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A two-component model is used to analyze the properties of intermediate-valence compounds 
with heavy fermions. Expressions for the thermodynamic quantities-compressibility, heat 
capacity, thermal diffusion coefficient, and magnetic susceptibility-are obtained and 
analyzed, and their dependences on temperature and on magnetic field are studied. The 
behavior of a number of kinetic characteristics is investigated. The important role of both the 
heavy and light components is demonstrated for a consistent interpretation of the special 
properties of these compounds. It is shown that the two-component model gives a good 
description of the regularities observed in experiment. 

1. INTRODUCTION 

Because they exhibit a number of interesting properties, 
compounds with valence fluctuations have long attracted 
the attention of researchers.' However, in recent times these 
same compounds of rare-earth and actinide elements have 
caused an explosion of interest in the literature, connected 
with the discovery within this class of materials of supercon- 
ductors with very unusual properties-CeCu2Si2, UBe,,, 
UPt,, and CePb, (see, e.g., Ref. 2) .  

However, even in the normal state these materials are 
very strange-they have anomalously large heat capacities 
and magnetic susceptibilities, and many quantities exhibit 
unusual kinetic properties and peculiar temperature depen- 
d e n c e ~ . ~  

The qualitative behavior of these materials is interpret- 
ed by using a model in which electrons at the Fermi level 
have a very large effective mass m* - lo2-1O3m0 ("heavy 
fermions"). However, despite the availability of a great deal 
of experimental material, there is as yet no correct descrip- 
tion of the properties of these materials at the microscopic 
level. This is to a significant extent related to the fact that in 
the final analysis the nature of the "heavy fermions" them- 
selves is not well-understood. Therefore, limited phenome- 
nological schemes are proposed in order to analyze the prop- 
erties of these materials; among these, the Fermi-liquid 
approach is most satisfactory. In addition to its purely heu- 
ristic value, the Fermi-liquid picture also may reflect more 
fundamental requirements for a correct theory, since we are 
dealing here with a very strongly-interacting system. 

A similar approach has already been applied to systems 
with intermediate valence and heavy fermions (see, e.g., 
Ref. 4) .  In such systems it is customary to take into account 
only the presence of the heavy component. However, there 
are compelling reasons to believe that a number of properties 
of these systems are influenced not only by the heavy elec- 
trons (from here on we will be calling these "f-electrons," 
keeping in mind their origin) but also by the light electrons 
which are also clearly present (electrons in wide bands, e.g., 
the 5d, 6s bands in rare-earth compounds or the 6d, 7s bands 
in actinides; we will refer to these as "d-electrons" for bre- 
vity). 

There is also direct experimental evidence for the pres- 
ence at the Fermi surface of two groups of electrons with 

significantly different masses; study of the de Haas-van Al- 
phen effect shows5 that in the intermediate-valence com- 
pound CeSn, there is a group of carriers with large effective 
mass mf* - 8-10mo while on another part of the Fermi sur- 
face there is a group of normal light electrons with m,* -m, 
(in systems with larger values of my, i.e., in true heavy-fer- 
mion materials, it has not yet been possible to observe the de 
Haas-van Alphen effect ) . 

As we will endeavor to show, inclusion of two fermion 
components allows us to interpret many properties of these 
compounds in a rather natural way, in particular some prop- 
erties which cannot be explained (or are explained only with 
difficulty) by a model with one heavy component. In some 
cases, where it is necessary and leads to qualitative conse- 
quences, we will also include Fermi liquid effects, although 
the basic results of the article do not depend on these effects, 
but rather are simply consequences of the presence of two 
components with very different effective masses (and densi- 
ties of states). In this regard our approach is rather close to a 
model of transition metals developed long ago,6 with the fun- 
damental difference that the disparity in scales (e.g., for 
characteristic temperature or bandwidth) between light and 
heavy fermions is in this case significantly larger and thus 
the corresponding effects are much more marked. 

2. THE SINGLE-COMPONENT APPROACH 

Let us consider certain consequences which follow from 
a one-component model. First of all, the heavy Fermi liquid 
is associated with the large density of states p = m*p, V /  
.rr2+i3, as a result of which the heat capacity C, magnetic sus- 
ceptibility X, and compressibility x turn out to be propor- 
tional top and are large in magnitude (three to four orders of 
magnitude larger than in normal metals). In reality, how- 
ever, C and x -p -m*, while x is not at all proportional to 
m*. Furthermore, in heavy-fermion systems with near-in- 
teger valence (CeCu,Si,, CeA1,) the compressibility turns 
out to be almost the same as in rare-earth compounds with 
stablef-shells.' It is still possible to correct this problem with 
the compressibility if we take into account correlation ef- 
fects, which lead to an expression of the form x =p /  
Vn2( 1 + " F,),  if for these systems the zero-order symmetric 
Landau coefficient grows as the effective mass increases, i.e., 
" F,- m* (Refs. 8, 9) .  However, explaining the behavior of 
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the coefficient of thermal expansion cr within the one-com- 
ponent approach is a still more complicated problem. It has 
been established experimentally that in many cases (e.g., in 
CeA1,,'Osl CeCu2Si,12) a behaves in an anomalous fashion 
at low temperatures and changes sign, becoming negative. 
The usual interpretation of this is based on an analogy with 
"e, where Fermi-liquid theory leads to an expression of the 
formz3 

a=xC ( ",ipdn; 1 
from which it follows that for a negative sign of the deriva- 
tive dm*/dV (which actually occurs in ,He"',) a can be- 
come negative. However, in solids the effective mass satisfies 
m* - r-' or T j ', where r is the width of the virtualflevel 
and Tf is a characteristic temperature (for example, the tem- 
perature of spin fluctuations or the Kondo temperature). 
Also well-established is the fact that all these quantities in- 
crease with pressure, so that dm*/dV>O, as a result of 
which it is necessary to introduce some other considerations 
to explain the anomaly in the coefficient of thermal expan- 
sion. Of additional significance is the difficulty in interpret- 
ing the changes in sign of the thermoelectric power, and the 
correlation of these anomalies with the behavior of the ther- 
mal expansion coefficient. ".I4 

The above-mentioned difficulties are not restricted to 
the one-component Fermi-liquid approach; the other popu- 
lar description of heavy fermions in rare-earth and actinide 
compounds-the model of almost-localized 
also leads to the same result. In this approach, the narrowf- 
band is described by a Hubbard-type model, and the effec- 
tive mass is proportional to the expression 

for a half-filled band nf = 1; here U is the energy of elec- 
tronic repulsion from a single center and t is the band width; 
or else, 

m+'-6-i, 6=1 lz , - i  1 (2b) 

in the oase of a partially-filled band with 6 < 1 and for strong 
correlation U )  U,. In this case too we find that dm*/dV> 0 
under pressure, due to the growth in the band width t, or to 
the increase in valence (i.e., a decrease in the number of f- 
electrons, which is to say a decrease in 6 ) .  

Still another often-used phenomenological approach is 
to describe the properties of a system with heavy fermions 
with a model which includes a resonance level; an expression 
of Lorentzian form is used for the density of states of the f- 
level (see Ref. 34) : 

 here^^ is the position of the f-level relative to the Fermi level 
and r is the width of the f-band. The characteristic tempera- 
ture satisfies Tf -- (I?' + E;)"*, for the case of interest to us, 
i.e., E,- < r,Tf - r. It is not difficult to show that even in this 
case if we limit ourselves to only one f-level, the thermal 
expansion coefficient a of Ce-based systems is found to be 
positive (see Ref. 15). Thus, we see that a simple one-com- 
ponent model does not allow us to explain all the properties 
of a heavy-fermion system. 

3. THE TWO-COMPONENT MODEL 

It is beyond dispute that a better approach to this prob- 
lem must include correctly the specific properties of the 
compounds under consideration, in particular the complex 
character of their band structures and densities of states near 
the Fermi level. In this paper we want to propose a phenome- 
nological scheme in order to describe systems with interme- 
diate valence and heavy fermions, which is based on a two- 
component model. 

Let us consider a system consisting of electrons from 
two bands-a "heavy" component from the narrow f-band 
and a light component corresponding to the conduction 
band. In this case the numbers Nf, Nd of heavy and light 
electrons are not conserved individually (it is this aspect in 
particular which distinguishes this model both from nuclear 
matter16 and from metallic hydrogen1'), while at the same 
time their sum N = Nf + remains constant (this is a con- 
sequence of our neglecting from this point on the influence of 
the other band states). The ratio between Nf and Nd is deter- 
mined by the equilibrium condition of the system, i.e., equa- 
lity of the chemical potentials p,- = pd. The possibility of 
electrons flowing from band to band turns out to be an im- 
portant feature of these systems, and along with the inter- 
band interaction it plays a key role in interpreting a number 
of peculiar properties of the compounds under study. 

In view of the complexity of the problem and the wide 
class of phenomena which require explanation, it is expedi- 
ent to simplify its formulation as much as possible. With this 
goal in mind we will sometimes employ very simple models, 
in particular those used in the theory of transition metals and 
especially the model of two isotropic bands centered at the 
same point in k-space and intersected by the overall Fermi 
level. We will further assume a quadratic dispersion law 

F, ( p )  =pYiam,'+Ai ( i = f ,  d )  , (4)  

where the effective masses of the carriers satisfy mf* &m,*. 
We remark that in the general case the hi are functions of the 
specific volume. Choosing the sign of the dispersion law in 
form (4)  is not an essential limitation and is used only for 
clarity; in fact all the responses will depend only on the den- 
sities of states at the Fermi level pf (&,- ), pd (&,-) and their 
derivativespl(&,- ), p "  (E , - ) .  We will often use expression (3 )  
forp(&,-). 

Within this approach, the interaction of quasiparticles 
can in principle be described by using the Fermi liquid mod- 
el. The Landau functional in this case is a matrix in band- 
space. We can introduce the coefficients of a Legendre poly- 
nomial expansion of the kernel j 'in the standard fashion 
S X ~ F  Y , - -p;" f y, where I is the orbital angular momentum and 

i, j are band indices. 
In the general case, the F U  are unknown parameters 

whose number is determined by relations derived from sym- 
metry, hermeticity and sum rules. In our case, however, the 
situation is simplified due to the presence of the large effec- 
tive mass mf* )m,*. This allows us to reduce substantially the 
degree of arbitrariness of the F" and in this limit the re- 
sponses depend only on a small number of free parameters. 
In practice we can neglect entirely the correlation coeffi- 
cients of the light components, i.e., set F dd = 0, without loss 
of generality. Assuming that hybridization (one- or two- 
particle) is included in determining the f- and d-quasiparti- 
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cle states, we will also neglect (as is usually done) ampli- 
tudes which change the numbers of particles in the bands 
(for more detail, see, e.g., Ref. 18). In the approach which 
describes the heavy component as an almost-localized Fermi 
liquid,"' we obtain the following expressions for the corre- 
sponding parameters of the Landau theory in the limit 
mf - oo: OF{, =: - 3/4, "7-mf, and "FC- (mf12 or 
-my, depending on whether relation (2a) or (2b) holds. In 
point of fact, it is apparently the second situation which is 
realized in compounds with heavy fermions,' i.e., the Lan- 
dau coefficients grow no faster than mf. We will keep in 
mind these results below, although there are other possibili- 
ties (see, e.g., Ref. 19). 

Thus, we have the interband coefficients " O F f  to deter- 
mine. The investigation in Refs. 8, 9 was limited to the one- 
band case, and so we can draw no direct conclusions about 
the behavior of the analogous model with interband coeffi- 
cients F ~ ~ .  However, simple qualitative considerations 
show that here too one can hardly expect the dependence to 
be stronger than mf. (Thus, even the most dangerous terms 
"Fid will be proportional to 

and by virtue of the delocalized character of the d-electrons 
and the weak overlap of the d- and f-wave functions this 
factor remains finite in the approach to localization, i.e., 
'Ff = =;f id-my). As yet there is no explicit calculation of 
these "crossed" coefficients. 

4. THERMODYNAMIC QUANTITIES IN THE TWO- 
COMPONENT MODEL 

Let us turn to an investigation of the fundamental ther- 
modynamic quantities in this model. 

a )  It is obvious that the entropy of the electrons has the 
usual combinatoric form, and S = Sf + Sd is adequate. Cor- 
respondingly, having found the heat capacity in the usual 
way C =  l /T(dS/dT) ,  we obtain the following simple 
expression": 

In the simplest version, if we neglect the Fermi-liquid 
effects it is easy to investigate the behavior of the heat capac- 
ity over an even wider temperature interval. For an arbitrary 
dependence of the density of states pf ( E )  on the energy we 
can take into account the next correction in powers of T; 
then C(  T)  takes the form (see Ref. 4 )  : 

(Fermi-liquid theory leads to a correction - T 3  In T; how- 
ever, only one among the large number of compounds with 
valence fluctuations is observed to have such a contribution 
to C(  T) in experiments-Upt,-and we will not discuss it in 
what follows). 

In the general case, the occupation of the f-band is in- 
complete. When the sum is carried out for the T coefficient 
in (6 )  [e.g., for a density off-states of the form ( 3 )  1,  its sign 
can depend on the occupation of thefiband (which is to an 
important degree determined by the degree of degeneracy of 
the underlyingf-level2'). 

Once we have chosen a specific form forpf (E) ,  it is easy 
to calculate the dependence of C ( T )  for all temperatures 
(see Ref. 34). In Fig. l a  we present the results of a calcula- 
tion of y (  T )  = C( T) /T  using a density of states of the form 
(3 )  with E~ = 0; we also present there the experimental val- 
ues of y for UBe,, and CeCu,Si,. It is clear that agreement is 
very good for relatively low temperatures. In Fig. l b  the 
corresponding results are presented for E~ #O, along with 
experimental data from CeAl,. For computational simpli- 
city we chose a symmetric density of states: 

wherepJ (&,&/-I is given by expression (3) ;  in fact this corre- 
sponds to locating the Fermi level inside the pseudogap in 
the density of states, whose presence was postulated in Ref. 
14 for the coherent regime. I t  is clear that the qualitative 
behavior of C ( T )  is correctly described; however, the quan- 
titative disagreement is substantial, especially at high tem- 
peratures." 

( 5  b )  Analogously, once we have calculated the magneti- 
zation M taking into account the change in quasiparticle - . . 

Thus, as T-0 the heat capacity is simply additive and for energies in a magnetic field, we can obtain expressions for 
my $m,* is wholly determined by the heavy component. the magnetic susceptibility: 

FIG. 1. ( a )  Temperature dependences of C(T) /  
T =  y ( T )  [normalized by yo = y(O)] in the symmetric 
case E~ = 0. The continuous curves are calculated; 0- 
experimental data for UBe,, and CeCu2Si2 from Ref. 3 
(they practically coincide); .--experimental data for 
UBe,, according to data from Ref. 9; Tf = 8 KK. (b)  The 
same for ~ ~ f . 0 .  Continuous curve-calculated ( E / /  
r = 1 ); 0-experimental data from CeAl, (from Ref. 3 ) ;  
T,. = 2 "K. 
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In the usual way, we can also include the Fermi-liquid cor- 
rections in ,y (see Ref. 21 ), which here do not lead to any 
qualitative consequences (let us recall that in our case the 
corresponding correlation parameters " F,, are limited by 
l Q ~ o l  < 1.X.9~19 

At finite temperatures, it is also simple to find the next 
term in the expansion of,y(T) in T. Again we discard the 
Fermi liquid parameters and find (see Refs. 4, 22): 

where naturally only the contribution from the heavy com- 
ponent is left. The sign of the term in T 2 ,  as with the heat 
capacity ( lo) ,  depends on the detailed structure of the den- 
sity of states pf (&)  near the Fermi level. It is not hard to see 
that in the case of a negative correction to C ( T )  ( the Kondo 
regime), ,y ( T) will decrease as T increases; conversely, if 
y = C / T  grows with temperature (in a system with a high 
degree of degeneracy, i.e., the intermediate-valence regime) 
the susceptibility must also increase. In this case the suscep- 
tibility will have a maximum at  some finite temperature T * 
[for lower temperatures it is obvious that x ( T )  will follow 
Curie's law, ,y ( T) - T - '1, Such behavior of ,y ( T),  along 
with the correlation in the behavior of C(  T)  and ,y ( T),  also 
agrees with the experimental data. 

Having found the above temperature dependence of the 
magnetic susceptibility, we can also obtain the heat capacity 
C ( H )  in a magnetic field. Specifically, using the thermody- 
namic relation d M / d T  = dS/dH, we obtain 

from which it follows that for small H 

where the last equation is obtained by taking (8 )  into ac- 
count, and is correct only in the region over which this rela- 
tion is valid. 

From formula (9 )  and (10) it follows that 
AC(H) = C ( H )  - C(0)  is proportional to H and can be 

both positive and negative; furthermore, it can change sign 
with temperature depending on the behavior of the magnetic 
susceptibility ,y ( T ) .  

Study of the behavior of the heat capacity in a magnetic 
field has recently become a very popular method for investi- 
gating heavy-fermion systems."t appears, however, that ex- 
perimentally such information is much more easily ob- 
tained, at least in weak fields, with the help of relations ( 9 )  
and ( l o ) ,  using much easier and more standard methods to 
measure the magnetic susceptibility. Relations ( 9 )  and ( 10) 
can also be used to verify the mutual consistency of the re- 
sults of different experiments. A comparison of data on the 
functions C(H,T)  and,y(H)  presented in Ref. 3 shows that 
as a rule the correlation required by ( 9 )  does occur, whereas 
the sign of AC(H) itself, and the dependence of AC on tem- 
perature, change from material to material. 

C )  Whereas for the heat capacity or susceptibility the 
results of the one- and two-component models coincide qual- 
itatively when the approximation is made that the density of 
states is large for the heavy component, the situation is oth- 
erwise for the compressibility. Here a decisive role is played 
by the indistinguishability of the electrons, along with Fer- 
mi-liquid correlations, and the possibility of their flow from 
one band to the other. 

The definition of the compressibility ?t = - (1/ 
V) (dV/dP) can be written in the form x-' = - Ndp/JN, 
using the fact that for low temperatures VdP= Ndp. By 
varying the chemical potential we obtain 

When we calculate the derivative d,u/dV the term 

appears, in which the last term is not zero as it is in the one- 
band case due to the possibility of transfer of electrons 
between bands. 

Using the equality of chemical potentials S,uJ = 6pd 
and calculating from it the derivative dN/./dV= - dNd/ 
dV, we finally obtain the following expressions for the com- 
pressibility: 

Here Bi = 1 + "F t ,  A] = dAi/dV, and n = nf + nd is the 
total electron density. In its structure expression (12) is 
reminiscent of the corresponding expression for the magnet- 
ic susceptibility'2; in the case of rigid bands (A; = 0)  it coin- 
cides with the results of Ref. 23. I t  is significant that, thanks 
to the two peculiarities alluded to above, i.e., the correlation 
between components and the displacement of the bands 
(A,! #O), the magnitude of x in the general case remains 
finite even when mf* - w . 

Expression (12) has different limiting forms for mf* 
Sm:, depending on different possible behaviors of the Lan- 
dau coefficients 'F: .  In the simplest case, F" 0 and 

PJ SPd 9 

and the compressibility is found to be finite due to the band 
shifts [usually the f-band shifts upward with pressure, i.e., 
A; = aA/./av< o )  I .  

If, however, relation (2a)  were correct for example, we 
would then obtain 

i.e., the compressibility would be determined by the light 
component. In the general case the characteristics of both 
components enter in. In order of magnitude the compress- 
ibility for this case, generally speaking, is found to be close to 
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the compressibility of analogous systems with one light com- 
ponent. On the other hand, specifically because of the mutu- 
al influence of the two components, a situation is possible in 
which for certain parameter ratios x becomes negative, 
which will correspond to instability of the system relative to 
a transition to one with variable valence. 

We note that the result ( 12) differs significantly from 
analogous expressions for metallic hydrogen, l 7  which as we 
have already noted is connected with the identity of particles 
of the different components and with the possibility that 
they can pass from band to band under compression. 

Using the relations between the derivatives of the ther- 
modynamic quantities, we can study the dependence of the 
compressibility x on the modulus of hydrostatic compres- 
sion B = x-I on magnetic field. In analogy with (9)  we ob- 
tain 

dB -=- 3% 
dH 

V H -  
dVz '  

However, since the dependence of the susceptibility on pres- 
sure or volume is not as easy a quantity to measure, this 
relation turns out to be less useful than (9)  and ( 10). 

d)  An expression for the thermal expansion coefficient 
a can be obtained as usual13 from the Maxwell relation: 

Using the explicit expression for the entropy 

where ni = N, / Vis the density of the ith component, we find 
from ( 15 ) that 

where Ci is the heat capacity, and dN, /dVwill in the general 
case contain Fermi-liquid  correlation^.'^ 

In the simplest case Fermi-liquid effects other than 
those contained in mf* are absent, and forpf %pd we obtain 
in this case the simple expression24 

It is clear that due to the third term in ( 18) a can be- 
come negative (as was already noted above, the second and 
fourth terms in these systems are positive). The meaning of 
these terms can be made more transparent if we rewrite 
expression (15) in terms of the density of states. Assuming 
for simplicity that the Ai are constant, we obtain 

We can show that in this form the expression for a does not 
depend on our special choice of the dispersion law (4) .  

Expression (19) is found to be in agreement with the 
general treatment of thermal expansion of metals with arbi- 
trary band  structure^.'^ From expressions ( 18), ( 19) it is 
clear that the situation which favors a negative thermal ex- 
pansion is one in which the Fermi level is located in a region 
of increasing density of states dpf > 0, and in this case the 
total electron concentration will be large compared to the 
concentration of the heavy component. One may suppose 

that both of these conditions are realized in CeAl, and 
CeCu,Si,, and that the negative sign of a observed in these 
compounds for T S  0.5 "K is explained by the mechanism 
considered above, which is essentially related to the multi- 
band property and to the complex structure of the density of 
states in these compounds. 

An additional factor in favor of this explanation is the 
correlation between the behavior of the thermal expansion 
coefficient and that of the thermoelectric power in these sys- 
tems. As was found in Refs. 12, 14, in CeAI, and CeCu,Si,, 
for T k 0.5 "K we have a > 0 and the Seebeck coefficient sat- 
isfies Q < 0; for Tz0 .5  OK, both of these quantities change 
sign, and at low temperatures a < 0 and Q < 0. In the two- 
component model the expression for Q takes the form26 

i.e., Q is proportional to the same derivative of the density of 
states and the condition of negative a for dpf /de > 0 coin- 
cides with the condition that the quantity Q be positive. [In 
Ref. 14 the thermoelectric power was investigated within the 
one-band scheme in which Q- - d p / d ~  > 0, and the sign 
change and transition to positive Q at low temperatures were 
treated as evidence of the appearance in the electron spec- 
trum of a pseudogap and the entrance of the Fermi level into 
a region where dp/d& < 0. We claim, however, that a two- 
band description of the kinetic properties of these systems is 
more satisfactory (see also Ref. 12) and that formula (20) 
applies, i.e., even if a pseudogap does form, the Fermi level 
enters a region dp/& > 0.1 

5. KINETIC PROPERTIES 

The kinetic properties of the two-component model 
have been investigated repeatedly in the context of transi- 
tion-metal applications. As was already noted, by virtue of 
the significant disparity in scale between these systems and 
systems with heavy fermions and intermediate valence, the 
effects of the two-band character in the latter can be consid- 
erably more marked. The degeneracy temperature of the 
heavy f-component is in these systems on the order of 
Tf - 1-100 OK, and thus for experimentally attainable tem- 
peratures we can easily satisfy the condition T- Tf and even 
T% Tf, which is impossible as a rule in other systems. In this 
case we can expect a significant temperature-dependent cor- 
rection to the various kinetic coefficients. 

As an example, we will investigate below the impurity 
contribution to the resistivity of a system with fluctuating 
valence. One special feature of such systems is the large den- 
sity of states of the heavy component. This implies that the 
most effective scattering mechanism for the light compo- 
nent, which gives the most important contribution, e.g., to 
the conductivity, will be scattering with a transition from the 
d- to the f-band, in full analogy with transition metals and 
their compounds6 (see Ref. 35 for A-15 compounds). As a 
result, the impurity resistance turns out to be large and, 
which is no less important, possesses a strong temperature 
dependence. 

Actually, for scattering by impurities the conductivity 
is given by the usual expression: 
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where c is the impurity concentration, q, is the Fermi func- 
tion, 1 M / is the square of the matrix element forf-scattering, 
averaged over angle, andpf is the density of states, for which 
we will use expression (3).  Taking into account the variation 
of the chemical potential with temperature, at low tempera- 
ture it is not difficult to obtain from (21 ) the following result 
for the impurity resistance: 

where R, = 4mdclM I2T [nde2h(r2 + E;)] - ' -  T j '. 
It is easy to see that because of the large density of states 

in the f-band the residual resistance is actually large, 
R,- T j l  (see the result in Ref. 27; here, of course, 
R,,, < R, - 100-300 pS2-cm is the maximum metallic re- 
sistance). In addition, the impurity resistance falls off qua- 
dratically with temperature over a range - Tf, which is per- 
fectly understandable on qualitative grounds; for T >  Tf the 
fraction of electrons which satisfy the resonance condition 
for d-fscattering decreases. We note further that the resis- 
tance of a "pure" system is determined by the same scaling, 
R = A T ~ , A - T ~ ~ .  

The conclusions we arrived at above agree well with the 
experimental data for the system CePd3:La,28 i.e., in this 
system R ( T) = R, ( T/Tf )' in "pure" samples, with 
Tf = 45 OK, while the impurity contribution decreases with 
temperature according to R,,, = R, [ 1 - (T/T;)*], with 
roughly the same scale T; = 31 OK. The result (22) also ex- 
plains the remarkable correlation between the decrease in R, 
and the increase of A in the function R = R, + A T  for 
CeCu, '9; the second term in (26) renormalizes the coeffi- 
cient A, A - A (  1 - aR,). In still another system, 
Ce, , _ , La, Tho , , it was observed in Ref. 30 that as the pres- 
sure increases R, and A fall off simultaneously, while A falls 
off more rapidly than R,. This is also explained by (22), ifwe 
note that the characteristic temperature Tf increases with 
temperature (R - T j I, A - T j 2 ) .  

The falloff of R,,, with T can lead to the following 
effect: for T >  Tf, when scattering byf-centers becomes inco- 
herent, the resistance of a system with impurities can be- 
come smaller than that of a pure system-the replacement of 
resonant ions, e.g., Ce, by impurities withoutf-electrons (for 
example La) will lead to a decrease in the resistance. Such 
behavior is observed in many systems, e.g., CeCu,:La 'I or 
CeBe,,:La Thus, within the framework of the two-com- 
ponent approach it is possible to explain in a quite natural 
way the observed peculiarities of the impurity resistance. 

Within the same model it is easy to explain also the 
impurity part of the magnetoresistance. Considering that 
theg-factor of the f-electrons is large, i.e., gf )g, , and hence 
that the basic influence of a magnetic field turns out to be its 
effect on the heavy component-the field splits its spectrum 
E,.~ +E/. + gf pBsH, wheres = + 1 is thef-electron spin-we 
obtain in place of (21) 

where 

To sum up, for the symmetric case E~ = 0 (henceforth we 

will measure H in energy units and omit the constant gf p, ) 

we find 

A R (II) -=- 
HZ 

- 
xz 

I? (0) H'+T,'+n2T2/3 l + x 2  ' 
(24) 

wherex = H( T j  + .n2T 2/3)-112. Thus, for&,. = 0 the mag- 
netoresistance is negative, and for small fields is proportion- 
al to - H', while for H-  Tf it approaches saturation. It is 
also clear that AR /R is a universal function of the reduced 
temperature H ( T 2  + T j )  -'I2. Such behavior is in good 
agreement with experimental data for UBe,, (see Ref. 3, p. 
370), where in particular it is pointed out that for UBe,, 
AR/R = f [ H / ( T +  T*)],T*=:lK.Itisalsoclearthatthe 
mechanism under discussion here works the same way both 
for the longitudinal and the transverse magnetoresistance. 

The situation can change for E~ #O. In particular, if the 
Fermi level lies within the pseudogap in the density of 
states,I4 e.g., for apf of the form 

it is easy to obtain the magnetoresistance at T = 0: 

from which it is clear that the function AR (H) can be non- 
monotonic. For small fields, 

and the sign of AR is determined by the ratio of the width of 
the pseudogap 2~~ to the width of the peak T. For small ef 
the magnetoresistance for T< Tf is always negative; if, how- 
ever, &/ > r/d, AR is positive for small fields 
H S  ( 3 ~ ;  - T2)'I2- T/ while according to (26) it becomes 
negative for stronger fields. Thus, there are two possible 
types of function AR (H),  which are shown schematically in 
Fig. 2. The dependence of AR /R on temperature is also simi- 
lar. 

Experimentally, the change in sign of AR /R from nega- 
tive to positive as the temperature decreases and the system 
passes into the coherent regime [in which we also postulate 
the presence of a pseudogap and a density of states of the 
form (25) ] is observed in CeAl, 33 in the same range of tem- 
peratures T <  0.5 "K where other anomalous quantities are 
present. Such behavior has a natural explanation within this 
picture, which, as was shown in Section 3a, easily explains 
the behavior of the heat capacity of CeAl,, too. 

FIG. 2. Qualitative dependence of AR ( H ) / R  (0) on magnetic field at low 
temperatures T< Tf .  Curve 1: E,. < 3-Iizr, curve 2:  E,. > 3-Ii2r. 
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In a similar fashion we can also treat the other kinetic 
characteristics, for example, the thermal conductivity. We 
will not present the corresponding analysis here; our basic 
goal in this article was to demonstrate the possibility in prin- 
ciple of obtaining within this simple model a satisfactory 
description not only of the thermodynamic but also the ki- 
netic properties of a system with valence fluctuations. 

6. CONCLUSIONS 

In many respects, the present article has a practical aim. 
It seems to us that there is an indubitable advantage to deve- 
loping a general scheme of this sort, and in particular to 
analyzing the available experimental data based on this 
scheme, in order to clarify the role of the second (light) 
component and to elucidate the relative contribution of each 
component to a given phenomena. 

The assumption in this paper of a two-component mod- 
el is a natural generalization of the one-component ap- 
proach, which is widely applicable to describing systems 
with intermediate valence and heavy fermions. It allows us 
to take advantage of all the properties obtained in the one- 
component model in those cases where this model correctly 
describes the behavior of these systems (for example, the 
specific heat and susceptibility). At the same time, our ap- 
proach also provides an interpretation of such properties as 
the compressibility and thermal expansion of this class of 
compounds, for which the usual approach is inadequate. 

We should also note that the two-component Fermi liq- 
uid model shows promise for describing other properties of 
these materials, especially the kinetic properties. A striking 
example of this is the possibility of a perfectly natural expla- 
nation of the correlation between the behavior of the coeffi- 
cient of linear expansion and that of the thermoelectric pow- 
er at low temperatures, and also the temperature dependence 
of the impurity resistance and negative magnetoresistance. 

We can also link a number of superconducting proper- 
ties of these compounds to the presence of a light compo- 
nent. For example, the London penetration depth A, [given 
in the simplest case by the expression A = m*e2/4mc2)] 
turns out in these compounds to be the same order of magni- 
tude as that of normal superconductors, which can be ex- 
plained by screening of the field by the light carriem2 

It is also not hard to investigate the collective modes of 
systems with heavy fermions within this approach. Finally, 
let us note the possibility in principle of extending the model 
into the semi-quantum mechanical region of higher tem- 
peratures TW < T < T,, , where the heavy component is non- 
degenerate and the temperature dependences of the kinetic 
coefficients are changed. 

In conclusion, it seems advisable to note that despite the 
fruitfulness of the two-cohponent model in interpreting the 
properties of heavy-fermion systems, the resulting treatment 
is phenomenological and can conceal the far-from-trivial 
origins of the two-component system. Further development 
of the theory must show to what extent the phenomenologi- 
cal scheme developed here can be justified, and how much 
meaning we should ascribe to the heavy and light compo- 
nents. 

"The effective mass m: of a component is related in the following way to 
the first harmonics of an expansion of the symmetric part of the kernelj  

where rn, is the crystal mass and u, = p , / m : .  
"As is easy to see, in agreement with this investigation for nf = 1 the sign 

of the T 3  component changes for J = 3/2,4 which is related to the result 
ofan exact solution to the Kondo problem for arbitrary impurity spins.20 

"This calculation, which was carried out without any detailed fitting, is 
presented exclusively for purposes of illustration, using reasonable val- 
ues of the parameters cf and T. 
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