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Einstein's equivalence principle is considered in connection with processes that take place in 
accelerated detectors of elementary particles. It is shown that allowance for the vacuum 
("zero-point") fluctuations of the fields does not give rise to violation of the equivalence 
principle, and from the behavior of the detector it is not possible to establish whether it is in a 
homogeneous gravitational field or is uniformly accelerated in Minkowski space. The 
temperature of a detector at rest on the surface of a static massive body is identically equal to 
zero (in disagreement with the opposite statement of Boyer'). 

1. INTRODUCTION 

It is well known (see, for example, Ref. 2) that a photon 
detector moving in Minkowski space with constant accelera- 
tion a (under the influence of an external force of nongravi- 
tational origin) emits photons and is also excited as if it were 
in a field of thermal photons with temperature T, = a / 2 r  
(we take c = fi  = k = 1, where k is Boltzmann's constant). 
On the other hand, it follows from the equivalence principle 
that all physical phenomena take place in the same way in a 
uniformly accelerated elevator and in an elevator at rest in a 
homogeneous gravitational field (for example, one standing 
on the surface of the "almost flat" Earth). Naive application 

um in Minkowski space that must be associated locally with 
the vacuum in the gravitational field of a static body (not a 
black hole!) (see also Refs. 5 and 6 ) .  Then in complete 
agreement with the equivalence principle a uniformly accel- 
erated detector in the Rindler vacuum and a detector at rest 
in the gravitational field of the static body will not be excited. 
We shall also show how the equivalence principle must be 
applied to physical processes taking place, in the gravitation- 
al field of a black hole. A method capable of leading to ex- 
perimental realizaton of the Rindler vacuum (cf. Ref. 7)  is 
discussed at the end of the paper. Some technical details are 
put in the Appendix. 

of the equivalence principle to the detection led 
2. QUANTUM DETECTOR IN MINKOWSKI SPACE AND IN Boyer' to conclude that a detector on the surface of the OF A BODY 

Earth (even in the absence of the microwave background 
radiation) must also detect photons corresponding to the Following Ref. 2, we shall, to simplify the expressions 
temperature T, = g/277-, where g is the acceleration of free below, replace the electromagnetic field by a massless neu- 
fail, g = - a (see also Ref. 3 ) .  In other words, it is asserted tral scalar field p. AS detector of the field p, we shall use a 
in ~ ~ f .  1 that T, is the minimal temperature to which bodies two-level point system %hose interagion Hamiltonian with 

lying on the surface of the Earth can be cooled by radiation the field p has the form H,,, = $(x) V, wherex is the coordi- 
(in the absence of other sources of heat or cold). Thus, it 
would appear that not only black holes but all gravitating 
bodies possess a nonzero temperature. At the same time, 
direct quantization of fields in the Schwarzschild metric 
shows that thermal properties arise only in the case of black 
holes i.e., geometries with an event horizon (see, for exam- 
ple, the review of Ref. 4).  On this basis, one might even 
conclude that in quantum field theory the equivalence prin- 
ciple is not satisfied and by means of a photon detector one 
could establish whether one is in an elevator in a homogen- - 
eous gravitational field or moves with uniform acceleration 
in Minkowski space. 

The paradox is resolved by noting that the physical pro- 
cesses in different elevators will take place in exactly the 
same way only when the initial conditions specified for these 
processes are the same, as is assumed in the equivalence prin- 
ciple. In the case of quantum detectors, this assertion takes 
the following form: A detector accelerated in Minkowski 
space will behave in the same way as a detector at rest in a 
homogeneous gravitational field if the quantum state of the 
detected field in the Minkowski space corresponds to the 
quantum state of the detected field in the gravitational field. 
It is well known5 that in Minkowski space two different 
vacuum states correspond to inertial and uniformly acceler- 
ated observers, namely, the Minkowski vacuum and the 
Rindler vacuum. We shall show that it is the Rindler vacu- 

nate of the detector and is an Hermitian operator having 
transition matrix elements between the ground and excited 
levels of the detector. 

As is shown in Ref. 4, the definition of the vacuum in- 
volves the choice of a locally timelike Killing vector field. In 
other words, it is necessary to choose coordinates T,P in 
which the metric tensor does not depend on the time coordi- 
nate T. Then the operator @ ( T , ~ )  can be represented in the 
form of the sum 

where p,,, ( p)e - '"' are the wave functions of the quanta of 
the field p, satisfying the equation V, V, (p,,, (p)e - '"' ) 
= 0, a& and a,,, are the creation and annihilation opera- 

tors, and m is the set of quantum numbers. The vacuum state 
is determined by the condition ri,,, 10) = 0. Note that in 
some frames of reference (for example, rotating frames) the 
lower limit of the integration over w in Eq. ( 1 ) is nonzero. 

In the Lorentz coordinates t ,  x, y, z the Minkowski 
space metric is obviously independent of the time, the func- 
tions p,,, have the form p:, ( r )  = eikr/2(w) ' I 2 ,  and the 
corresponding vacuum is the Minkowski vacuum 10, ) . 

1 1  Sov. Phys. JETP 65 (I), January 1987 0038-5646/87/010011-04$04.00 @ 1987 American Institute of Physics 1 1  



To determine the Rindler vacuum, we introduce the 
Rindler coordinates 7, f ,  y, z, which are defined in the region 
x > l t l  by 

In these coordinates, the Minkowski space metric becomes 

and does not depend on the time 7. The wave functions p,,, 
are determined in the region x > It / by the expression (see, 
for example, Ref. 8 )  

where x = ( x ,  ,x, ) ,w = (y,z), and K, ( x )  is a modified Bes- 
sel function of the second kind. Note that although we have 
defined the expressions (2 )  and (4)  only for the region 
x > ( t  ( the corresponding expressions can also be defined in 
the remaining three quadrants of Minkowski space. Thus, 
the Rindler vacuum is defined globally. But if we restrict 
ourselves to considering physical processes taking place in 
the regionx > It 1 ,  then, as is shown in Ref. 2, the Minkowski 
vacuum represents a thermal bath excited above the Rindler 
vacuum. The local temperature of this bath depends on the 
spatial Rindler coordinates: 

where a({) is the acceleration to which nonmoving Rindler 
observers are subject, and it also depends on the coordinate 
f .  The temperature T(f ), defined in accordance with (S), 
naturally satisfies the condition of thermodynamic equilibri- 
um in the gravitational field: T(g)gi, = const. 

Thus, the definition of the vacuum involves the choice 
of a stationary coordinate system. In the case of a spherically 
symmetric gravitating body, Schwarzschild coordinates are, 
to within substitutions that do not affect the choice of the 
vacuum, such coordinates. In Refs. 8 and 9 the connection 
between these coordinates and Rindler coordinates in flat 
Minkowski space was already pointed out. A detector on the 
surface of the Earth has constant Schwarzschild spatial co- 
ordinates, while a uniformly accelerated detector in Min- 
kowski space is at rest in the Rindler coordinates. In addi- 
tion, the metric coefficient goo near the surface of the Earth 
has in the approximation of a weak gravitational field the 
form 

where h is the height above the surface of the Earth. This 
expression corresponds to expansion of the exponential in 
formula ( 3 )  up to the linear terms, g,, = e2"5 - - 1 + 2af, 
whereas in Lorentz coordinates we should have g o o r  1. 
Therefore, the Rindler coordinates correspond to Schwarzs- 
child coordinates, and the Rindler vacuum in Minkowski 
space corresponds to the Schwarzschild vacuum near the 
Earth (the so-called Boulevard vacuum). 

A body that is at rest in Rindler coordinates has never- 
theless a nonvanishing absolute (invariant) acceleration 
a({). We show that, in complete agreement with the equiv- 
alence principle, a detector that is in the Rindler vacuum and 
at rest in the Rindler coordinates is not excited. This asser- 
tion is almost obvious. The probability amplitude for the 
process consisting of excitation of the detector and simulta- 

neous emission of a quantum of the field q, is 

+ rn 

X erp ( i ~ E C i s R e - ~ ~ )  ds-6 (E+Qe-"), ( 7 )  

where { and w are the constant spatial coordinates of the 
detector, E is its excitation energy, and the S function ex- 
presses the energy conservation law in the Rindler coordi- 
nate system. Since R 2 0 and E> 0, the amplitude satisfies 
A = 0, and the detector is not excited. 

Summarizing our calculations, we formulate assertions 
that can also be regarded as a consequence of the equivalence 
principle: If an observer is in an elevator and feels a force of 
gravity corresponding to the acceleration g and a photon 
detector he is holding does not detect any radiation, then 
either the elevator is on the surface of the (cold) Earth or it 
moves with constant acceleration g through Minkowski 
space in which the Rindler vacuum is realized. But if the 
detector detects photon radiation corresponding to the tem- 
perature T, = g/2a, then either the elevator is on the sur- 
face of the Earth and is surrounded by thermal radiation of 
temperature T, emitted by some external source, or it moves 
with acceleration g in Minkowski space in which the Min- 
kowski vacuum is realized. It must be borne in mind that the 
proof of the equivalence principle has here, so to speak, a 
theoretical nature, i.e., we establish that this principle is in- 
deed contained in the formalism of the theory. By itself, this 
neither replaces nor ensures experimental verification of the 
equivalence principle, a task that was in essence already be- 
gun by Galileo. 

Thus, the quantum vacuum with which we are dealing 
in the gravitational field of the Earth is in fact the Rindler 
vacuum; more precisely, it is identical to the Rindler vacuum 
in a region of space whose dimensions are determined by the 
experimental apparatus and the acceleration a ({) by the ac- 
celeration of free fall on the Earth. To obtain from this vacu- 
um the true Minkowski vacuum it is necessary to "heat" the 
laboratory absolute vacuum to the temperature T , ,  
~ 4 .  lop2' OK. Since this temperature is extremely low, the 
difference between these vacuums in the region considered 
can be ignored from the practical (but not the fundamental) 
point of view. If our apparatus cannot distinguish the tem- 
perature T,,, from the absolute zero, it can be assumed that 
on the Earth we are dealing with the Minkowski vacuum. 

Can an experimentalist in the Minkowski vacuum cre- 
ate in a finite volume a state corresponding to the Rindler 
vacuum for some large given acceleration a? This is possible. 
It is necessary to make an elevator with mirror walls that 
perfectly reflect the quanta of the field (photons) and give it 
an increasing acceleration up to the acceleration a. As the 
acceleration is increased, the walls of the elevator will ra- 
diate photons, but when the acceleration of the elevator be- 
comes constant, this radiation will cease. The photons radi- 
ated in the process of reaching the constant acceleration 
must be absorbed by some absorber previously placed in the 
elevator. As is noted in Ref. 7, if the elevator is brought to the 
acceleration a adiabatically (i.e., slowly), the reflecting 
walls will not radiate photons, and one will be able to dis- 
pense with the absorber. In any case, when no photons re- 
main in the elevator moving with constant acceleration the 
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Rindler vacuum corresponding to this acceleration will be 
realized in it. 

3. THE EQUIVALENCE PRINCIPLE AND NONUNIFORM 
GRAVITATIONAL FIELDS 

Hitherto, we have assumed that the inhomogeneity of 
the spherically symmetric gravitational field does not pre- 
vent application of the equivalence principle to the behavior 
of the detector, since the size of the region of space in ques- 
tion can be taken sufficiently small. Indeed, the inhomoge- 
neity scale of the gravitational field on the surface of a static 
body is usually determined by means of the curvature tensor 
RapYS (or, more precisely, the value of its invariants) and is 
characterized by a radius of curvature L , = R 3 1 2 ~  g I", 
where R is the radius of the body (the radial Schwarzschild 
coordinate), and R,  is its gravitational radius. When we 
compare a thermal bath in a homogeneous gravitational 
field with the Minkowski vacuum, the important thing for us 
is the constancy in this field of Tin, = T g g g ,  whereg,, is the 
corresponding coefficient of the metric tensor. This leads to 
the appearance of one further quantity with the dimensions 
of length, L,, which characterizes the gradient of the 
gravitational field, with L, < L,. Let us find this quantity. 

In an inhomogeneous spherically symmetric gravita- 
tional field, Ti,, depends on the spatial coordinates. There- 
fore, if we excite above the surface of a gravitating body a 
thermal bath whose temperature on the surface of this body 
is Tg,,, , then at the characteristic distance L , z R  from the 
surface of the body there will be a discrepancy between the 
temperature T(r)  of this bath and T,,,, . Since in the case we 
consider R > R, , it follows that L, < L ,  and the influence of 
the gradient of the spherically symmetric gravitational field 
on the results of the measurements is determined by a = I / 
L,, where 1 is the characteristic scale of the measuring appa- 
ratus. In our case, I = I(E,g), where E is the excitation ener- 
gy of the detector. The excitation intensity of the detector, 
i.e., the magnitude of the effect to which we wish to apply the 
equivalence principle, is determined by the parameter 
0 = exp ( - 27rE /g) . For given g, we can make the radius R 
of the body arbitrarily large, since these quantities are relat- 
ed by 

Increasing R, , for a given g we can increase R without limit, 
i.e., for unchanged value of the observed effect we can 
make the gravitational field gradient tend to zero. Thus, 
there exist bodies so massive that the equivalence principle 
can be applied to the behavior of detectors on their surface. 
Therefore, the paradox described at the beginning of this 
note did indeed require resolution, since it could not be eli- 
minated by referring to the inapplicability ofthe equivalence 
principle due to the inhomogeneity of the gravitational field. 

4. QUANTUM DETECTOR IN THE GRAVITATIONAL FIELD 
OF A BLACK HOLE 

We now consider the application of the equivalence 
principle to the behavior of a detector in the gravitational 
field of a static (eternal) black hole. In such a gravitational 
field, three different quantum states of the fields are called 
vacuum states (see, for example, Ref. 5 ) .  The first vacuum, 

called the Boulevard vacuum, is determined using the Kill- 
ing vector field associated with shifts along the Schwarzs- 
child time, and it therefore corresponds to the vacuum 
around a cold Earth. In other words, a detector in the Boule- 
vard vacuum at a constant distance from the black hole does 
not detect photons. But a detector at rest in the Boulevard 
vacuum above which thermal radiation of temperature T, is 
excited will behave like a uniformly accelerated detector in 
the Minkowski vacuum. 

The two remaining vacuums (the Unruh and Hartle- 
Hawking vacuums) simulate the physical situation which 
arises when a black hole is formed as a result of a collapse 
taking place, respectively, in empty space or within a cavity 
with reflecting walls. These vacuums are not associated with 
any globally defined Killing vector field, and therefore they 
do not correspond to any vacuum of Minkowski space. The 
quantum field states known as the Unruh and Hartle-Hawk- 
ing vacuums represent radiation of thermal nature (with 
Hawking temperature TH = 1 /4~R,  ( 1 - R, /R ) ' I 2 ,  where 
R is the radial Schwarzschild coordinate) excited above the 
Boulevard vacuum, just as the Minkowski vacuum is ther- 
mal radiation of temperature T, (<) excited above the 
Rindler vacuum. A detector at rest in the Unruh or Hartle- 
Hawking vacuum will be excited (by analogy with a detector 
at rest in the Rindler coordinates in the Minkowski vacu- 
um), but the temperature TH (R)  detected by such a detec- 
tor differs from the temperature corresponding to the invari- 
ant acceleration of the detector. Specifically, the excitation 
temperature is TH (R)  = TgR '/R i. Therefore, with the 
Unruh or Hartle-Hawking vacuums it is necessary to associ- 
ate thermal radiation fields of temperature TH excited above 
the Rindler vacuum, and it is only near the horizon of the 
black hole, where TH (R)  z Tg,,, , that they correspond to 
the Minkowski vacuum. In other words, a detector at rest 
near the horizon in the Unruh or Hartle-Hawking vacuum is 
excited in the same way as a detector in the Minkowski vacu- 
um that has the same invariant acceleration. Thus, the 
equivalence principle also applies to physical phenomena 
taking place in the gravitational field of a black hole. 

We thank V. L. Ginzburg, K. S. Thorne, and V. P. Fro- 
lov for discussing the results. 

APPENDIX: DEFINITION AND PROPERTIES OF THE 
RINDLER VACUUM 

We consider in more detail the indeterminacy in the 
procedure of quantizing a scalar (or any other) field e, 
which relates to the possibility of speaking of the existence in 
Minkowski space of different vacuums. This procedure is 
based on postulating equal-time commutation relations 
between the field operators $(r,t) and the momentum oper- 
ators +(r,t) = d@(r,t)/dt corresponding to them: 

fq(r, t ) ,  q ( r f ,  t ) ]  =0. [h (r, t ) ,  n(rf,  t )  J -0, 
('4.1) 

[$ (r, t )  , n (r', t ) ]  =is (r-r') , 

where r and t are the Lorentz spatial and time coordinates. 
These commutation relations uniquely fix the operator alge- 
bra, but there is an indeterminacy in the choice of the repre- 
sentation of this algebra. To construct a definite representa- 
tion, the procedure already described in our paper is used. 
First of all, one chooses a locally timelike Killing vector field 
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or, which is the same thing, a system of coordinates p,r in 
which the Minkowski metric does not depend on the time T.  

Then the operator @( p,r) is decomposed in accordance 
with formula ( 1 ) with respect to the basis of functions that is 
formed from the solutions of the equation of motion for the 
field e, (namely, O p  = 0 )  that depend harmonically on the 
time T. The representation of the algebra of the operators 
@ ( p 7 )  is then determined by the representation of the alge- 
bra of the creation and annihilation operators 82, ,8,,, ,and 
this representation, in its turn, is constructed in the standard 
manner in the Fock space. The possibility of choosing a com- 
plete set of solutions of the equation for the field e, that de- 
pend harmonically on the time T is related to the fact that the 
metric does not depend on this coordinate. The state of the 
Fock space annihilated by all the annihilation operators 
8,,, is called the vacuum associated with the coordinates 
p,r, since a detector at rest in these coordinates does not 
detect any particles in this state. 

To construct the vacuum states in Minkowski space, we 
consider two locally timelike Killing fields. The first of them 
generates shifts along the Lorentz time, the second along 
timelike hyperbolas, i.e., it corresponds to Lorentz transfor- 
mations (hyperbolic rotations in the x,t plane). To the first 
vector field there correspond the Lorentz coordinates t, x, y, 
z (i.e., in these coordinates the field has the components 

= ( 1,0,0,0) and the Minkowski vacuum 10, ). To the sec- 
ond vector field there correspond the Rindler coordinates 7, 
6, y, z determined in accordance with formula (2) .  In the 
Rindler coordinate system the Lorentz transformations are 
equivalent to shifts along the Rindler time T,  and therefore 
the Minkowski metric, expressed in the Rindler coordinates 
(see formula ( 3 )  ), does not depend on 7. The Rindler frame 
of reference is a relativistic generalization of a uniformly 
accelerated reference frame. A body at rest in the Rindler 
coordinates is subject to an invariant acceleration 
a([) = ( d 2 ~ ' / d ~ 2 ) 2 = a e - a 5  (cf.Eq. ( 5 ) ) ,  whichdoesnot 
depend on its proper times. The dependence of the accelera- 
tion a (6) on the spatial coordinate 6 is a consequence of the 
relativistic definition of rigidity of the coordinate system. 

To construct the representation of the algebra of the 
operators @ (r,t) and the vacuum 10, ) corresponding to the 
Rindler coordinates, we expand the operator @(r,t)  with re- 
spect to the special set of functions Re, g,, (r , t)  and 
L R e, .,, (r , t) .  To fix uniquely any function f(r,t) that solves 
the wave equation Of(r,t) = 0, is is sufficient to specify what 
it is equal to in the regions x > It / and x < - It 1 .  The func- 
tions Re, E , ,  are determined in the region x > J t  1 by 

where the function9 g,, is given by the expression (4), while 
in the regionx < - It I they are identically equal to zero. The 
functions Le, E , ,  are determined by the relation 
L R e, (t,x,y,z) = Re, z,x (t, - x,y,z) and are identically 
equal to zero in the region x > It 1 .  The coefficients in the 
expansion of the operator @(r,t)  with respect to the func- 

tions Le, E , ,  and Re, E , ,  are, respectively, the operators Ld:,x 
and Rag,,. 

Equating to each other the expansions of the operator 
@(r,t)  with respect to the wave functions corresponding to 
the Minkowski and Rindler coordinate systems, we obtain 
expressions for the operators of creation and annihilation of 
particles defined above the Minkowski vacuum (Minkowski 
particles) 82; and Bz,, and in terms of the operators of 
creation and annihilation of the Rindler particles, L.Rii;: 
and L 3 R l i E , ,  . Such expressions are called Bogolyubov trans- 
formations. We introduce the notation 

.. 
e R  ~ Q I L - L  b0,,,= ("aQ,,e ci-Q,.e-"Q/2) E (52) / ( 2  sinh n 1 Q 1 )", (A.4) 

w h e r e ~ ( f l )  = l f o r f l > O a n ? ~ ( f l )  = - l fo r f l<O. I tcan  
be shown that the operators b,,,, defined in this manner can 
be expanded only with respect to the annihilation operators 
of the Minkowski particles, and therefore 

In addition, the operators h,,,, have the standard commuta- 
tion relations 

Using Eqs. (A.5) and (A.6), we can calculate the number of 
Rindler particles present in the Minkowski vacuum: 

It can be seen from this formula that the Rindler particles 
present in the Minkowski vacuum have a Planck spectrum. 
It is these particles that are detected by a detector moving 
with constant acceleration in the Minkowski vacuum. 

Thus, from the point of view of Rindler quantization 
(and a uniformly accelerated detector), the Minkowski 
vacuum is a many-particle state. It can be shown that if this 
state is averaged between the states of the Rindler particles 
in the regionx < - It I ( o rx  > It I ) then the obtained density 
matrix is identical to the density matrix of a thermal bath in a 
constant gravitational field and having temperature T(6) 
determined in accordance with Eq. (5) .  For a recent discus- 
sion of this question, see also Ref. 10. 
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