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A Hamiltonian theory of an (Einsteinian) gravitational field superposed on an arbitrary fixed 
space-time is constructed. Reasons for the appearance of internal (gauge) symmetries are 
indicated. It is shown that, in contrast to an arbitrary field theory on a fixed background, both 
internal and external symmetries in this theory introduce the same constraints. The theory is 
considered in application to the problem of the determination of the total energy and other 
conserved quantities for an asymptotically flat space-time and a closed universe. Three- 
covariant expressions are found for evaluating the integrals of motion of these systems. 

1. INTRODUCTION 

Many problems in the general theory of relativity 
(GTR) are solved under the assumption that the gravita- 
tional field, together with the fields of matter sources, is su- 
perposed on a given space-time. The concept of a flat back- 
ground is used for the study of such problems as the 
propagation of weak gravitational waves, the quantization of 
a weak gravitational field, and the interpretation of the solu- 
tions of the equations of the GTR. Curved background uni- 
verses, such as cosmological solutions and the geometry of 
black holes, are used to study vacuum polarization and the 
propagation and amplification of disturbances, or to investi- 
gate particle-creation effects. 

To obtain rigorous results, a complete and exact formu- 
lation of the theory of a gravitational field superposed on an 
external background is necessary. The Hamiltonian formu- 
lation, which opens up the path to a quantum version of the 
theory, is especially desirable. In the present paper such a 
Hamiltonian theory is constructed. More precisely, we give 
a new Hamiltonian description of the GTR, possessing a 
number of advantages to be discussed below. 

Studies of gravitation in a Hamiltonian description 
have been carried out over many years, from the pioneering 
papers of Diracl and Arnowitt, Deser, and Misner ( ADM)' 
up to the present time3-5 (see also the recent paper Ref. 21 ). 
The reviews in Refs. 6-8 and the numerous references in 
them give an idea of the problem, difficulties, and achieve- 
ments of the Hamiltonian approach to the GTR over the 
period during which this approach has been taken. 

The difference between the theory constructed here and 
the standard approach is that here the dynamical elements 
are not the components of the metric tensor g,, , but the field 
hpv  specified in a fixed space-time with metric y,,. In this 
approach the gravitational field is treated equally with all 
the other dynamical fields. This makes it possible to com- 
pare an Einsteinian gravitational field with other physical 
fields and to look at the GTR from a new point of view. 

First we describe briefly the ( 3  + 1)-splitting of an ar- 
bitrary space-time and of the reduction of four-covariant 
field theories to Hamiltonian form. We shall give the stan- 
dard (geometrical) formulation of the GTR in the Hamilto- 
nian description, in which the metric g,, is a dynamical 
field. The main result is formulated in Secs. 3 and 4, where 
the Hamiltonian interpretation of the GTR as a theory of 
dynamical fields on a fixed background is given, and the 

gauge freedoms of the theory are discussed. 
In the proposed approach, three-covariant expressions 

are obtained for the conserved quantities of arbitrary phys- 
ical systems. In relation to this, we consider asymptotically 
vanishing gravitational fields, and discuss the advantages of 
our approach and its differences from the standard ap- 
proach. The question of the possibility of a theoretical de- 
scription of the quantum creation of the universe has now 
been posed (see, e.g., Ref. 9).  For this reason, the energy 
characteristics of cosmological models are important. The 
proposed formulation of the GTR makes it possible to deter- 
mine these characteristics. For a closed Friedman universe 
the present approach implies that all integrals of motion are 
equal to zero (see also Refs. 10 and 11 ). 

In the paper we use the space-time signature 
- + + + .  

2. GENERAL PRINCIPLES OF THE CONSTRUCTION OF THE 
HAMlLTONlAN THEORY IN A FIXED AND A DYNAMICAL 
SPACE-TIME 

To go over from the Lagrangian formulation of a field 
theory to the Hamiltonian formulation one usually uses a 
( 3  + 1 )-splitting of space-time. Here, space-time is inter- 
preted as a set of nonintersecting spacelike hypersurfaces s,, 
such that to each value of the continuously varying param- 
eter t there corresponds a single surface S t .  

In this paper we take as the parameter t the time coordi- 
nate, labeled by the index 0, x0 = ct. The space coordinates 
on the t = const slices will be the space coordinates of the 
space-time, and have lower-case Latin indices. Greek indices 
are used for the space coordinates and the time coordinate. 
With these assumptions the four-metric gap can be repre- 
sented in the form12 

where gab is the three-metric on the surfaces S,, and the 
lapse function N = ( - goo) - ' I 2  and shift vector 
Na = -go" /goo determine the displacement of the section 
S, + ., relative to the section S, as we go from t to t  + At for 
small At. 

Next, at each point on the sections St we define a basis 

where nu is a unit timelike vector field (nu = CI/N, - No / 
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N } )  orthogonal to the S, slices, and the vector fields ez are 
tangent to the sections S, (na e,, = 0 )  and form a coordi- 
nate basis on them. 

If physical fields are specified in the space-time, then 
each four-covariant quantity @{,> ( {a}  is a four-dimension- 
a1 collective index) can be written in the coordinates of the 
basis (2.2) as a,,, , where the set of indices corresponding to 
the basis (2.2) is denoted by an upper-case Latin letter. In 
this way the quantity Q{,) is represented in the form of a set 
of three-covariant fields. For example, the four-vector A" is 
decomposed into the three-scalar A' = A" n, and the three- 
vector A" = A" ez 

Thus, the Lagrangian of the four-covariant theory is 
reduced to a three-covariant form and one goes over to the 
Hamiltonian formulation of the theory as a theory of three- 
covariant fields defined on the surfaces s,. A detailed de- 
scription of this procedure can be found in Refs. 13, and also 
in the review Ref. 6. 

Hamiltonian theories constructed using a ( 3  + 1) 
space-time splitting and physical fields differ substantially 
depending on whether the space-time metric is regarded as a 
dynamical field or not. 

We shall consider first the Hamiltonian theory of four- 
covariant fields p{a), specified on a fixed background, i.e., 
with the assumption that the metric is not a dynamical field. 
The components PI,} are defined as generalized coordi- 
nates. The generalized momenta a{,) conjugate to them are 
defined in the standard way (see, e.g., Ref. 6).  Then the 
Hamiltonian action for the fields p{,) is 

s = J dt  1 d 3 z { n f " ' ~ , , , - ~ ~ ~ - ~ ~ . *  - diu + A ) ,  (2.3) 
St 

where div denotes the three-dimensional divergence, and the 
dot denotes a total time derivative. 

Now suppose, as in the ordinary Hamiltonian formula- 
tion of the GTR, that the four-metric gaB is a dynamical 
field. Then, as well as the components of the fields p{,) of 
the matter sources, the components of the three-metric gab 
ar also assigned the meaning of generalized coordinates. 
After determination of the generalized momenta aab conju- 
gate to them, the Hamiltonian action for the GTR can be 
written in the general form 

S = df 1 hr ( n a b ~ a , + n ~ A 1 ~ i A i - ~ ~ ~ t ~ - ~ ~ , " t ' -  did-A).  
st 

(2.4) 
In the following, the terms A will be ignored, since taking 
them into account leads only to canonical transformations. 
The structure of div is important, but will interest us only in 
Sec. 5. 

The difference between the theories with the actions 
(2.3) and (2.4) is as follows. In both cases the functions N 
and Na are components of the four-metric gaB (2.1 ) . How- 
ever, since gap in the latter case is a dynamical field, and 
dynamical equations for the components N and Nu do not 
exist, these functions will be undetermined Lagrange multi- 
pliers. It is necessary to vary the action (2.4) with respect to 
them, and this leads to constraints. On the other hand, in a 
field theory on a fixed background the four-metric gal, is 
specified, and so the functions N and Na are not Lagrange 
multipliers in the action (2.3), and there is no variation with 
respect to them. Consequently, the GTR in the Hamiltonian 
interpretation always has the constraints 

HB+I.P,O, Hag+'- - 0 ,  

while the theory with the action (2.3) has no such con- 
straints. 

We have discussed the constraints that arise as a result 
of treating the metric as a dynamical field. Of course, con- 
straints can also arise for another reason, namely, because of 
the structure possessed by the function H p  or Hg +(P on ac- 
count of the internal symmetries of the theory. For example, 
the constraints in the theory of the electromagnetic field on a 
fixed background (i.e., for specified N and Nu ) are manifest- 
ed in the fact that H p  consists of a sum of two terms, one of 
which has a Lagrange multiplier. The role of this multiplier 
is played by a four-potential component for which there are 
no dynamical equations. Our aim in Sec. 3 is to bring the 
theory of the gravitational field to approximately the same 
form. 

3. HAMILTONIAN FORMULATION OF THE GTR ON A FIXED 
BACKGROUND 

The theory of the gravitational field on an arbitrary 
background (the field interpretation of the GTR) in the La- 
grangian formulation has been developed previously. l 4  Here 
we shall represent this theory in Hamiltonian form for the 
simple case when the background space-time is Ricci-flat, 
i.e., = 0, and (in particular) flat, i.e., R A:D, = 0. (The 
results obtained can also be extended to more-general 
cases. ) 

The action for such a theory has the form (Ref. 14) I '  

where x = 8aG/c4, a semicolon indicates a covariant (with 
respect to the four-metric y,,, ) derivative, and y = dety,,, . 
A comma in the following formulas will indicate a partial 
derivative. The action (3.1 ) is written in the first-order for- 
malism, in which the components of the symmetric tensor 
field hpv [in fact, ( - y)  "*hpV is regarded as the dynamical 
variable] and of the tensor field K z, , which is symmetric in 
its subscripts, are treated as independent dynamical gravita- 
tional variables. Here the second-order formalism will also 
be used; for this it is necessary to regard the K E,, as known 
functions of hp" and h j",", determined from the first-order 
equations obtained by variation with respect to K,",. 

From the universality of the coupling of the gravitation- 
al field with other fields it follows that the Lagrangian of the 
matter sources p{,} has the form (for more details, see Ref. 
14) 

L'"=Ln'[ ( - y )  (12"'+"iW") cp(,;; ~r:?,,~] . (3.3) 

For simplicity, we confine ourselves to the case when Lm 
does not depend on the derivatives 
[ (  - ~ ) " ~ ( h ~ "  +vv)l,8. 

Now, as was done in Sec. 2, in the background space- 
time with four-metric y,,,, we select slices S, and define for 
them the three-metric yo, (1-dety,, ), the lapse function 
N, the shift N u ,  and the basis (2.2). We then project the 
quantities appearing in the Lagrangian of the action (3.1 ) 
onto the surfaces S, . 
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After rather cumbersome calculations, using the tech- 
nique of Refs. 6,7, and 13, we bring Lg to the three-covariant 
form 

Here R ii' is a three-tensor, constructed as a Ricci tensor 
from qab (the "metric" density of weight + 2),  and C,, is 
the external curvature of the surfacess, . We assume that the 
Lagrangian Lm , like Lg,  has also been reduced to a three- 
covariant form. 

Taking A 'I2hAB and p{A} as generalized coordinates, 
we determine the generalized momenta conjugate to them: 

These systems of equations are used to determine the gener- 
alized velocities (A '12hAB ) ' and @{A} and to replace them by 
the generalized momenta in the definition of the Hamilto- 
nian theory. However, the system (3.7), represented in the 
second-order formalism, cannot be solved for (A 'I2hAB ) ' . 
Consequently, there are restrictions on the canonical vari- 
ables PA, and A '12hAB-first class constraints (Ref. 1, p. 
326). The number of such constraints-four, i.e., to the dif- 
ference between the dimensionality of the field configuration 
space A '12hAB and the rank of the kinetic matrixh 

From the system (3.7), written in the explicit form 

these constraints are easily obtained: 

To simplify the account, we assume that the system (3.8) 
can be solved for 

We now construct the complete Hamiltonian of the sys- 
tem (3.1 ) . For this, in the standard defining relation 

[where we use the three-covariant expression for Lg (3.4) 
and Lm ] we replace the generalized velocities by the gener- 
alized momenta. It would appear that there remains some 
arbitrariness in the solution of the system (3.9) for the func- 
tions K,, and in their replacement by the generalized mo- 
menta PA, in the Hamiltonian (3.1 1 ). However, because the 
constraints (3.10) are fulfilled, any choice of Kab will do. 

Next, in order to obtain a Hamiltonian with indepen- 
dent canonical variables," we add to H (3.11) the first-class 
constraints @, (3.10), multiplied by undertermined La- 
grange multipliers uA ( t ,x) .  After this the Hamiltonian of 
the system (3.1 ) takes the form 

where 

H ~ + ~ E H ~ + H ~ ,  H : + ~  = H;+H.~, 

Y =I"" (P, m c ,  n-2PmnCmn-P,,Cm rn), 

P.=R'" (p," Ia-2?'~mp-PL~i~), 

in which a vertical line indicates a derivative is covariant 
with respect to the three-metric yab. For definiteness we as- 
sume that Hh and HI: in (3.12) have been obtained by sub- 
stitution into Eqs. (3.5) of functions Kab = KO, (P,h ) found 
just from the last equation of the system (3.9). 

In the matter part of the Hamiltonian (3.12) the func- 
tion Hm and H ,"' depend on the canonical variables T { ~ } ,  
p{,) and their spatial derivatives. Owing to the choice ofLm 
in the form (3.3) only Hm depends on f B  and A 'I'hAB , and 
in such a way that 

where is defined in (3.6). 
The equations of motion for any dynamical variables 

g(P,/z,.rr,p,t), including each canonical variable in the Ham- 
iltonian (3.12), are written using standard Poisson brack- 
ets': g = dg/dt + &,HI. The field theory is consistent if the 
equations of motion preserve the constraints. Therefore, ful- 
fillment of the relations @ = 0 is necessary, which leads to 
the second-class constraints (Ref. 1, p. 326) 

For consistency it is necessary that these constraints too be 
conserved, i.e., Hh + = 0 and H + " = 0. But these condi- 
tions do not give any new restrictions on the variables 
A "'hAB and Pa,, and the functions uA remain undeter- 
mined. 

As a result, for the theory with Hamiltonian (3.12) we 
have eight Dirac first-class constraints" (3.10) and (3.14). 
This follows from the fact that 

and the Poisson brackets of the constraints (3.14) in all com- 
binations vanish by virtue of (3.14). 

The Hamiltonian (3.12) contains arbitrary functions, 
the undetermined Lagrange multipliers uA , which suggests 
the existence of gauge (nonphysical) degrees of freedom in 
the theory. All the eight first-class constraints displayed are 
effective generators of gauge transformations. Each con- 
straint and each effective generator can decrease the number 
of degrees of freedom by a factor 1/2 (see Ref. 6) .  Since the 
dimensionality of the field configuration space is 10 + n (n 
is the number of degrees of freedom of the sources), the 
number of physical degrees of freedom is equal to 

7 Sov. Phys. JETP 65 ( I ) ,  January 1987 L. P. Grishchuk and A. N. Petrov 7 



10 + n - (1/2)8 - ( 1/2) 8 = 2 + n (this follows from the 
previously introduced restrictions that all degrees of free- 
dom of the sources be physical). 

We shall confine ourselves to eliminating only four 
gauge degrees of freedom. For this we change to new vari- 
ables by means of a canonical transformation: 

qnb=h[hlahlb- (hU+yLL) (hab+yab) 1, qA=hLA/(l~LL+7LL), 
(3.15) 

Kab=-Pab/h'"(hLL+yLL), KA=h'h@A(P, h) . 
Then, in the Hamiltonian (3.12), the new constraints will be 
KA = 0. In this case the generalized momenta KA can be 
eliminated entirely from the analysis, and the generalized 
coordinates $ conjugate to them can be regarded as unde- 
termined Lagrange multipliers. After this, the action with 
the Hamiltonian (3.12) is written as 

81 

-N[ (-l+qL) H ~ + ~ + ~ ~ H ~ ' "  ] -wH:+"- div), 

Here the dependence of Hq and H z  on the canonical vari- 
ables qab and K,, (3.15 ) coincides with the dependence of 
Hh and H,h (3.5) on the functions (3.6). But the depen- 
dence of Hm and H  on the gravitational variables is deter- 
mined entirely by the relation (3.13). Thus, Hq+ " and 
H z +  " in the action (3.16) do not depend on qA . Conse- 
quently, four first-class contraints hold: 

Hq+"(K, q, n, cp) =O , H?" ( K ,  q, n, cp) =o. (3.17) 

No other constraints follow from the conditions for the con- 
sistency of (3.17). 

A theory with the action (3.16) can also be obtained 
starting from the standard Hamiltonian formulation of the 
GTR with the action (2.4). For this it is necessary to decom- 
pose the four-metric gaD into a background part y,, and a 
dynamical part hpv by means of the relation 

and redefine the procedure of the ( 3  + 1 )-splitting for the 
background space-time with metric y,,. [We recall that by 
virtue of the identifications (3 .18 ) ,  and theory developed in 
Ref. 14 is equivalent to the GTR in the usual formulation. 
On the subject of the relation between the "field" and "geo- 
metrical" formulation of the GTR, see also Ref. 22.1 

Thus, the action for the gravitational field has been 
brought to a form different from that the standard Hamilto- 
nian action (2.4) in the GTR, but with the same physical 
content. The coefficient of N in the action (3.16) has the 
meaning of H p  in the action (2.3), and the Lagrange mutli- 
pliers qA appear in the function Hq but are not coefficients of 
Hg+p and H z + p .  Then the constraints (3.17), as, e.g., in 
the theory of the electrogmagnetic field on a fixed back- 
ground, should follow from the internal (gauge) symmetries 
of the theory. We shall show this in the following section. 

4. GAUGE INVARIANCE AND CONSTRAINTS 

The theory with the action (3.1 ) is invariant under the 
gauge transformationsI4 

Here L is the Lie derivative along an arbitrary vector field 
p , taken n times, i.e., the series in the transformations (4.1 ) 
can be represented by means of the operator exponential 

14" = exp Lri. 
n-, n! 

First we clarify how this invariance is connected with the 
covariance in the usual formulation of the GTR. For the two 
variables h, ,, and h(,, connected by the relation (4.1 ) we 
make the identification (3.18). Then, in the metric density 
[ ( - g )  112g" ] ,,, we replace the coordinates xa by x'" , sat- 
isfying the transformation 

After this it is found that [ ( - g) "2g+'" ] , and 
[ ( - g )  112g"" ] ( 2 )  are the same metric density, but written in 
two different systems of coordiantes xa and x'" . Having es- 
tablished this fact, using the identifications (3.18) we can 
easily show that the invariance of the geometrical formula- 
tion of the GTR under coordinate transformations induces 
gauge invariance in the field interpretation of the GTR, and 
vice versa. 

We turn now to the question of the origin of the con- 
straints (3.17). The existence of first-class constraints in 
field theory corresponds to invariance of the action under 
particular transformations, the parameters of which are 
functions of space-time (see, e.g., Ref. 3a). In our case the 
invariance of the action (3.1 ) under the transformations 
(4.1) is associated with four strong identities (for more de- 
tail, see Ref. 14). Using the definitions (3.7) and the tech- 
nique of Ref. 16, we can write them in the form 

The derivation of these identities is such that the structure of 
the functions fA (h )  is unknown. We can assert, however, 
that fA (h )  depends only onA '12hAB and does not depend on 
PA,, (A Ii2hAB ) ' , or PA,. Thus, the identities (4.2), ob- 
tained without the use of equations of motion, will be first- 
class constraints. It has been shown that all the first-class 
constraints (3.10) have already been found: They are the 
left-hand sides of (4.2). This means that the right-hand sides 
of (4.2) are equal to zero, since otherwise, in addition to 
(3. lo),  there would exist the constraints f, (h)  = 0. Thus, 
the constraints (3. lo),  and, consequently, the second-class 
constraints (3.14) [which are the same as (3.17) 1,  corre- 
spond to internal symmetries of the theory of the gravita- 
tional field on a fixed background. 

For an arbitrary four-covariant field pea> propagating 
in a fixed space-time, it is not necessary at all that the coordi- 
nate invariance give rise to any constraints when we go over 
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to the Hamiltonian form. Therefore, it is interesting to note 
that the constraints (3.10) follow also from the four-coordi- 
nate invariance of the theory with the action (3.1 ). 

Finally, we shall discuss briefly the question of how the 
gauge freedoms manifest themselves in the Hamiltonian de- 
scription of the theory. The Hamiltonian H of the action 
(3.16) contains the arbitrary functions @ . Therefore, the 
equations of motiong = &,HI for any particular dynamical 
variable g describe the same evolution for all admissible 
choices of the functions @ , if the initial data on the starting 
surface S, are the same. We shall say that a choice of definite 
values of qA fixes the gauge freedoms. Then changing from 
one set of functions qf,, to another set of functions qf2, signi- 
fies gauge transformations (in the Dirac definition, '"on- 
tact transformations). We shall construct such a transfor- 
mation for the variable g. 

We shall consider the change ofg that occurs in passing 
from St to S, + ., for different choices of the functions qA 
and the same initial data on S,. If, in H ,  functions qf,, are 
fixed, theng changes by the amount gAt = &,H,, , )At while 
if functions q;',, are fixed, g changes by gAt = &,H,,, )At. 
Since the physical situation on the surface S, + At will be the 
same in both cases, the transformation 

g+g+ {g, (H,2,-H(1,))Atl (4.3) 

is obviously a purely gauge transformation. Its generators 
are the constraints (3.17), and the quantities N(qf2, 
- qf,) )At serve as the gauge functions. 

We note that when we go over from the Lagrangian 
formulation of the theory to the Hamiltonian formulation 
the linear part of the transformation (4.1 ) goes over into the 
transformation (4.3). And, by successive application of the 
transformation (4.3), we can obtain the Hamiltonian ver- 
sion of the complete transformation (4.1 ) . 

5. CONSERVED INTEGRAL QUANTITIES IN THE FIELD 
INTERPRETATION OF THE GTR 

With the development of the Hamiltonian formulation 
of the GTR, many authors,2916-" using the advantages of 
this approach, have studied questions concerning the deter- 
mination of the energy and other integrals of motion in an 
asymptotically flat space-time. Rigorous mathematical 
forms for these quantities were obtained in Ref. 18. 

The field formulation of the GTR in the Hamiltonian 
representation makes it possible to give a definition of the 
conserved quantities from other standpoints. Here, as in any 
field theory, integrals of motion are defined if the back- 
ground space-time possesses symmetries, and are conserved 
if the dynamical fields fall off sufficiently rapidly at spatial 
infinity. On the other hand, the approach developed in Sec. 3 
is three-covariant, i.e., invariant with respect to the choice of 
the spatial coordinates on the surfaces St .  As a consequence 
of this, the integrals of motion should also be three-covariant 
quantities. For example, it will be shown that the standard 
(for field theory) definition of the Hamiltonian action in the 
field formulation of the GTR leads automatically to three- 
covariant conserved integrals for an asymptotically vanish- 
ing gravitational field. 

We shall define an asymptotically vanishing gravita- 
tional field in the same way as in Ref. 14. We assume that the 
background space-time is flat, i.e., R 2," 0. We then re- 

quire that the gravitational variables in the Lorentz coordi- 
nates t ,  x, y, z satisfy in the limit r- co the relations 

where r2=x2 + y2 + z2. With these conditions the Lagran- 
gian (3.2) Lg = O( l/r4).  We also assume that the gravitat- 
ing matter is effectively localized, i.e., Lm is also of order 
O( l/r4). Thus, the system does not radiate. This definition 
coincides with the usual definition of an asymptotically flat 
space-time in the GTR. This is easily seen by making the 
identification (3.18) in the field formulation of the GTR. 

Next, for a system of fields defined in this way, we fix 
the choice of the slices S, : In the Hamiltonian of the action 
(3.16) we set N = 1 and Na = 0. Then the generator of the 
passage from one surface S, to another (i.e., the Hamilto- 
nian of the theory) takes the form 

H = I ~z{(-I+~') H~+"+~'H.".+ div). (5.2) 
81 

The definition of the canonical variables qab, Kab, and the 
Lagrange multipliers @ in (3.15), with allowance for the 
conditions (5.1) on the potentials of the gravitational field, 
leads to the result that, as r +  CQ in (5.2) in cartesian coor- 
dianates on the surfaces S, , 

The divergence div - B 7, in the Hamiltonian (5.2) contains 
only gravitational variables: 

This expression has been obtained without contributions on 
the asymptotic behavior of the variables and can be used for 
arbitrary physical systems. We note that, with the condi- 
tions (5.3) and (5.4), the surface integral in (5.2) has a 
finite value. 

The Hamiltonian defined in (5.2) is the generator of 
translations along a timelike Killing vector in Minkowski 
space. Consequently, for a system of fields with the asympto- 
tic behavior (5.3), (5.4), on solutions of the equations of 
motion [and hence on the constraints (3.17) ] the numerical 
value of H gives the total conserved energy P o  of the system: 

We note that, as we should expect, the value of P o  does not 
depend on the coordinate system chosen on St .  

Next, the system of the asymptotically vanishing gravi- 
tational field is defined in Minkowski space, and therefore, 
in addition to (5.6), there exist a further nine integrals of 
motion. In the integraion over the volume, they all have 
three-covariant integrands. After use of the constraints, all 
the integrals of motion are reduced to three-covariant sur- 
face integrals. 

In order that the total angular and Lorentz momenta of 
the asymptotically vanishing gravitational field have finite 
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values (and also in order to derive the conservation laws for 
these integrals), it is necessary to make the conditions (5.3) 
more precise-to impose restrictions on the even and odd 
parts of the canonical variables (see Ref. 18). 

We now compare the proposed approach with the usual 
one, and discuss certain distinctive features. 

For an asymptotically flat space-time Regge and Teitel- 
boim'' proved that it is necessary to include the surface inte- 
gral in the Hamiltonian of the unreduced theory. This inte- 
gral determines the total energy of the system. It coincides 
with the energy introduced by ADM but is not a three-covar- 
iant quantity. This definition requires the use, at spatial in- 
finity, of an asymptotically Lorentz system of coordi- 
nates.2.7, I X. 19 

It is true that, after the introduction of the auxiliary 
structure (the metric tensor of Minkowski space), it is possi- 
ble to replace the integrand by a three-covariant integrand 
without changing the value of the ADM energy.6s20 In the 
approach developed in this paper, three-covariant expres- 
sions arise naturally and inevitably, and not as a result of 
constructions in which the conserved integrals are brought 
to covariant form only after they have been determined in an 
asymptotically Lorentz system of coordinates. In addition, 
in our approach the gauge freedoms and the constraints that 
stem from them are exhibited at once, while the construc- 
tions in Refs. 6 and 20 do not have this feature. 

Next, if in the standard formulation of the GTR we 
start from the Hilbert Lagrangian ( - g)'"R, the Hamilto- 
nian defined in the standard way: 

with all surface terms conserved and constraints fulfilled, 
does not coincide with the value of the ADM energy. But 
using the truncated Einstein Lagrangian to define a Hamil- 
tonian in the manner of (5.7) gives an energy integral that 
coincides with the ADM integral but is not three-covariant. 

In comparison with this, the field formulation of the 
GTR has advantages. The standard definition ( 3.1 1 ) of the 
Hamiltonain yields for the energy Po a definition (5.6) that 
is three-covariant, automatically satisfies the variational 
principle of Regge and Teitelb~im,'~ and coincides with the 
value of the ADM energy. We note that in the definition 
(5.6) of the energy for an asymptotically vanishing gravita- 
tional field we can make a simplification. In place of the 
cumbersome integrand (5.5) in Po we can use, e.g., (1/ 
2xA "2)qf,4,. This replacement does not destroy any of the 
advantages mentioned. 

In Ref. 14 it was shown that the symmetric total energy- 
momentum tensor T E  for a system with the action (3.1) is 
not invariant under the gauge transformations (4.1 ) . How- 
ever, the total conserved integrals of motion determined by 
means of T E  do not change if the behavior of the gauge 
functions p in (4.1 ) ensures invariance of the action. 

In the Hamiltonian case the situation is analogous. Any 
gauge transformation of the canonical variables is construct- 
ed by means of the relation (4.3). But the asymptotic behav- 
ior of the Lagrange multipliers qA (5.4) ensures conserva- 
tion of all the integrals of motion under such 

transformations for a system with an asymptotically vanish- 
ing gravitational field. 

In Ref. 11 a Friedmann closed universe is described in 
terms of the field interpretation of the GTR in the Lagran- 
gian form. However, in the development of the quantum ver- 
sion of the theory the determination of the integrals of mo- 
tion in the Hamiltonian formulation is especially important. 
The present approach makes it possible to determine the in- 
tegrals of motion not only for isolated systems [in which the 
gravitational-field potentials hp" tend to zero as r -  m ,  as in 
(5.1 ) 1, but also, in particular, for a configuration of field 
that represents a closed universe [for which hpv tend to con- 
stant values as r -  CG (Ref. 1 I ) ] .  Thus, for a closed Fried- 
mann universe, the integrals of motion calculated using the 
formulas of the Hamiltonian GTR formulation developed in 
this paper are equal to zero. This coincides with the results 
obtained earlier in the Lagrangian description. 

"The Lagrangian (3.2) differs by an exact four-divergence from the LY 
that was used in Ref. 14. 
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