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The behavior of the layer structure of a smectic A in a magnetic field parallel to the layers is 
investigated. It is shown that at a certain critical field the layer structure becomes unstable. 
The instability (Helfrich instability) leads to the formation of regions with periodic 
modulation of the layers. The modulation amplitude and the shape and velocity of propagation 
of the regions is found. The relation between the time of formation of the domains and the 
initial conditions is investigated. 

It is well known that in a homeotropically oriented 
smectic A,  with positive diamagnetic anisotropy x,, in a 
magnetic field H parallel to the smectic planes a Helfrich 
deformation, consisting in the formation of periodic bending 
of the smectic layers, can arise.' The reason for the appear- 
ance of this modulated structure is the instability of smectics 
against disturbance of their macroscopic uniformity. The 
usual description of this effect consists in finding the charac- 
teristic period of the finite structure and the magnitude of 
the critical field by investigating the free energy averaged 
over the volume of the samples. In such a description there is 
no possibility of drawing any conclusions about the ampli- 
tude of the modulation or its relation to the initial distur- 
bance, or about the time dependence of the establishment of 
the final structure. Therefore, a study of the nonlinear dy- 
namics of the process, making it possible to give at least 
qualitative answers to these questions, is of interest. 

To describe the nonlinear dynamics of a smectic A ,  fol- 
lowing Refs. 2 and 3 we use the variable W(r, t )  describing 
the layer structure ( W = const specifies the position of a 
layer of molecules). The free-energy density of the smectic A 
is written in the form of an expansion in the gradients of this 
function; the leading terms of this expansion have the form1' 

istic wave vectors of the problem are not large: 
q2 4 (1;lv) - I - lOI4 cmP2 (7 is the viscosity coefficient and v 
is the permeation coefficient). This is the case we shall con- 
sider below. 

With allowance for dissipation, the equations of motion 
for v and W have the form3 

dp/at+ tliv j=O, 
dj,/dt+VkT,k-~,H"LZiY,W,,= VkaR/a(Vku,), (2 )  

a w i a t + ~ v  w=o, 
where j =pv is the momentum density,p is the density, Ti, 
is the stress tensor, and R is the dissipative function. With 
the assumptions made, the stress tensor is defined by 

(where P i s  the pressure, including a part due to the smectic 
variable), and the dissipative function is defined by 

where the viscosity tensor has the form 

T ~ A I ~ = ~ I  

F1,='/,B[lZ( V W)2-1]2+1/2K12( V2W)'. +(2q?-ql)6z'<L61~nL+2q3(6!k' 6 mL+6Im' fi8hL) 

( 1 )  + I / L ~ &  (6tL'6krnLf 6Iri1 6 1 n ~ + f i t c n " f i k l ~ + f i k m " 6 ~ ! ~ )  +C)q3filk1 61mi', 
Here 2 is the equilibrium distance between neighboring &,"= v,Wvkw/l v W lZ, 6,kL=6,A-6,,'. 
smectic layers, and B and K are elastic moduli. In equilibri- 
um, W, = z / l  and describes a system of layers perpendicular Substituting the expressions ( 3  ) and (4)  into ( 2 ) ,  changing 

to the z axis. to the variable u, and retaining the most important terms 
Away from equilibrium it is convenient to write the nonlinear in u (henceforth it is assumed that V, u < 1 ), we 

variable Win the form obtain as a result 

where u is the displacement of the layers along the z axis. v, 
p 7 k pv,V.v. + + ~[?u.u.,(u,'+a,) 

Below we shall consider the geometry when the smectic liq- o t  3 x 

uid crystal lies between two bounding surfaces at z = 0 and 
z = d, and the magnetic field is in the direction of the x axis ("" + u z )  1-K~,v'(v'u) +u,u,,+u** -- 

2 
and is uniform over the whole sample. Thus, the problem 
becomes effectively two-dimensional. The magnetic field is 
taken into account by adding to ( 1 ) a term - f X,   OH)^, , qi a2v, 
where the director n is defined by the relation 

n=VW/I VWI. d u 
o -? + p u , V , u Z  + 
' d t  r3 ,- 

For simplicity, in writing the hydrodynamic equations we 
shall neglect thermal conduction. In addition, we shall ne- 

-KVZ (VZzb) 
glect permeation effects; this is possible when the character- 
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a dv, a a ~ ,  
+a.d,(uxdz) +azK(ai+ux- 3 2 

In the linear approximation, in the absence of a magnetic 
field, Eqs. (5 )  describe two modes of the acoustic type. ' One 
of them is due to oscillations of the density p and is ordinary 
longitudinal sound, propagating with a velocity c, deter- 
mined by the compressibility (dP/dp), . The other mode 
(second sound) is connected with the displacement of the 
layers, propagates with velocity c, = (B/p)1'2gc,, and is 
associated with the condition of incompressibility. As was 
shown in Ref. 3, allowance for terms that are nonlinear in the 
smectic variable u can substantially alter the form of the 
spectrum. Whereas for ordinary sound these changes reduce 
to small corrections to the sound velocity c, and to the damp- 
ing constant, for second sound they give qualitatively differ- 
ent behavior in the dependence on the geometry of the exper- 
iment. 

Since the aim of the present work is to study the dynam- 
ics of the smectic variable u, it is natural to expect that, in the 
presence of a magnetic field, terms that are nonlinear in this 
variable will have a substantial effect on the result. Eliminat- 
ing the pressure P from Eqs. (5)  and assuming the smectic to 
be incompressible (the validity of this assumption will be 
demonstrated later), we obtain for the variables v and u the 
following system of equations: 

-K[u,,A (Au) +u,A (Au,) -A (Au,) ]-x.H'(u,u,,-u,) 

From the first equation of the system (6)  we obtain the 
estimate v, - u,L, /L,  , where L, and L, are the character- 
istic lengths over which the velocity varies. Substitution of 
this expression into the second equation gives for its last 
term the estimate v, u, - u, u, , which, since u, is small, en- 
ables us to neglect this term in the subsequent calculations. 

In the third equation of the system (6)  we can neglect 
the terms that are nonlinear in the velocity if one of the in- 
equalities ui gLi/rX, ?,,,/pLi holds where 7, is the charac- 
teristic time and 7, the corresponding viscosity coefficient 
of this equation. As will be seen from the final result, these 
conditions are practically always fulfilled. Taking into ac- 
count the remarks made above, we can eliminate v, and u, 
from the last equation of the system ( 6 )  and obtain as a 
result a closed nonlinear equation for the smectic variable u: 

In principle, the solution of this equation gives the an- 
swer to the problem posed, for quite arbitrary initial condi- 
tions. It is clear, however, that it is not possible to find the 
solution in explicit form. Therefore, the aim of the paper 
from now on will be to investigate the conditions under 
which Eq. (7)  can have an analytic solution that can be real- 
ized under actual experimental conditions. 

We shall consider the case when, at the initial time, the 
smectic is stationary and the position of the layers corre- 
sponds to the equilibrium state u = 0. After the field is 
switched on, motion due to particular additional initial con- 
ditions (fluctuations, defects, and boundary distortions) 
can arise in the system. (We note that the solution u = 0 
satisifes Eq. (7),  and, therefore, the realization of this solu- 
tion is stable against disturbances.) However, at times close 
to the initial time, the deviation of the quantity u from its 
equilibrium value is small, and so its dynamics will be de- 
scribed by Eq. ( 7 )  if we linearize in u: 

In order to investigate the stability of the initial state u = 0 
after the magnetic field has been switched on, we consider 
disturbances having the form 

Equation (8)  leads to the following dispersion relation for 
w=w(k,q,H): 

po2(1+y2)+m[ (az-ai) y2+ilzqc(l+yz)2 
+aly3+azy ]+ByZ-~,H2+Kk2(1+y2)2=0, 

where y = q/k. 
We consider first the case y2 < 1. Then 

It is obvious that for x,H - Kk - By2 < 0, i.e., for small 
fields, w < 0 and the initial state is stable against disturbances 
with any wave vectors. At a certain field H = Hc the quanti- 
ty w vanishes for the first time and the system loses stability. 
Simple calculations give 

Here k = k c  = (q/A)"'. This implies that the system be- 
comes unstable only for perturbations with wave vector k c .  
For values of H slightly greater than Hc the region of insta- 
bility spreads to a narrow band of wave vectors k close to kc. 
It can be seen from ( 10) that the magnitude of the critical 
field Hc increases with increase of q. Since the system under 
consideration is bounded in thez direction, and the quantiti- 

55 Sov. Phys. JETP 65 (I), January 1987 V. G. Kamenskil 55 



ties v and u vanish on the bounding surfaces, the wave vector 
q can have only the values q = m7r/d(m = 1,2, ... ). 

Thus, the corresponding critical fields for the harmon- 
ics are 

Substituting into this expression the values of the physical 
constants and the experimentally achievable valued - 1 cm, 
we obtain the estimate H, - lo4 Oe. Thus, the magnitude of 
the minimum critical field is found to be rather large and so 
there exists a wide range of magnetic fields H-H, for 
which the instability is determined entirely by the first har- 
monic q. This is the case (weakly supercritical) that will be 
considered below. 

Analysis of the case y2 2 1 shows that the corresponding 
critical fields should be of the order of lo6-10' Oe, which is 
scarcely achievable in experiment. 

Thus, let H 2 H, . In this case, as was indicated above, 
if in the system there exist disturbances with k- kc = 1r//2d, 
they will grow, and as a result a region of quasi-periodic 
structure, with wavelength close to 2a/k,, should be 
formed. The character of the structure and the dynamics of 
its formation with increase of u should be determined by the 
nonlinear equation (7) .  However, in the weakly supercriti- 
cal case the solution can be obtained by a rather general 
method using the so-called amplitude equation, which was 
introduced in Ref. 4 and has been applied by many authors 
to describe a broad class of phenomena (see Refs. 5-7 and 
the literature cited therein). 

Equation (7),  in the dimensionless variables 

and with allowance for the fact that only the first harmonic q 
is important, takes the form 

In these variables kc = 1, and the width of the band of wave 
vectors for which the system is unstable is 
Ak = ~ v " ~ ( v  = (H - HE )/He is the supercriticality pa- 
rameter), while w (kc ) = v and is a maximum for the wave 
vectors in this band. In these same variables the solution of 
Eq. ( 8 ) can be represented in the form 

where A is a function that depends only weakly on 6 and T 

(dA /ag, aA / r  4 1 ) on account of the smallness of Ak and w.  
Proceeding to the study of Eq. ( 1 I ) ,  it is necessary to 

take into account the interaction of the different linear 
modes that arises from the nonlinearity. As a result of this 
interaction, higher and higher harmonics in 6 and T appear, 
for which the first harmonic is the "source." Their ampli- 
tudes can be determined by successive solution of an infinite 
system of equations. However, as follows from analysis of 
the structure of the nonlinearity, for small amplitudes A of 
the fundamental harmonic it is sufficient to take into ac- 
count only a few of the lowest harmonics, since the others 
will give a contribution of higher order in the amplitude A. 

The assumption that the amplitude A is small is confirmed 
by the result of the calculations. 

Solving the necessary equations for the lowest harmon- 
ics, we finally obtain 

cp= (Aei"A*e-'E)sin i1+A,f0(q) +(A2e2iF+A2*e-2'E ) f z ( q ) ,  

Substitution of the expression ( 13) into ( 11) gives for the 
amplitude A the equation 

which, in the literature, is customarily called the amplitude 
equation. By the scale changes 

Eq. ( 14) is brought to the more convenient form 

aZ/r3T=Z+d2Z/9X2-2 12 1 ' .  (15) 

It is easy to see that the solution Z = 0 of this equation is 
unstable in the region of wave vectors p2< 1 (which corre- 
sponds to 1 - ~ " ~ < k <  1 + v1I2 in the previous variables). 
As the time increases the system arrives at a stationary state. 
The stationary solutions of Eq. ( 15) have the form 

- ( i W p 2 )  ' ' ~ c ~ 7 . ~  a t -  

and exist for all p in the region p2< 1. It is clear that in the 
limit of large times the system should arrive at a stationary 
state corresponding to the minimum of the free energy and to 
IZ I = 1. It can be shown that such solutions are stable. 

For the case of arbitrary initial conditions, when Z fluc- 
tuates about Z = 0 over the whole sample, it does not appear 
to be possible to write down the temporal dynamics of the 
nonlinear stage of the development of the instability. How- 
ever, in the case of initial perturbations (fluctuations, de- 
fects) localized in a small region of the sample, or of the 
appearance in a small region of the sample (for whatever 
reasons) of disturbances larger in amplitude than in the rest 
of the sample, it is possible to describe the development at 
large times of the periodic structure being formed. 

For this type of initial conditions a fundamental role in 
the formation of the periodic structure is played by solutions 
of Eq. ( 15) that have the forms of a traveling wave, propa- 
gating with velocity c in the region of the unstable (Z = 0 )  
phase and carrying the latter over into the stable phase (with 
solution IZ I = 1). Such solutions Z(X, T )  =Z(X - cT) 
satisfy the equation 

where y = X - cT. Analysis of this ordinary differential 
equation shows that solutions bounded on the entire X axis 
have the form Z(X, T) = Zc exp(iO), where 8 is a constant 
phase (dO/dX = 01, and the real function Zc satisfies the 
equation 

d2Z,/dy2+cdZ,/dy+Z,-ZC3=0, (17) 

which can be interpreted as the equation of motion of a parti- 
cle with friction in the potential 

The particle trajectory of interest to us "leaves" the point 
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Z, = 1 with zero velocity at y = - a,, and, with the fric- 
tion, falls into the potential-well minimum at Zc = 0. In the 
neighborhood of Z,  = 0 (i.e., as y +  UJ ), 2, satisfies the lin- 
earized equation ( 17), whose solution of interest to us is 

where E is a root of the equation E~ + CE + 1 = 0. AS y de- 
creases, in the region Y-E-' In Z, the function Zc changes 
from zero to unity over a scale - I E  1 - I .  

Solutions of this type exist for any velocity c, but, as will 
be seen in the following, of all the solutions only a single 
solution, with c = 2, is realized. To convince ourselves of 
this, we return to the analysis of the linear stage of the devel- 
opment of the instability. The general solution of the linear- 
ized equation ( 15) has the form 

where Zp is the Fourier transform of the initial condition 
Z(X, T) at T = 0. We note that if Z(X, 0)  is concentrated 
on a finite interval, then Zp is an entire function of the com- 
plex variable p. 

Setting X = Xo + uT, we now consider the expression 
(19) as T- UJ.  The asymptotic form of (19) at large T is 
determined by the saddle pointp = iv/2 and has the form 

Z(X, T) -- (~c/T)'~Z,(iv/2) exp ( - vXo /2 )  exp [T (1 -u2/4)  1. 

(20) 
Here we have used the fact that Zp can be continued into the 
complex plane. 

It can be seen from (20) that for v>2  the quantity 
Z(X, T) decreases exponentially with increase of T, while 
for v < 2 it increases without bound. For v = 2, 

Z(X, T) = (ZIT) '"Z,(i) exp(-X,) = (~clT)'~Z,(i)  exp (2T-X) . 

(21 

In the entire region X > 2T  the quantity Z(X, T) -0. In the 
region X < 2T the solution constructed using the linear the- 
ory increases and becomes inapplicable (the nonlinear equa- 
tion must be used). Thus, the transition from the unstable 
state Z = 0 to a stationary stable state with bounded Z oc- 
curs only for v = 2. In this case, Z(X, Y )  is, with logarithmic 
accuracy, a function only ofX,, i.e., does not depend on the 
time. 

Comparison of (21) with the solution of Eq. ( 16) for 
c = 2 shows that these solutions can be matched with the 
same logarithmic accuracy. For the matching it is sufficient 
to set the constant in formula (18) approximately equal to 
T -'I2, which is equivalent to a correction Ac = - 4d lnT/ 
d T =  - 1/2T to the velocity c. (At large T the solution 
reaches the regime with c = 2). The phase 8 of the solution 
of Eq. ( 16) is given by the quantity arg Zp (i) = 8. 

The condition for applicability of the method of steep- 
est descent has in the present case the form T> XE (equiv- 
alently, X - Xo$ 2X; ) and reflects the fact that a solution of 
the type described above is formed in a region remote from 
the coordinate Xo of the initial disturbance, and after long 
times. 

Thus, it has been shown that, at long times, from a small 
disturbance localized on a finite interval a region of periodic 
structure with amplitudez = 1 is formed. The boundaries of 

this region are oppositely traveling waves, with the same 
velocities equal to f 2, and the shape of the front is deter- 
mined by Eq. ( 17). The characteristic size of the front is - 1. 
The coordinates of the fronts, 

and the constant phase 0 = arg Zp (i) of the periodic struc- 
ture are determined by the form of the initial condition 
Z(X, 0) .  

In order that such a pattern be observed, it is obviously 
necessary that additional conditions be fulfilled. First, the 
size L of the sample should be such that the front has time to 
be formed. Secondly, other disturbances (noise) present in 
the sample should remain small in the time taken by the front 
to traverse a distance of the order of the size of the sample. 
For an estimate of the characteristic time of the development 
of a disturbance we use Eq. ( 15) in the linearized form. Its 
solutions have the fo rm2  = Zp (0) exp(ipX + yp T), where 
yp = 1 -p2. The mode withp = 0 grows fastest, and so the 
characteristic time of the growth of a disturbance to a size - 1 is To- - lnJZ,(O) 1 .  Assuming that the perturbation is 
localized in the center of the sample, we obtain for the first 
condition: 

(in times -To the front does not succeed in reaching the 
boundary of the sample). To fulfill the second condition we 
must have 

where T, is the characteristic growth time of the noise, and 
therefore 

where Z,, (0)  are the initial conditions for the noise. These 
conditions impose restrictions both on the size of the sample 
and on the character of the disturbances. 

In dimensional variables the amplitude of the modula- 
tion of the periodic structure formed is uo = A (2v) ' I 2 ,  and, 
sinceR - I, for fields just above the critical value it is smaller 
than the distance between neighboring layers (i.e., defects of 
the layer structure are not formed). Both in the region of the 
periodic structure and in the region of the wave front, 
u, -v'I2(R /d) 4 1 and u, -v(A /d) 'I2< 1 forR <d.  Thus, 
for samples that are not too thin, the conditions of the deri- 
vation of Eqs. ( 5  ) are fulfilled. 

The flow velocities in the nonstationary region 
(v, -v3I2~/r7d and v, -v, ( A  /d)'I2) satisfy, as is easily 
verified, the conditions u, <Li/r,, ?1/pLi, and this justifies 
the neglect of the terms nonlinear in the velocities in the 
hydrodynamic equations. 

The velocity of the wave front is c = ( 16K /v) (TV /  

Rd)'I2, which is considerably smaller than the sound veloc- 
ity, ensuring the applicability of the incompressibility condi- 
tion. Thus, the results obtained agree with all the assump- 
tions made earlier. 

As was indicated above, for an estimate of the charac- 
teristic times to establish the solution it is necessary to know 
the concrete form of the initial conditions of the problem. 
Thermal fluctuations, of order - T(KB) - ' I 2  ln(d / l ) ,  
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though small in magnitude, can turn out to be important 
near defects that localize them. Distortions at the side boun- 
daries of the sample can play an important role as initial 
disturbances. However, the form of the initial disturbances 
affects only the stage in which a region of periodic structure 
sets in, and the subsequent behavior of this region will be 
described by the general characteristics obtained in this pa- 
per. 

"The inclusion of terms of the type K'(V,WV:W)2 and 
K " (V, Vk WV,V, W) in the energy does not essentially alter the result, 
since the contributions they make to the stress tensor either are small and 

do not change its structure or effectively produce a slight change in the 
numerical value of the modulus K. 
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