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Energy transfer from an incident sound wave to a reflected one is considered in a mixture 
consisting of a light gas with a small amount of heavy gas added. The transfer mechanism is 
based on a nonlinear interaction between the incident and reflected waves. 

I. INTRODUCTION perature, and density (c ,  T, andp, respectively) in this wave 
Barodiffusion plays an important role in a mixture of a are of the same order: - - 

light and a heavy gas.' Thus, it causes an anomalously strong Ac AT Ap M (v,v2> -1:-z-z-- 
damping of sound in a binary mixture with nearly equal c T p m s 2 '  
component mass concentrations. The damping rate is M /m 
times larger than in a pure gas, where M and m are the mo- 
lecular masses of the heavy and light components, respec- 
tively. Note that equal contributions are made to the damp- 
ing by the internal friction in the gas and by the friction 
against the wall (see Sec. 2).  

The anomalous dissipation in such a medium is also 
accompanied by strong nonlinear effects. One of them, sepa- 
ration of the mixture components in a standing sound wave, 
was investigated theoretically and experimentally in Refs. 2 
and 3. 

We discuss in the present paper the possibility of total 
reflection of an incident wave as a result of a nonlinear inter- 
action that gives rise to transfer of the energy from the inci- 
dent to the reflected wave. 

It is convenient to describe an effect of second order in 
the oscillation amplitude in terms of heavy test particles lo- 
cated in the field of a sound wave excited in the lighter gas. 
Taking part in the oscillations, the test particle acquires ad- 
ditional energy represented by an effective potential 

Here M is the mass of the trial particle, o is the gas velocity in 
the sound oscillations, and the angle brackets denote averag- 
ing over the period of the oscillations. The particles are redis- 
tributed in the effective potential in accordance with the 
Boltzmann law 

where c is the mass concentration of the heavy particles, T 
the gas temperature, and s is the sound velocity, which is of 
the same order as the thermal velocity. The sound wave 
draws the heavy particles into pressure antinodes, and this 
makes separation of the components possible.2,3 

If two traveling waves, incident and reflected, propa- 
gate in a gas at close frequencies w, and w, respectively, the 
effective potential is no longer stationary: 

where u ,  and v2 are the velocities in the incident and reflected 
waves. The averaging is over the fast sound motions. 

The redistribution produces in the gas a quasistationary 
wave with oscillation frequency Aw = w, - w2 
( Aw (w ,,a2). The modulations of the concentration, tem- 

Strong nonlinear interaction, described by Eq. ( 1.4), of 
the three waves of frequency w ,, w,, and Aw, can cause total 
transfer of the energy from the incident to the reflected wave. 
As in the earlier papers, we use the large mass ratio as the 
factor that enhances the nonlinearity which is usually weak 
in acoustics. 

We proceed to estimate the damping length of wave 1 or 
the growth length of wave 2. Assuming v , g v ,  (the reflected 
wave in a long tube is weakened by linear damping), we 
estimate the correction to the derivative au2/dx from the 
mass-flux conservation condition: 

where k is the wave number. Rigorous calculations ofS(do,/ 
ax)  and of the amplitudes in a quasistationary wave, using 
the equations of weakly linear hydrodynamics, are given be- 
low (Secs. 4 and 5).  The quantity Ap, and with it S(dv,/dx), 
is complex. The imaginary part of the complex factor left out 
of ( 1.5) determines, depending on the sign, the damping or 
the growth of the reflected wave. The sign of the nonlinear 
growth rate (decrement) 

is determined by the sign of Aw = w , - w,. 
If the incident-wave amplitude exceeds the threshold at 

which the nonlinear growth rate ( 1.6) becomes comparable 
with the linear one (Sec. 3 ) , 

where Iis the mean free path in the gas, an instability sets in. 
The reflected-wave amplitude Iv,/sl begins to increase. We 
assume that this process leads ultimately to a highly nonlin- 
ear regime in which the incident wave does not penetrate 
into the gas. To verify this prediction, an ultrasonic radiator 
must be placed at one end of the tube with the gas mixture, 
and a sensor at the other. When the ultrasound power rises to 
the threshold value, it should no longer be received. Esti- 
mates detailed at the end of the article yield the following 
parameter values: the emitter threshold power is - 10-30 W 
at a tube diameter 0.5 cm and at an ultrasound frequency 0.3 
MHz. 

The plan of the article is the following: In Sec. 2 we 
derive the fundamental equations and estimate the various 
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processes-barodiffusion, thermal diffusion, thermal con- 
ductivity, and viscous friction. In Sec. 3 we consider the lin- 
ear theory and estimate the linear, bulk, and boundary-layer 
damping. Sections 4 and 5 deal with the nonlinear theory in 
second and third order of perturbation theory, respectively. 
The threshold value of the incident-wave amplitude is ob- 
tained in Sec. 5. The final Sec. 6 contains the estimates and a 
discussion of the results. 

2. FUNDAMENTAL EQUATIONS 

We use the standard equations of the dynamics of a gas 
mixture, with account taken of the viscosity, heat conduc- 
tion, and diffusion.' We shall show below that thermodiffu- 
sion can be neglected if the binary-mixture molecular-mass 
ratio is small, m/Mg 1, and the concentrations of the two 
components are comparable, c- 1 - c - 1 .  This leads to 
some simplifications. Under these conditions the barodiffu- 
sion is anomalously large and plays the principal role in the 
dissipation mechanism and in the nonlinear phenomena. 

The flux J of the heavy component (with concentration 
C )  and the heat flux Q are proportional to the gradients of the 
concentration c, of the pressure P, and of the temperature T 
(Ref. 1 ) : 

Here p is the gas density, ,LA the chemical potential per unit 
mass (see Ref. 1, p. 321 ), and D and x respectively the diffu- 
sion coefficient and the thermal conductivity.. The dimen- 
sionless quantities k, and k, are called the thermo- and 
barodiffusion ratios.' The barodiffusion ratio is a purely 
thermodynamic quantity [Eq. (59.10 of Ref. I ) ,  and can be 
easily calculated for an ideal gas (Ref. 1, problem in $59). In 
the limit M /m ) 1 we have 

The thermodiffusion ratio k, is a kinetic quantity that de- 
pends on the character of the intermolecular interaction. An 
estimate of k ,  in the hard-elastic-sphere model is given in 
Ref. 4 [Eqs. (2.3), (2.8), (2.9), and (7.2)-(7.5)]. Form/ 
M g 1  andc-1 -c-1 we have 

Here d, and d,  are the diameters of colliding unlike mole- 
cules, and d,, is their arithmetic mean. 

It follows from the gasdynamic equations at k, = O  (see 
below) that VP/P) (m/M)2(VT/T) (in each order ofper- 
turbation theory in the nonlinearity). Thus, the neglect of 
thermodiffusion in (2.1 ) is justified. Using the expressions 
for the chemical potential of an ideal gas [Ref. 5, $543,931 
we readily obtain, to leading order in m/M, 

where C ,  is the molecular specific heat of the light gas, and 

E ,  and E ,  are certain constants typical of the given gases. 
It can be seen from (2.2) and (2.5) that the term 

k, (dp/ac),,, is a small quantity of order (m/M)' and its 
neglect in expression (2.2) for the heat flux is legitimate. 

Under our assumptions (m < M, c -- ( 1 - c) - 1 ) the 
light particles greatly exceed in number the heavy ones. The 
total number of particles n per unit mass is approximately 
equal to the number of light particles, and is expressed in 
terms of the mass concentration c in the form 

The average specific heat (c, ) per molecule is equal to the 
molecular specific heat cpZ of the light gas. The adiabatic 
exponent y is expressed in terms of c ,  in the usual fashion 
and is independent of the concentration: 

Finally, the light particles make the overwhelming contribu- 
tion to the specific heat: 

In the approximations described, the one-dimensional gas- 
dynamics is described by the following equations: the con- 
tinuity equation 

a + - (pv) -0, 
at ax 

the Navier-Stokes equation 

the diffusion equation 

the heat-conduction equation 

and the equation of state 

In Eqs. (I)-(IV) v is the velocity along the x axis, and the 
coefficient a is the kinematic viscosity: 

where 7 and < are the first- and second-viscosity coefficients. 
x denotes the thermal-diffusivity coefficient 

Equation (IV), which we arbitrarily named the heat-con- 
duction equation, is obtained from the heat-transfer equa- 
tion [Ref. l ,  Eq. (58.8) 1 if the derivatives of the specific 
entropy are expressed in terms of the derivatives of the pres- 
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sure, temperature and concentration, and if the diffusion 
equation (111) is used. Note that all the dissipative coeffi- 
cients-viscosity, heat-conduction, and diffusion-have the 
same order of magnitude v,l, where v, is the thermal veloc- 
ity of the light particles and I is the mean free path.2 

3. LINEAR APPROXIMATION 

Bulk and surface damping 

Linearization of the system (I)-(V) entails no diffi- 
culty. We present, however, a system of 3D linear equations, 
bearing in mind an application to the boundary-layer damp- 
ing problem: 

2+ po div v=O, 
at 

(3.1) 

d v 1 
-=-- VPf hoF (div v) +yo Av, 
at po 

(3.2 

The subscript zero labels unperturbed equilibrium quanti- 
ties. Symbols without subscripts denote deviations. The 
quantity A, in (3.2) is a linear combination of the kinematic 
viscosities: 

If the solution takes the form of a plane sound wave 
exp ( - iwt + ikx), the velocity v is directed along the wave 
vector (the x axis). The dispersion equation relating the fre- 
quency and wave number can be easily solved if the quanti- 
ties k 'D,/w, k 2Ao/w, k 2vo/w, k 'xO/w are assumed small. 
I t  is necessary to impose the stronger constraint 

To first order in this small parameter, the dispersion equa- 
tion takes the form 

(3.8) 

where s is the speed of sound and is determined by the rela- 
tion 

The + signs in (3.8) correspond to different wave-propaga- 
tion directions. r ( k )  stands for the linear bulk damping 
rate. All the relative amplitudes in the wave can be expressed 
in terms of one of them, say p/po: 

The + signs are in one-to-one correspondence in expression 

(3.10) for the velocity and in the dispersion relation (3.8). 
The condition (3 .7 )  means that the linear damping of 

the sound in the gas mixture is small. Note that in a pure gas 
the damping is determined by the viscosity and by the ther- 
mal conductivity, which make contributions of order kl  to 
r ( k ) / k .  The contribution (3.8) due to barodiffusion, is M /  
m  times larger. 

We proceed to calculate the damping in the boundary 
layer. When the gas moves along a boundary of a solid hav- 
ing a high thermal conductivity, the following boundary 
conditions must be met: the velocity v at the wall and the 
diffusion-flux component normal to the wall are zero, while 
the temperature at the wall is equal to the specified To. These 
boundary conditions can be satisfied by using the solutions 
of the system (3.1 )-(3.5); these solutions fall off rapidly 
with increasing distance from the wall (see, e.g., Ref. 1, 
problem 2 of $79). Assuming the wall to be locally planar, 
i.e., kR ) 1 where R is the radius of the tube, we seek a solu- 
tion in the form 

Here x is the coordinate along the sound-wave propagation 
direction and z is the coordinate perpendicular to the wall. 
The system (3.1)-(3.5) has three such solutions: for the 
viscosity, thermal conductivity, and diffusion modes. The 
dispersion relations for a given k determine the values of x :  

The square root is taken here with a positive real part. These 
are approximate expressions. They are the leading terms of 
an expansion in the small parameter kl. We write down with 
the same accuracy the oscillation amplitudes, which we label 
with the same subscripts as x, but use no subscripts for the 
amplitudes of the planar sound wave far from the wall: 

The remaining amplitudes, including the transverse velocity 
component, are zero to the indicated accuracy. Note that the 
amplitudes in the boundary-layer diffusion mode are M / m  
times larger than the amplitudes in the viscosity and thermal 
conductivity modes. The main contribution to the losses in 
the boundary layer is made by the diffusion mode, which 
does not exist in the pure gas: 

Substituting J from (2.1) and (dp /dc) , , -  from (2.5) in 
(3.13), we obtain for the boundary-layer damping decre- 
ment the expression 

where R is the tube radius. Note that, notwithstanding the 
smallness of (d,u/dc), ,  - T/M the contribution of the dif- 
fusion mode is M / m  times larger than the contributions of 
the two other modes (Ref. 1, problem 2 of g79). 

Equations (3.8) and (3.14) show that when a relatively 
small fraction of heavy admixture is added to a light gas both 
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the bulk and the surface damping of the sound increase by a 
factor M /m. 

The contribution of the diffusion mode to the surface 
damping is not taken into account in Ref. 3. The Q of the 
acoustic system was therefore overestimated by not less than 
10 times the experimental value. Allowance for the diffusion 
contribution may eliminate this discrepancy. 

4. NONLINEAR THEORY 

Quasistatic beats 

Consider nonlinear interaction of two sound waves, one 
incident along the axis from left to right, and the other re- 
flected in the opposite direction. All the quantities are pro- 
portional to exp [ik, (x  - st) ] in the incident wave and to 
exp[ik,(x + st) ] in the reflected. We assume that the wave 
numbers, and hence the frequencies, are close to one an- 
other: 

The nonlinear interaction gives rise to a third wave of fre- 
quency Aw = w, - w, and wave number 2k = k, + k,. 
Since the frequency difference is small, the resultant wave is 
quasistatic. The amplitudes of the various quantities in this 
wave can be calculated by expanding in the small parameter 
Ak /k. We use in addition, as before, the large parameter M / 
m. All the kinetic coefficients [of the (Kinematic) viscosity, 
of the thermal diffusivity, and of the diffusion) are of the 
same order. This allows us to neglect in the right hand sides 
of Eqs. (I)-(V) all the nonlinear terms containing these 
coefficients, compared with the barodiffusion terms. We la- 
bel all the amplitudes in the incident wave by the index 1, in 
the reflected by 2, and in the quasistatic by 3. 

It follows from the continuity equation ( I )  that v3/s is 
smaller by a factor Ak /k thanp3/po and by afactor T(k) /k)  
thanpg2/pt. Neglecting in the Navier-Stokes equation (11) 
the quantity v3/s and also the small terms due to viscosity, 
we express P3/P0 in terms of 

We retain in the heat-conduction equation (IV) all the terms 
linear in T3/To and in P3/Po. The drift nonlinear terms (i.e., 
those containing vd /dx) cancel out in the left-hand side by 
virtue of the linear-theory relations between the temperature 
and the pressure on the adiabat. Nonlinearities in the left- 
hand side of (IV) stem only from the logarithmic derivatives 
of the pressure and temperature with respect to time. The 
main nonlinearity in the right-hand side of (IV) is due to the 
barodiffusion term that contains the large ratio M/m. Sub- 
stituting P3/Po from (4.2), we obtain an expression for T3/ 
To: 

T3 Pip2 G,= -=G,- 1-4ir (k) /Ak 
To po2 ' 1+4ikzx/s Ak ' 

(4.3) 

It is necessary to take into account in the diffusion equa- 
tion (111) all the terms linear in c,. The nonlinear drift terms 
udc/dx in the left-hand side are of the same order as the 
nonlinear barodiffusion terms in the right-hand side. 
Allowance must also be made for the dependence of the dif- 
fusion coefficient on temperature and pressure. For diffu- 
sion of heavy particles in a gas this dependence is relatively 
simple (Ref. 6, $12): 

3T3 
D =  (4.4) 

where a, is the transport cross section, and the angle brack- 
ets denote averaging over a Maxwell distribution. The sec- 
ond equal sign in the equation pertains to the model of hard 
elastic spheres. In this model we have 

Using (4.5), we can express c,/( 1 - c,) with the aid of the 
diffusion equation in terms ofp ,p,/po2: 

Finally, taking the logarithm of the equation of state (V),  we 
can obtain p3/p,: 

5. INTERACTION OF QUASISTATIC AND REFLECTED 
WAVES 

The nonlinear interaction of a reflected wave with a 
quasistatic one can enhance as well as attenuate the latter. 
We separate the slow and fast oscillating parts of the depend- 
ence of the reflected-wave density on the coordinate x: 

wherep,(x) is a slowly varying function of the coordinates. 
We assume the quantities 

to be of the same order of smallness. We assume the second 
derivative ofp,/po with respect tox to be a quantity of higher 
order. The other quantities must also be similarly separated 
into slow and fast parts. 

Our aim is to derive equations that describe the evolu- 
tion of the slowly varying amplitudes. The above ordering of 
the quantities enables us to discard in the equations the non- 
linear terms that contain the dissipative coefficients a, X ,  
and D. The only significant linear dissipative term, just as in 
the linear approximation, is the barrodiffusion term contain- 
ing the factor M/m in the diffusion equation. 

The resultant system of equations is relatively simple 
and leads to the following equation forp2/po: 

Equation (5.2) contains information on the evolution of 
both the modulus and the phase of the amplitude p,/p,. It 
yields readily an equation for the squared modulus of the 
amplitude 

where the function f (Ak /k) in (5.3) is of the form 
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The function f (x)  is odd, has a single zero at x = 0, and 
tends to zero as x - _+ a. The extrema off ( x )  (one maxi- 
mum and one minimum) are located at the points 

The extremal values off (x)  are given by the equation 
$(a lb)  " (alb- bla)  

"--I=[ 7 1  [ $ ( a / b )  +a/b] [~p(a lb)+bla]  ' (5.6) 

In the region ofAk /kin which f ( Ak /k) > 0 (as determined 
by the sign of Ak), the decrease of the reflected-wave ampli- 
tude (from left to right) gives way to an increase when the 
amplitude Ip ,/po 1 exceeds its threshold value 
[2(y - 1 ) f (Ak /k) ] - ' I 2 .  This means onset of instability. 

6. ESTIMATES AND DISCUSSION 

Equation (5.3) for the amplitude is valid if the radius of 
the tube in which the sound is excited is many times larger 
than the wavelength A. In the experiment, the tube radius is 
bounded by the radiator power. Account must be taken 
therefore of the contribution made to the linear decrement 
by the boundary-layer damping. Equation (5.3) is modified 
in this case as follows [see (3.14) ] : 

(6.1) 

It is easy to obtain from (6.1) the threshold value of the 
amplitude in a tube of large but finite radius for the incident 
wave: 

Note that the contributions of the bulk and surface damping 
become equal at kR- (kl)-'I2. 

If our perturbation theory is to be valid all the way to 
the threshold, it is required that the third-order corrections 
to the amplitudep, be small compared with its initial value. 
This criterion can be written in the form 

On the other hand, it follows from (5.6) and (6.2) that the 
order of magnitude of the threshold (pl/po(2 is not less than 
kl. An estimate of I G, I near the threshold, i.e., at Ak /k- kl, 
yields according to (4.3), (4.6) and (4.7) a value on the 
order of M/m. Thus, the condition (6.3) for applicability of 
the perturbation theory reduces to the following relation 
between the parameters: 

Note that the condition (6.4) guarantees smallness of the 
linear damping. 

Let us estimate the threshold power of the radiator, us- 
ing the well-known equation 

We assume for the estimates f = 300 kHz, A = lo-' m, 
I = lo6 m, R = 5.10-3 m, s = 3- lo2 m/s, and P = lo5 Pa. 
Then we obtain the threshold power - 10 W. 

The criterion (6.3) is met at the given values of the 
parameters and at M/m 5 150. Note that the nonlinearity 
level -kl at which the instability appears in this system is 
small. Wavebreaking, second-harmonic generation, and 
other nonlinear processes set in at a considerably higher 
nonlinearity level (M/m)kl.  This suggests that nonlinear 
reflection in pure form is experimentally observable. 

It must be stipulated, however, that the approach a sta- 
tionary nonlinear regime and its stability are problems be- 
yond the scope of perturbation theory and call for further 
research. 

APPENDIX 

We estimate the threshold amplitude level and the 
threshold power for a mixture containing of hydrogen H, 
and sulfur hexafluoride SF,. We assume a mass concentra- 
tion 

The density, specific heat, adiabatic exponent, and speed of 
sound for pure hydrogen, and also the diffusion coefficient in 
the mixture and the ratio of the molecular mass components 
are7 

pd=0.8.10-4 g/cm3, cp=2.5 cal/g.deg, 

y=1.7, x=4.0~10-'cal/cm~s~deg, (A.2) 

The mixture density is (1  - c12 times larger than that of 
pure hydrogen. Accordingly the speed of sound in the mix- 
ture is smaller than in pure hydrogen at the same pressure by 
a factor (1 - c)  'I2. To calculate the thermal-diffusivity co- 
efficient in the mixture it is also necessary to introduce the 
correction factor 1 - c. We have thus in the mixture 

The remaining quantities in (A.2) remain unchanged. 
Substituting the given values of the parameters in (5.6), 

we get 

where the wave number is in reciprocal centimeters. To esti- 
mate the threshold amplitude and power, we choose the fol- 
lowing values of the frequency and of the tube radius 

Then 
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