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A consistent derivation is given of the effective action for the topological sector of gauge fields 
that contains the solution given in Ref. 1 for the relativistic chromoelectric string with quarks 
at its ends. The lower bound for the Yang-Mills action in this sector is obtained. 

1. INTRODUCTION 3, we consider the stability of the solution against small fluc- 
This is a continuation of our previous paper,' in which tuations in the gauge field. 

we described a topologically nontrivial configuration of a 
gauge field that forms a chromoelectric string with quarks at 
the ends and a bare tension coefficient k,. This string differs 
from the Nambu string (and its subsequent generalizations) 
by the fact that: 

( 1 ) at the classical level, the world surface of the string 
in Euclidean four-dimensional space has a constant scalar 
curvature R,  where IR 1 -k,, and 

(2)  the string action is quantized as a consequence of 
the topological restrictions that are common in quantum so- 
liton (instanton) theory. 

These properties suggest that, when quantum fluctu- 
ations about the string field are calculated, it will be possible 
to restrict the analysis to the quasiclassical approximation 
and thus avoid the well-known pathologies that arise in 
string quantization. 

The essence of the problems that we consider here is as 
follows. The string field configuration was obtained in Ref. 1 
as a solution of the equations of motion, found by taking the 
variation of the effective action S,, for the hadron field cor- 
relators. The form of S,, was determined by observing that, 
in the expansion in terms of the number N of colors, the 
principal contribution was provided by planar diagrams. 
Consequently, when the correlators are evaluated, we need 
only integrate over a certain subclass of gauge fields that 
provides the biggest contribution in the leading order in 1/ 
N. A subclass of this kind, consisting of two-dimensional 
fields, was determined in Ref. 2 on the basis of intuitive con- 
siderations and the hypothesis of dimensional red~ct ion ,~  
which states that, in the confinement phase, the four-dimen- 
sional Yang-Mills theory reduces effectively to a two-dimen- 
sional theory. 

This choice of the subclass of fields was subsequently 
justified by the results reported in Ref. 2, since it led to a 
string field whose contribution to the functional integral did 
not vanish as N- CQ (in contrast to, for example, the contri- 
bution of instantons4). 

In the present paper, we use topological arguments to 
give a consistent derivation of the above subclass of fields, 
which, in turn, provides a rigorous justification for the deri- 
vation of S,,. This means that the chromoelectric string 
(with the bare tension coefficient) is obtained from first 

2. DERIVATION OF EFFECTIVE ACTION 

The hadronic n-particle correlator K (  1, ..., n ) in Euclid- 
ean space is given by 

where 

B - 5  dpc-4) 1 D) DIPt exp(-SY-M), 

The gauge-invariant quantities M(Ti  ) ( i  = 1, ..., n) in 
( 1 ) are given by 

=)bt ( y i f )  [ P  exp ( - i r : l  d x , , ~ ; ) ]  'pcr,.ly,), (3)  
Iil C C '  

and are viewed as the field operators of composite mesons. In 
these expressions, a, 0 is the set of indices of the Lorentz 
group O(4) and the flavor group and c. c' are the indices of 
the color gauge group SU(N). The integral with respect to 
x, in (3)  is evaluated along the path Ti joining the points y, , 
y;.  The connected part of the correlator ( 1 ) within the 
framework of the 1/N expansion can be reduced5s6 to the 
expression 

n 1 2  

K ( i ,  ..., n ) ~  & p n ~ x q { e r p [ -  f ~ d y ( $ + A n 2 ) ]  
perm q = L  

- 
7 ,  

A 

where 

principles in gauge field theory, using the computational 
procedure described in Ref. 1. 

0 (I') = T ~ [ P  exp( -ie$ .. dx,, A , , ) ]  , 

Our paper is constructed as follows. Section 2 gives a 
derivation of the effective action for the topological field sec- and 6, is the parity of the Fermi-field permutation. The 
tor containing the solution describing the string. In Section closed contour r in (5 )  consists of the path Ti in the opera- 
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tors M ( r i  ), whose ends are joined by the quark trajectories 
x, (y)  (see the figure in Ref. 1 ). The variable y parametrizes 
the contour in accordance with x, = x, (y) ,  and varies 
monotonically from zero to unity with x, (0)  = x, ( 1 ) . 

Next, O ( r )  can be rewritten in the form of a functional 
integral over the Grassmann fields f, (y)  (c = 1, ..., N) 
(Refs. 5 and 7) that belongs to the fundamental representa- 
tion of SU(N) and is scalar under the Lorentz group O(4): 

After that, each term in (4)  is written in the form 

where 

From now on, the functional integral (8)  will be exam- 
ined in the quasiclassical approximation." This means that 
we must have classical self-consistent solutions A'', c ' ,  xc' 
of the equations of motion, obtained from the condition 
SS = 0. In particular, if we take the variation of (9)  over the 
Grassmann field 6, we obtain the equation 

from which it follows that c' is covariantly constant. The 
formal solution of ( 10) can now be expressed in terms of the 
ordered exponent 

[C1(O) is arbitrary], which is an element of the group 
SU(N). The field l ( y )  is defined on the contour r and is a 
mapping of this contour into the group SU(N). Since 
SU( N) is singly-connected for N22, the mapping ( 1 1 ) is 
topologically trivial, i.e., a, [SU(N) 1 = 0. The only excep- 
tion is the spontaneous breaking of SU(N) to the local sub- 
group U( 1 ), since a, [ U( 1 ) ] = a, (S ' ) = Z, where Z is the 
group of integers and a, is the first homotopic group of map- 
pings. We know that topologically nontrivial solutions of the 
classical equation are stable field configurations. We shall 
therefore confine our attention to evaluating the contribu- 
tion of precisely these solutions to the integral (8).  If the 
gauge field A'' implements the spontaneous breaking of 
SU(N) to U( 1 ), we can choose a gauge in which the ordered 
exponent in ( 11) reduces to the usual exponent. (Special 

cases of fields for which this cannot be done will not be exam- 
ined here). 

Moreover, since r' (y)  is a solution of the differential 
equation ( lo) ,  we demand that it be single-valued. All in all, 
this leads to the requirement that the argument of the expo- 
nential in ( 11 ) be determined by the integral of the Abelian 
field a,, where, for a closed contour I', this integral must 
assume the discrete values given by 

where FN is a number that depends on the dimension N of 
the group SU(N) and Q is the number of "windings" in the 
mapping r + U( 1 ). A specific example is given in Ref. 1, 
where the solution ( 1 1 ) assumes the form cc ( y) = 
expC - ip( y)  )l, (0). The phase 

does not depend on the color index c (c = 1, ..., N) and FN is 
identical with the quadratic Casimir operator 
FN = ( N  - 1 )/2N. The phase p ( y) generates the map- 
pings S ' +S ', which split into homotopic classes character- 
ized by the number Q. 

Mappings in a given class cannot be continuously de- 
formed to the mappings of another class without violating 
the single-valuedness of c' (y) .  

Consider an arbitrary surface Z with the boundary 
SZ = r .  This surface is specified by the equation 
X, = Z, (qi 1; q0 = T, q '  = 0. Condition (12) leads to the 
quantization of the flux of the Abelian field corresponding to 
the contour r :  

where F,, = d, a, - d,a,, and the quantity 

has only components that are tangential to X. The gauge 
field that is proportional to a, is topologically nontrivial, so 
that it is stable with respect to small fluctuations only when 
( 13) defines the quantization of the total field flux and not of 
some random part of it. It is only when this condition is 
satisfied that the number Q determines the lower limit for 
the action of the gauge field. Since the contour r forms a 
one-dimensional boundary, this requirement can be satisfied 
only by two-dimensional fields that "live" on the surface Z 
with the boundary dB = r. (Known examples of topologi- 
cal solutions do not, ofcourse, contradict this statement. For 
example, for the 't Hooft-Polyakov monopole, we have a 
three-dimensional field and a two-dimensional boundary; 
for instantons in the Yang-Mills theory, we have a four-di- 
mensional field and a three-dimensional boundary. There 
are analogous propositons for the vortex solutions, such as 
the Abrikosov filaments; Ref. 9. ) 

Consequently, if we wish to isolate the contribution of 
field configurations with topological index Q [see\( 13) 1,  we 
must integrate over the subclass of two-dimensional gauge 
fields that are related to the four-dimensional fields in accor- 
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dance with AP(q) = (dz,/hi)A; [z (v) ] ,  i = 0,1, 
p = 0,1,2,3. The fields A ;(v) are defined on the surface Z 
with the boundary dI; = r. When this is taken into account, 
the approximate evaluation of the expectation value 
(O(r)) ,  (5)  now reduces to integration over A P(v) 
-A P(8) for a fixed surface I;, followed by summation over 
the surfaces 2,  i.e., 

where 

andg = det gik , gik (77) = (dz, /dvi (dz/dvk ) is the metric 
tensor on the surface I;. Since the action given by (15) msut 
be dimensionless, we have changed the normalization of the 
field A .+A in ( 16) in accordance with the equation 

where d is an arbitrary constant with dimensions [ l /m],  
and E is a dimensional bare charge (the symbol - will be 
omitted henceforth) .'' 

The contribution of the topological sector of fields with 
index Q to the integral (8)  can now be written in the form 

where 
n 7. 

Since r is the boundary of the surface 8 ,  in the last term 
we have put 

and have changed the normalization ofA in accordance with 
( 17). The action is invariant under arbitrary transforma- 
tions of the coordinates vi and y. The Euclidean operation of 
conjugation defined by (7') ensures that S[{] is real. The 
action given by (19) is, indeed, the result we require. Its 
variation leads' to the equations of motion with boundary 
condition indicating the colored quark current flowing over 
the contour I' = d8.  The two-dimensional field A P(q) satis- 
fying these equations forms a relativistic chromoelectric 
string.' 

We have therefore established that the action S,, given 

by ( 19) arises consistently from the correlator ( 1) when we 
evaluate the contribution of the topological sector Q deter- 
mined by this action. We have thus shown that the relativis- 
tic string examined in Ref. 1 must be looked upon not as yet 
another phenomenological model in hadron physics, but as a 
nontrivial solution of the field equations in non-Abelian 
gauge theory. 

3. LOWER LIMIT FOR THE ACTION S,[A] IN THE 
TOPOLOGICAL SECTOR O 

We shall now show that the gauge part of the action 
( 1 9 ) ,  S,,[A], has the lower bound (for fields 
A = A'' + SA, where SA is a small fluctuation): 

The field A belongs to the homotopic class with the 
number Q and, conseqently, according to ( 13), it is identical 
with A'' on the boundary dB (to within the gauge). The 
equal sign in (20) corresponds to the solutions of the equa- 
tions of motion for A, i.e., 

It follows from the results reported in Ref. 1 that, for 
A =AC1, 

where Ia (7) is a covariantly constant function of the coordi- 
nates r]' that belongs to the associated representation of 
SU(N), where P I a  = ( N  - 1 )/2N = FN,  and e,, is the 
antisymmetric unit tensor. In an arbitrary gauge, the num- 
ber Q is given by' 

In the Abelian gauge in which I" = const, 

Q assumes a form corresponding to ( 13 ) : 

We now begin with the identity 

where the signs f corresponds to Q = + 1 Q 1, respectively. 
Using (22) and (23) together with (27), we obtain 

Consider the second term in (28). The field A is not neces- 
sarily a solution of (21) but, by definition, belongs to a class 
with the same Q as A" (small fluctuations SA do not affect 
the discrete number Q). On an open surface I;, we can al- 
ways transform to the Abelian gauge for the two-dimension- 
al field A P. The integral over the surface I; then reduces to 
the integral over the boundary, as in (26). Since the field A is 
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identical with A'' on the boundary SZ, the second term in 
(28) 

is equal to 2nQ, and this takes us directly to (20). 
Thus, the small fluctuations SA produce an increase in 

the action S,., , which signifies the stability of the string- 
like configuration of the field A"' against SA (other variables 
being fixed). 

"This method is examined in the presence of Grassmann fields in, for 
example, Ramond's book.' 

* ' I t  is noted in Ref. 1 that the final result for S[A" ] is independent of d. 
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