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The coherent resonant interaction between multifrequency light and a multilevel system is 
considered together with the N-wave interaction of wave packets in a medium with a quadratic 
nonlinearity. The Lax representation of the self-consistent set of Maxwell-Bloch equations for 
this interaction is found. Soliton solutions resulting from the parametric transformation of 
ultrashort pulses in three- and four-level system ( N  = 3, and N = 6,  respectively) are 
constructed. Equations implementing the Backlund transformation, and the recurrence 
relations defining an infinite series of integrals of motion, are given for N = 3. 

INTRODUCTION 

The resonant and coherent interaction of light with a 
nonlinear medium has been actively investigated in recent 
times, both experimentally and The advent 
of picosecond techniques has necessitated the development 
and analysis of models describing the evolution and transfor- 
mation of ultrashort pulses of light in nonlinear media. 

The propagation of ultrashort pulses in two-level sys- 
tems has attracted most attention. Application of the in- 
verse scattering method7 has resulted in a description of the 
evolution of ultrashort pulses in nondegenerate media, both 
damping2 and growing (see the bibliography in Ref. 8).  The 
inverse scattering method has been successfully applied to 
the Maxwell-Bloch equations for certain degenerate transi- 
t ion~.~ ."  The transformation of ultrashort pulses with one 
carrier frequency into one or more ultrashort pulses with 
other carrier frequencies is possible in the course of para- 
metric multiphoton intera~t ion.~-~*"- '~ R esonance Raman 

is a simple scheme for this transformation. Us- 
ing the inverse scattering method and numerical techniques, 
the authors of Refs. 5 and 6 show that efficient transforma- 
tion of ultrashort pulses is possible in a three-level system 
interacting resonantly with two- and three-frequency fields. 

In general, the self-interaction of light fields must be 
taken into account in addition to the resonant interaction 
occurring during the propagation of light in a nonlinear non- 
resonant medium. The quadratic nonlinearity, giving rise to 
coherent three-wave interaction,"-l3 is the weakest nonlin- 
earity (whenever it is not forbidden by the symmetry of the 
problem). The characteristic time for nonresonant three- 
wave interaction is frequently the shortest of the nonlinear 
interaction times, and this indicates that the nonresonant 
three-wave interaction must be taken into account in studies 
of the propagation and transformation of ultrashort pulses. 
The following conditions must be satisfied if the nonreson- 
ant three-wave interaction is to take place: 

where k,, , aim are the central wave vector and the frequen- 
cy of the wave g i m ,  respectively. The resonant interaction 
occurs when the frequency aim is close to the frequency of 
the transition betwen levels i and m.  The nonresonant three- 
wave interaction is used in parametric amplification and 

transformation of ultrashort  wave^."-'^ The resonant inter- 
action may play a significant role in the dynamics of the 
parametric transformation of ultrashort pulses in a nonlin- 
ear medium and, conversely, the nonresonant three-wave 
interaction may accelerate the transformation of ultrashort 
pulses in a resonance medium, or it may slow it down. 

Theoretical analyses of coherent multiphoton interac- 
tions for times much shorter than the relaxation times of the 
medium encounter considerable difficulties due to the large 
dimension of the set of equations involved. Accurate trial 
solutions are required for the correct numerical solution of 
such models. Asymptotic solutions describing the final 
stages of the parametric transformation of ultrashort pulses 
can often be found but, unless a rigorous solution of the 
Cauchy problem is available, it is practically impossible to 
determine the initial conditions that takes the system to a 
given asymptotic state. The inverse scattering method is the 
most suitable technique for theoretical analysis of multipho- 
ton processes. Unfortunately, the application of this method 
to the solution of the Cauchy problem for the evolution of 
ultrashort pulses is restricted by a number of conditions im- 
posed on the parameters of the medium. Roughly speaking, 
the number of these restrictions increases as the square of the 
number of interacting fields. However, numerical calcula- 
tions6 have shown that, even when the deviations from these 
conditions are large and of the order of unity, the dynamics 
of the transformation of ultrashort pulses retains the basic 
features typical for the integrable case. 

In this paper, we present the Lax representation for a 
new, self-consistent set of nonlinear equations that can be 
integrated by the inverse scattering method. The system in- 
cludes both special cases of the Maxwell-Bloch equations 
describing self-induced transparency and resonant para- 
metric transformation of ultrashort pulses in a multilevel 
medium and the equations for the M-wave intera~tion."-'~ 
Section 1 examines a scheme for the resonant and nonreson- 
ant three-wave interaction between three-wave packets and 
a three-level medium. Soliton solutions describing the trans- 
formation of ultrashort pulses are described. In the follow- 
ing Section, the results are generalized to the four-level case 
and N = 6. Some integrable reductions of cascade transi- 
tions are discussed. The Backlund transformations and the 
recurrence relations defining an infinite series of integrals of 

25 Sov. Phys. JETP 65 (I), January 1987 0038-5646/87/010025-05$04.00 @ 1987 American Institute of Physics 25 



motion of the new integrable system are given in the Appen- 
dix for N = 3. 

1. RESONANT INTERACTION WITH A THREE-LEVEL 
MEDIUM AND NONRESONANT THREE-WAVE INTERACTION 

Three wave packets with slowly-varying envelopes 

interact resonantly with a three-level medium (see Fig. 1 ) . 
The carrier frequency wq is close to the i-j transition frequen- 
cy. When the nonresonant three-wave interaction is taken 
into account, the truncated Maxwell equations assume the 
form 

E,,=E,,', Vij=cnij-'; i , j , m = l - 3 ,  i Z j ,  i f m ,  j 2 m .  

( 3  

where dq , wq , nq are, respectively, the dipole moments, fre- 
quencies, and nonresonant refractive indices corresponding 
to the ic t j  transition, x is the nonlinear (second-order) sus- 
ceptibility of the medium, (pii ) are the off-diagonal compo- 
nents of the density matrix averaged over the frequency dis- 
tribution, and no is the density of the resonance medium. The 
Bloch equations for the density matrixpq are conveniently 
written in the form: 

where 

The set of equations defined by ( 3 )  can now be written in the 
form 

where x = 16~~n,h,/(w,~w,,w~,)"~(n,~n,,n~,)-'. Under 

FIG. 1 .  Transition and resonance interaction schemes for wave packets. 
Solid lines correspond to the wave packet with frequency close to the 
dipole-allowed transition frequency, whereas broken lines correspond to 
the wave packet with carrier frequency close to the dipole-forbidden tran- 
sition frequency. 

certain specific restrictions on the physical constants g, V 
and x, the set of equations defined by (4 )  and (5 )  can be 
represented by the compatibility conditions 

a,L+a,M=i [ M ,  L] (6)  

for the two sets of linear equations 

where A and B are constant diagonal matrices and /1 is the 
spectral parameter. The matrices L and M that implement 
the Lax representation of (4 )  and (5 )  have the form 

where A,, = a i ,  Bi, = b,, A ,  = B,  = 0, i f j ,  

and f ( c )  is the frequency distribution of the resonance medi- 
um. Substituting (9)-( 11 ) in (6 ) ,  and comparing with (4)  
and (5) ,  we find, after some laborious calculations, that the 
existence conditions for the Lax representation (9)-( 11 ) 
are 

where 

The physical constants V, g, v and x can be expressed in 
terms of the elements of matrices A and B, as follows: 

X =  (aibz-blaz+ azb3-bza3+a3bi- b3al)  

x [ (al-a,)  (a2-a,) (al-a,)  I-'", 

where we are assuming that 0 <a, < a, < a, .  
Conditions ( 12) and ( 13 ) correspond to the case where 

all three optical dipole transitions are allowed. Let us now 
consider the case of two allowed dipole transitions (transi- 
tions 1-2 and 1-3 in the Fig. 1 ). The 2-3 transition is forbid- 
den. The conditions for the existence of the Lax representa- 
tion, given by (9)-( 1 1 ), now become much simpler and take 
the form 

In the special case where V , ,  = V,,, conditions (12) and 
(14) are found to be identical with the conditions for the 
validity of the inverse scattering method (given in Refs. 5 
and 6).  This reduction describes only the resonant interac- 
tion with atomic transitions. Moreover, the symmetry of the 
problem was used in constructing the Lax representation 
(9)-(11). At exact resonance Lf(f) = S ( f )  1, the Lax rep- 
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resentation (9)-( 11 ) can be found by a reduction of the Lax 
representation for the set of equations that corresponds to 
the six-wave interaction. l 4  

The Lax representation given above enables us to use 
the inverse scattering method to investigate the transforma- 
tion of ultrashort pulses. Some of the results obtained with 
this representation are given in the Appendix. The simplest 
single-pulse solution can be found by the Zakharov-Shabat 
method.I5 The soliton solution is defined by the projector 

where mi are vectors forming the basis of the space 
M = I m P :  

mi=ai exp [-il (xui-'+tbiai-') - iRi].  

Following Ref. 15, we find that 

In the interaction scheme with two allowed dipole transi- 
tions 1-2 and 1-3, we find from ( 16) that 

18 i21  =B12[ch ( T1,)+ja3/az12 exp (T1,-q23)]-L, 
(17) 

Jb131=$13[ch(Tls)+lazla312 exp(Tl3+qZ3) I-', 

where 

Solution (17) can be obtained with the aid of a Backlund 
transformation (see Appendix). The asymptotic behavior of 
( 17) is determined by the sign of q,,. When q,, > 0, we have 

x+-m, IB1zl +Plz  sech (Ti,), 8 , , + O ,  
(18)  

x + ~ ,  81z+0, I 8 1 3 1 + p 1 3  secll (T13). 

The solution given by ( 17) and (18) describes resonant Ra- 
man scattering in a three-level system with nonresonant 
three-wave interaction taken into account for ( V,,  - V,,) 
xcii, -k,) <o. 

The transfer of ultrashort-pulse pump energy 8 ,, to the 
Stokes ultrashort pulse is determined by the amplitude of the 
pump pulse. Thus, for 7 > v,, where 7, is given by the con- 
dition q2,(7, ) = 0, the transfer of energy to the Stokes ul- 
trashort pulses does not occur. Unstable simultaneous prop- 
agation of the ultrashort pulses over allowed dipole 
transitions occurs when q,, = 0. The Lax representation giv- 
en above can be generalized to a larger number of resonance 
levels and fields. 

2. RESONANT INTERACTION WITH A FOUR-LEVEL MEDIUM 
AND THE SIX-WAVE INTERACTION 

The Maxwell-Bloch equations for the resonant interac- 
tion of six-wave packets with a four-level medium and the 

simultaneous six-wave interaction in a medium with a qua- 
dratic nonlinearity will now be written in the form 

where i, j, k, q = 1-4 and are not equal in pairs, and a, 
= 1-4 (mod 4).  Apart from the indices, the notation is the 

same as in the last Section. The coupling constant xi,, corre- 
sponds to the nonresonant three-wave interaction between 
fields for which ( 1 ) is satisfied. The figure shows the interac- 
tion scheme. The Lax representation for ( 19) is given by (9)  
and ( 10) with 4 X 4 matrices: 

Qii=o, (pij)= J pij(s, t, 5) f (f) (5-l+iO) -' d5, 
- rn 

The conditions for the validity of the Lax representation 
(9) ,  ( lo) ,  and (20) will, in general, consist (all dipole tran- 
sitions are allowed) of a set of conditions for each triad of 
fields for which ( 1 ) is satisfied: 

When the 2-3 and 1-4 transitions are forbidden, the condi- 
tions for the validity of the inverse scattering method assume 
the form 

Vz3=Vlc=0, Qij=Q, i,j=12,24,34,13; (22) 

As in the last Section, the solution of ( 19) can be performed 
with the aid of the Riemann problem. The final expressions 
for the field moduli in the case of the single-pole solution are: 

a3 
, 9 ? 1 2 = ~ 1 2  [ch ( ~ 1 2 )  I ; I exP(-~iz+ 932) 
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This solution was obtained for the case of two forbidden 
dipole transitions 2-3 and 1-4 (see Fig. 1) .  The asymptotic 
behavior of (23) is determined by the signs of q,, and q,,. 
When q,, < 0 and q,, > 0, we find from (23) that 

As can be seen from (24), the single-pole solution (23) de- 
scribes the parametric transformation of ultrashort pulses 
with a carrier frequency that is in resonance with the 1-3 
transition into ultrashort pulses with a carrier frequency 
close to the 2-4 transition frequency. The many-pole solu- 
tions of ( 19) correspond to the decay of the pump soliton 
into a number of solitons with different frequencies. 

We note that the Lax representation cannot be con- 
structed for the three dipole-forbidden transitions 2-3, 1-4, 
and 3-4. Numerical analysis of this case is of interest in this 
connection. The above system, which can be integrated by 
the inverse scattering method, can be generalized to a large 
number of resonance transitions and fields. The Lax repre- 
sentation for this system is given by (9) and (10) with matri- 
ces A,  B, and Q of large dimension. 

We now consider an exmaple of integrable Maxwell- 
Bloch equations of another type. Consider a model consist- 
ing of a set of cascade transition. We assume that the dipole 
moment p, - ,,, =,u(k) of a cascade transition is a slowly- 
varying function of the transtion number k. Coherent excita- 
tion of the levels is described by the following equations for 
the state amplitudes: 

The truncated Maxwell-Bloch equations for the field ampli- 
tudes g, that are in resonance with the k - 1 - k transition 
have the following form in the case of high radiative losses: 

where y is the radiative damping coefficient and w, is the 
k - 1 + k transition frequency. For large k, the set of equa- 
tions given by (25 l-( 26) reduces to the differential-differ- 
ence equation 

This equation originally appeared in the connection with the 
study of Langmuir oscillations and was integrated by the 
inverse scattering method by Manakov.' Soliton solutions of 
(27) describe the coherent transfer of excitation over a chain 
of energy levels. 

3. CONCLUSION 

We have investigated a new integrable model. The Max- 
well-Bloch equations describing self-induced transparency 
and parametric transformation of solitons in a multilevel 
resonant medium, and the decay type N-wave interaction, 
are special cases of this model. The Lax representation of 
this integrable system enables us to use the well-known exact 
methods employed in the solution of the Cauchy problem.' 
We have not examined the influence of the resonance inter- 
action of the parametric transformation of solitons in the 
course of the nonresonance three-wave interaction. The two- 
pole solution, which demonstrates the decay of the pump 
soliton into two stable solitons, can readily be constructed as 
in Ref. 13. The influence of the resonant medium on the 
dynamics of the nonresonant three-wave interaction is de- 
termined by the initial level populations. 

We note that the integrability conditions given above 
contain the parameters of both nonresonant and resonant 
media. This may facilitate the choice of media with param- 
eters close to the "exact" values. This is an important consi- 
deration because radiative losses by the ultrashort pulses de- 
crease as we approach the integrable case. 

The author is indebted to S. G. Rautian for anumber of 
valuable suggestions. 

APPENDIX 

We shall now find the Backlund transformation for 
N = 3 and exact resonance If(f) = S ( f )  1. We shall repre- 
sent the set of linear equations ( 7 )  and (8 )  by the second- 
order Riccati equations: 

1 1 pii-pss 
ddl,=-i~ (; -; + -) R ~ + W , , R ~ + W ~ ~  

h2 

where 

Since the problem is invariant under the operation of com- 
plex conjugation, we find that 
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where 

The Backlund transformation (A.  1)-(A.7) relates to two 
solutions 8; and gii of (4)  and (5) .  

Integrable nonlinear sets of equations have an infinite 
number of integrals of motion.' The recurrence relation de- 
fining this set for (4)  and ( 5 )  in exact resonance will now be 
reproduced. Following Ref. 13, we write 

m 

h 
I$.,+ ( x ,  h )  =B, erp( -i-x+ j~ (s ,  h )ds )  

a, I 

h + ( I - B i j )  A,  (r ,  h )  exp ( - i  - x i  j ( s ,  h )  ds ). 
a, 

Substituting this in (8),  we obtain 

The coefficients of the expansion in powers of 1/A 

A,  ( x ,  h )  = C A;:' ( x )  

are given by 
in+l)  ( n - t )  ("1 

Aij (aj-ai) = ( p j j - p i i )  aiaJij + iaiajd,Aij 

- a  A:" (aj-a,) Qjk-4:" 
n,+n,=n k 

+ai x (am) ' A ~ " ~ , , A ~ ~ '  
n,+ns=n-1 

(n-1) +aj [ (ai-a,) Qjk-4::' - (&aj) ' " p d k j  1. 
k f j  

For the density of the integral of motion 
m 

we have the relation 

i {' = - - C [ (aj-..) QJk (z) A:' - ( a a  J k  ) " p  I R  A'~'" )U I. 

In particular, X y )  is identical with the integral I,!", found in 
Ref. 13. The next integral has the density 
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