +A, at+a~ - ---, ( n  = 1, 2, 3 ,4 )  which have the following form for x, > I: 
E dx3 

(+) - ,-) - 
if A = A(w,k,, ,x,) obeys the following equations which fol- X ( I ,  - ( E , ~ ~ ~ ) - " ~ ~ x P ( - ~ ~ ~ ~ ~ ) ,  X ( I )  - ( ~ ~ k ~ ~ ) - ' ~ ( e x p k ~ ~ x ~  

low from one another: - ( 1  P - 1 1 3  , x(::)= ( $1 "' exp(-kllx3), 

a" -'k 
We shall avoid this indeterminacy assuming that when a, is x(J:'= i (- - - ~ ~ - ! - k ~ ~ ~ )  ( E ~ ) ~ " ~ X ~  { i  ( ~ ~ ~ - k ~ ~ ~ ) " ' ~ ~ )  , 
expanded in terms of normal modes, there are no modes that c2 
would obey Eq. ( 6 )  and that the operator K, , ,  has a recipro- 

-% 
cal in the space offunctions under consideration. x(iy)= i (- y-l- kl12 ) ( ~ , ) ' ~ ~ ( e x p {  - i ( $ ~ ~ - k ~ ~ ) " * x ~ }  

It is important to note that in Eq. (5)  the interaction cZ c 
with the current j, is described only by a combination of 'I, (10) 

fields K,,, up, E-'da,/dx,, a,, and a, and in the frequency -a(3, ( 0 )  exp {i ($ e1-k,?) x3} , 
range w 5 w, of importance in the further treatment these -#I, 
fields change, on the basis of classical equations of motion, = i ( - k 2 )  exp {i (;el-kli2)'x.}, 
over distances which are large compared with the atomic c 

distances even when E~ has a discontinuity at x, = 0. This is x,:;) = i (- 0 c1+klt) -I1' ( exp{ - i( $ el-kl:) 'I' x3}  
one of the reasons why we can limit ourselves to the long- c 
wavelength approximation. 

3. EXPRESSIONS FOR THE INTERACTION OF CHARGES 
WITH A SURFACE 

We shall carry out the following canonical transforma- 
tion (shift) of Eq. (5 ) :  

4ne 1 
~P+.P + T 7 ~ b :  KG: [ Kt,) (jn) -iw -- 

k 11 

where the reciprocals of the operators represent the corre- 
sponding Green's functions. This transformation does not 
alter S, , whereas Sin, changes to 

-a(')  ( a )  exp { i  ($ Ei-kl;)" x3}) . 

In the regionx, > I all the properties ofthe metal occur in Eq. 
(9)  only via the coefficients3' a,, , = - a,,, , a,,, , and a ,,, 
introduced in the system (10) and representing response 
functions with analytic properties governed by the positions 
of the energy levels and thresholds, together with the condi- 
tion a,,, cc when Iw 1 2 %  o;. Therefore, the behavior of 
charges outside a metal can in principle be described using 
not the permittivity directly, but the characteristics of bulk 
and surface excitations. Then, the positions, residues, and 
widths of pole singularities are the parameters that represent 
the influence of a surface layer. This result is very general 
and Is independent of the assumed model representations. 

In the simplest case of a sharp boundary it follows from 
the conditions for matching of the solutions of the relevant 

~ + , d  equations at this boundary that 

E ~ ( O )  -BI(W) 
a(l)=-a(2) = 

~ ~ ( 0 )  +el ( 0 )  ' 
E~ ( 0 )  ( 0 2 ~ - 2 ~ 2  ( 0 )  -kpZ) 'I2-e2 ( a )  ( o ~ c - ~ E ~  (0 )  -kl12) " 

a , ~ )  = E~ (o) ( C O ~ C - ~ E ~ ( O )  -ki2) 'h+ez ( 0 )  ( 0 2 ~ - 2 e l  ( 0 )  -kllZ)' ' 

+ ( [ ~ I I ,  nlj) 'kll-2(~(L: [kll, nlj)  (w, k11,~t;) In the case of the charges and currents located in the 
region x, > I, substitution of Eqs. (9)  and (10) into Eq. (8)  

-C'P ' (~ ,  k ~ ~ .  ~ 3 )  ( [ x F ~ :  +Blp) (0 ,  kll, I.)}. (8 )  

The integral operators in Eq. (8)  can be represented as fol- e2n 
lows using the familiar expressions for the one-dimensional si::b - i- c2 
Green's functions: 
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In writing down Eq. ( 12) we have omitted from the integral 
the terms proportional to exp(x, - xi ) or those including 
only the local operators acting on j and p (for example, the 
operator K,) and corresponding to the expression for the 
self-interaction in an unbounded insulator. The main feature 
of Eq. ( 12) is that it does not contain dispersion ifB is a local 
(or quasilocal) operator. The term with dispersion is re- 
tained only if we consider the region x, 5 1. However, in this 
region the retention only of the electromagnetic interactions 
with external microscopic charges ceases to be realistic and 
we have to allow for the dynamic quantum interaction of 
such charges with electrons in a An interesting 
property of Eq. ( 12) is that a term which appears because of 
the coupling with a longitudinal wave exactly cancels with a 
part of the term proportional to K , , I ,  which appears be- 
cause of the coupling with a p  wave. This result can be inter- 
preted, ignoring the terms in Eq. ( 12) containing the current 
j, as the effective expression of the interaction of the charge 
density p at the surface with a scalar field a, which does not 
obey the Poisson equation - K ( ,  , a = 4np, but an equation 
with a term proportional to w2/c2. Therefore, the use of the 
Poisson equation can give a correct result only in the static or 
quasistatic case [when p(x,t)  varies slowly with time]. In 
this case when the attenuation in a metal is sufficiently 
strong, it follows from Eq. ( 12) that ifp(x,t) = p (x )  and if 
we employ S2(w) = S(w)Sdt / 2 ~ ,  we obtain the usual 
expression for the potential Ye" of the image forces 
[p(x)  =Oforx,<I]: 

We can describe the influence of particle motion on the 
interaction with a metal by considering the case of a point 
particle moving at an approximately constant velocity v 
when the attenuation is weak. We then can substitute in Eq. 
(12) 

p(t, X ) = ~ ' [ X - ~ ( t ) ] ,  x( t )=vt  for t>O, 

81=1, ~2=1-0p2/0~. 
(14) 

Retaining only the terms proportional to the square of the 
density and omitting in the subsequent expressions the terms 
proportional to ( v / c ) ~ ,  we obtain 

r f f  e2n S,,,! = - - 
(2n)  3  

J d o  dzkll dx, dxS1 dt dt' { e r p [ i o  (t- t ' )  ] 

- ezn --- ,J dt dt' d o  d2kll{ exp iot' exp i t l lv l l t f  
(2n)  

i [ g 2 / ~ Z - k l , 2 ]  '" 
X 

k,12 
exp (2i (oYc2-kl12) lhx3 ( t ) )  

eZ dzk1l 
= - Jdt dm - S ( k l ~ l l - o )  exp [ -2kllx3 ( t )  ] 

231 ~ I I  

(15) 
where the imaginary correction is appears explicitly in the 
denominator. It follows from Eq. ( 15) that the effective in- 
teraction potential Ve" has an imaginary component equal 
to (terms of the order of v2/c2 are omitted) 

m 1 

The real components obtained due to the conditions x, $c/ 
a, and x, <<c/a,, respectively, are described, for 

1 0 )  
k 1, --<L by 

X3 c 

1 0  and for k ,, ---%A by 
x3 C 

1 m 

=-- " Re 1 exp (--2kllr) dk11 

o [1-2kl12~llz/o,2]' ir  
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In Eq. (15") the notation used for the special functions, 
their integral representations and asymptotes, and the 
expression for the last integral are taken from Ref. 12 and use 
is made of the formula (x + is)  - ' = P( l /x) - i d ( x ) ,  
where P represents the principal value. A rotation toward 
the imaginary axis is carried out in the last of the expressions 
in Eq. ( 15" ) in the integral with respect to dk . The imagi- 
nary component of Eq. (15) corresponds to generation of 
surface plasmons by a moving charge. This follows from the 
fact that the appearance of Eq. ( 15') is due to the presence of 
a pole in the reflection coefficient. It follows from these ex- 
pressions that in the nonrelativistic case when I < x, < c/o, 
we can regard generation of surface plasmons as the main 
inelastic process predominating over the emission of bulk 
modes, proportional to (v/c2), known as transition radi- 
ation in a spatially inhomogeneous m e d i ~ m . ~ '  One should 
point out also that it follows from Eq. ( 15') that attraction at 
large values of x, changes to a repulsion at small values 
x3 < lull I/@, . 

To continue the analysis of the consequences of Eq. 
( 12), we can consider the case of a charge which is deloca- 
lized in space (assuming, specifically, that the distribution 
of the charge over xll  is Gaussian) and varies slowly with 
time so that 

1 k 'a2 
~ e x p  ikllxll = ( 2 , )  exp ( - *) 6 (o) . ( 16) 

12n 

Substitution of Eq. (16) into Eq. (12) in the case when 
I E ~ ( O )  1 (0) gives 

e2 d2kl, dx, dx,' 
,S3::f= - i d t  i. 

431 k , , ~ ,  (0) 

where erfc is the probability integra12"with the following 
asymptotes 

It follows from Eqs. ( 17) and ( 18) that a classical image 
force is established only at a distancex, from the surface and 
that this distance is much larger than the longitudinal delo- 
calization size a. 

Particularly in connection with the problem of allowing 
for the quantum nature of the motion of electrons outside the 
metal, the case whenp(w,kll ,x3) contains for finite w mainly 
small values of kll or even is proportional to S2(kll ) is worth 

noting. Such a situation occurs when the charge density is 
independent or almost independent of xll  . In this case the 
charge density is distributed along the surface over large dis- 
tances and, in the main region of integration with respect to 
all and k I, in Eq. ( 12), the inequality &,w2/c2 > k is obeyed, 
so that we cannot ignore the current components in Eq. ( 12) 
and retardation effects. It should be noted that if in this case 
we retain only the term proportional to pp* in Eq. ( 12), we 
find that the integral of k diverges at k = 0. Consequently, 
we shall transform the combination 

d 1 
Ktz,  ( j n )  - i o  -- p 

82,  & 

occurring in Eq. ( 12) with the aid of the current conserva- 
tion equation 

d 1 d iklljll k 
K ( ~ ,  ( j n )  -io -- = -- + -!!- 

ax, E a ~ ,  E 
( j n ) .  (19) 

Substitution of Eq. ( 19) into Eq. ( 12) demonstrates that the 
terms proportional to k ,r2 cancel out in the integrand. 

In particular, retaining in the integrand of Eq. (12) 
only the terms of lowest order in c2k /a2, we find from Eqs. 
(11) and (19) that 

ezn E ~ " ~ ( o )  -ellh ( a )  
S,., = - -- d o  dx, dr,' d2k, { 

C E ~ ' ~ ~  ( a )  +&l'I2 ( a )  

X e ~ ~ [ i ( a ~ ~ ~ / ~ ~ )  'h ( x 3 f  ~ 8 ' )  1 
i [ a 2 ~ l / ~ 2 ] " 2  jll' ( a ,  k l l ,  x3) 

Therefore, when the charge distribution is extended over the 
surface (over distances greater than c/w, ), we must allow 
for retardation effects. Then, retaining the terms containing 
p or only jll , we obtain paradoxical results at limiting values 
of c2k i/w2 because of the apparent divegences of the corre- 
sponding integrals. Some of the misunderstandings men- 
tioned in the Introduction are associated with this circum- 
stance. 

We shall now consider a situation when a local dynamic 
exciton mode with a polarizability 

and a dispersion law wf (kl l  ) appears, for example, because 
of adsorption on the surface of a metal or because of the 
presence of surface electron levels. In this case the action 
should be supplemented by a term of the type 

I kll, ~ 3 )  / x9=o]  -- 
6 (a,  0)  8x3 

where the constants y, (w,kli ) are proportional to the ampli- 
tude of the corresponding mode. After substitution of Eq. 
(7) subject to Eqs. (9) and ( lo) ,  we find that the component 
of the action (21 ) for the charges located at x, > 1 becomes 
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x ( Y ~ I ( ~ ) ,  kll)ikllP~~(@, k ~ ~ ) + ~ 3 ( u ,  k~~)P3)'  

+ PIIS (O, kll) (02-0112(kll) kll) 

+ ~ 3 . ( w ,  k,,) ( ~ z - w , ' ( k l l ) ~ a ( ~ ,  k,) 1. (22) 
For a fixed point charge 

The expression (22) is obtained in the nonrelativistic ap- p(w,kll ,x3) = ( 2 ~ ) - ~ ' ~ S ( w ) S ( x ~  - x3()), we find from Eq. 
proximation and the interaction of an electromagnetic field (24) that 
with the polarization is included in the modified quantities 
wf and y,. 

If Eq. (22) is modified by the shift 

we obtain 

If the only important terms in the integrand are those suffi- 
ciently small to obey the inequality k 5 1/2x,, we can as- 
sume that 

~ ~ ~ ~ ( k ~ ~ )  =0~~~+o11~k11~, ~ s ~ ( k l ~ )  

where the quantities yi, a i ,  and wi on the right are constant. 
In this case we find that substitution of k + k x3()- I in the 
integral of Eq. (25) yields 

Therefore, in the case under discussion when the yi are 
sufficiently large, we find that the attraction corresponding 
to the image forces may change (for certain finite values of 
x,,) to repulsion; this is true even of localized charges. 

AV""= 

4. CONCLUSIONS 

e 2 ~ ~ a 2 ~ a 2 ~ ~ 2  (0) 1 ai 
const 4 2 4 . . .  if X,O > - 

8e12(0) (el (0) + E Z  (0) ~a'xao Oi 

ezn ez" (0) Y1t2 XSO(J-JII ui 
const -k -, -In- +... if x3,<- a 

It follows from the foregoing calculations that, above 
all, the interaction of charges with the surface of a metal 
includes contributions from longitudinal and transverse 
electromagnetic modes. Allowing only for the longitudinal 
modes (more precisely, those obeying the Poisson equation) 
or only for the transverse modes gives incorrect results, at 
least in the case of moving charges; this is particularly true in 
the case when the interaction with surface plasmons is con- 
sidered. However, the most effective mechanism of energy 
losses in the case of nonrelativistic motion of charged parti- 
cles near the surface of a metal is clearly the emission of 
surface plasmons. It should be noted that the relatively high 
probability of emission of surface plasmons is a consequence 
of the pole structure of the integrand in Eq. ( 15 ). This pole 
structure is the reason for the essentially nonmodel nature of 
the asymptotic form represented by Eq. (IS"),  which is 
identical with that obtained in Ref. 10 employing perturba- 
tion theory. When many poles are present in an asymptotic 

2 ei2(0) ( ~ 2 ( 0 ) + ~ 1 ( 0 )  ) 2  0ll2 Y I I  W i  

I 
expression, it is necessary to retain only the contribution of 
the nearest pole. It follows from Eq. ( 15) that if / v l ,  / - lo-'- 
10-%m/sec, then the imaginary part of the interaction with 
a metal is comparable with the real part up to distances on 
the order of tens of angstroms. The consequences of Eqs. 
( 17) and (20) deserve special attention. An analysis of these 
equations confirms that in discussing the dynamics of elec- 
trons near the surface of a metal we must allow for many 
factors, including the ratio of the size of wave packets to 
their distance from the surface. The problem is nonlinear 
and the image forces are established only at a distance from 
the surface which is greater than the packet size. It follows 
from Eq. (26) that the interactions with the metal become 
greatly modified at short distances also because of the ap- 
pearance of surface modes. 

These effects are particularly important when we are 
considering electron levels of the Rydberg type mentioned in 
the Introduction. In theoretical treatments of these levels 
their energy E = E(kil  , n )  has been usually described by the 
following obvious formula4,': 

where k,, is the momentum associated with free motion of an 
electron along the surface; a is the index of a defect the value 
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of which is assumed to lie between - 1/2 and - 1/3; n is the 
principal quantum number. Neglect of the exchange and 
correlation effects in Eq. (27) is justified by the fact that the 
bulk of the electron density lies at a distance exceeding 2 A 
from the surface, even for n = 1, and at this distance the 
effects under discussion are considered unimportant in Ref. 
16. Equation (27) describes satisfactorily the experimental 
results on inverse photoemission if we attribute to m a value 
which is 1.5-2 times greater than the electron mass. In spite 
of considerable e f f ~ r t , ~  no explanation has yet been found for 
this increase in the mass. According to the conclusions 
reached in the present study, when we consider the energy of 
electrons outside a metal under steady-state conditions, we 
can use the formulas 

Within the energy gap we may assume, as is done in Refs. 4 
and 5, that $(x) satisfies a zero boundary condition at 
x ,  = 0. The expression (28) has much in common with the 
expression for the energy of a Frohlich polaron after exclu- 
sion of phonon variables. In particular, exactly as in the case 
of a p ~ l a r o n , ~ ~ . ~ ~  we can prove the virial theorem and the 
formation of states which are localized in all  direction^.^' In 
the course of such proof, we replace (by hypothesis) a local- 
ized normalized wave eigenfunction $(x) in Eq. (28) with 
C 3 1 2 $ ( ~ ~ )  and after transforming the variables in the inte- 
grals we obtain 

E ( C )  =C2T+VintC. (29) 

Since in the ground state 6'E /dC should vanish for C = 1, it 
follows from Eq. (29) that T = - JV,,, and E = tVin, <0. 
Therefore, in conflict with the hypothesis in Refs. 4 and 5, an 
electron in the ground state is localized in all directions on 
the basis of Eq. ( 17). This is due to the fact that spreading of 
the electron density along the surface reduces the absolute 
value of the negative energy of the interaction with the image 
forces (self-interaction) which exceeds (beginning from a 
certain value) the gain due to reduction in the kinetic ener- 
gy. We shall now consider the case when the center of gravity 
of a surface Rydberg state moves along the surface at a con- 
stant nonrelativistic velocity v I l .  In this case the interaction 
with a metal is characterized, in accordance with the above 
results, by the following component of the action: 

(30) 
where p(w,x) is the Fourier component of 
p(t,x) = p ( x  - vl,  t ) .  Substituting& (w ) = 1 - w;/w2 in E ~ .  
(30) and retaining only the terms which are quadratic in vi, 
we find that 

p ( x )  p (x') d o  d t  d3x d3x' e2 
XI  - J d3x  d3r1 p (r)  

[ (x ! , -x , , ' - v , , t )Z f  (53+53') 211'r 2% ,,=; >o 

(31) 
The coefficient in front of $u i  in Eq. (31 ) call be interpreted 
as the effective mass. This mass is governed by an additional 
(besides those occurring in the Coulomb problem) param- 
eter w:, and it should not be equal to m, which enables us to 
explain the results obtained in the course of inverse photoe- 
mission. 

It also follows from the above discussion that the usual 
threshold laws describing external electron emission' can- 
not be derived without including corrections describing, for 
example, deviations from translational invariance along the 
surface. The condition on the finite dimensions of packets 
necessary to satisfy the threshold laws is usually obeyed by a 
large margin. However, it may be disobeyed in the case of 
emission from ultrapure crystals in systems exhibiting the 
anomalous skin effect. We are of the opinion that the results 
obtained also explain why the maximum photoemission cur- 
rent flowing into an electrolyte (when the emitted electrons 
are stopped at distances of the order of tens of angstroms) 
corresponds to the short-range potential and not to the inter- 
action in a final state of the Coulomb type, which gives rise to 
the Fowler law for the photoemission in vacuum.' At the 
same time it follows from Eq. ( 17) that we are justified in 
neglecting the image forces when calculating the properties 
of metal surfaces governed by electron functions belonging 
to the continuous spectrum. We must bear in mind that these 
properties are dominated by the electrons which "climb out" 
furthest from the metal and have energies close to the Fermi 
energy as well as a near-zero longitudinal momentum (with 
the maximum delocalization in the directions along the met- 
al). 

Note that the results obtained confirm that the long- 
wavelength approximation is reasonable even when applied 
to microscopic problems, provided only that the characteris- 
tic distances to the surface are greater than the atomic di- 
mensions. The influence of spatial dispersion is important 
only at shorter distances, when a purely electrodynamic 
analysis generally ceases to be valid. It should be noted that 
retention of only the long-wavelength interactions may be 
justified also when the metal is close and even when consid- 
ering the charges inside the metal, provided the formulation 
of the problem is altered. This change in formulation in- 
volves consideration not of the characteristics of the ground 
state, which in the classical limit are governed by variation of 
the action, but of fluctuation corrections due to a change in 
temperature or pressure, because then the range of validity 
of the above approach can be wider. An important feature is 
the possibility of writing down the interactions only with 
(spatially) slowly varying fields even when a metal has a 
sharp boundary. A quantitative explanation can be provided 
in a similar manner of the considerable fluctuation compo- 
nent in the limiting threshold behavior of photoemission.23 

The author is grateful to M. I. Urbakh for valuable com- 
ments. 

"Care is necessary to avoid double allowance for the effects already in- 
cluded in the plasma value of &,, which differs from 6, primarily be- 
cause of the interactions with electrons in a medium. 

'' This representation is clearly the reason for the selection of the projec- 
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tion operators in Eq. (2).  We can easily show that k i € ( A i  
- grad,a) = 0 and, in particular, that grad e(w,x,)curl no, 
= grad curlcna, = 0. 

" The relationship a,,, (0) = - a ,,, ( w )  follows from the equation 
K , , ,~ - ' a f  /ax, = OifK,,, f = 0. Moreover,theequalitya,,, = -a,,, 
corresponding to k,, = 0 is also generally valid. 

4'  Calculations of such states by a variational procedure, using the interac- 
tion only with surface plasmons, are reported in Ref. 24 where the ideas 
put forward earlierZS are developed. 
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