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Analytic expressions are obtained for probability of ionization by a thermal field. In weak 
fields, the logarithm of the probability increases linearly with the square of the field. In strong 
fields the probability is determined by electron tunneling from a bound state with optical 
binding energy. The results agree with the experimental data. 

In thermal ionization of a deep impurity center, the 
electron receives the necessary energy from the crystal lat- 
tice. This energy is usually much higher than the character- 
istic energy of the phonon, so that the process should be 
regarded as multiphonon. It is natural to assume that for a 
bound electron the principal role is played by the interaction 
with the local vibration of the center. This can serve as a 
basis for a model in which the lattice (henceforth referred to 
as "nucleus") is described by one configurational coordi- 
nate. On the scheme of the adiabatic terms (Fig. 1 ), ther- 
moionization is a transition of the system from term U, cor- 
responding to the bound state of the electron on the center, 
to term U, corresponding to the ionized center. It is easiest 
for this transition to proceed when the nucleus vibrational 
energy is close to the energy corresponding to the term cross- 
ing. The latter energy, however, is high (&, + E, in Fig. I ) ,  
such a (thermoactivation) process has low probability at not 
too high temperatures. At real temperatures, the thermoion- 
ization proceeds usually via tunneling of the nucleus from 
term U, to term U, at nucleus vibration energies only slight- 
ly exceeding the thermal binding energy E,  (Ref. 1). 

In an electric field it becomes possible to produce ioni- 
zation accompanied by electron tunneling (Fig. 2) .  The fi- 
nal state in such a process corresponds to terms located be- 
low the term U, (dashed curves-terms UE in Fig. 1).  
Tunneling by the nucleus is facilitated by lowering the term 
UE, but electron tunneling, on the contrary, becomes more 

difficult. The competition between these two factors deter- 
mines the optimal energy of the emitted electrons, and by the 
same token the dependence of the ionization probability on 
the electric field. The higher the electric field strength, the 
easier for the electron to tunnel, the greater the drop of the 
term U,, and the higher the ionization probability. 

The presented analysis of thermofield ionization singles 
out two limiting cases of weak and strong fields. Roughly 
speaking, the difference between weak and strong fields lies 
in the ratio of F to F,, where F is the force acting on the 
electron in the electric field, and the characteristic field 
Fo = 2 ( 2 m ~ ,  ) ' I2  w ,  where w is the nucleus-vibration fre- 
quency and m is the electron effective mass. More accurate 
criteria are given below. 

In weak fields, the influence of the field on the ther- 
moionization probability is described by the relation In ( W /  
W,) = F2r3/3fim, where r has the meaning of the time of 
tunneling of the electron from the turning point to the term 
encounter point X, (see Fig. 1 ) . At k, T < tiw, the tempera- 
ture dependence of r is given by r = r0 + fi/2kB T, where k, 
is the Boltzmann constant. The quadratic dependence of the 
logarithm of the probability of the thermoemission from the 
field as well as the linear dependence of r on the reciprocal 
temperature agrees well with the experimental data on the 
ousting of carriers from deep levels in silicon, and the slope 
of the linear plot of T vs T -' is close to the theoretical one 
(see $3 below, and also Ref. 2, where the results of the theory 
for a weak field are briefly described and compared with the 

FIG. 1. Scheme of adiabatic term Uof nuclear motion. X--configuration- 
a1 coordinate. Solid curves: U,-electron bound to center, U,--electron 
detached from center and located at the bottom of the conduction band . . 
( E  = 0).  Dashed curves-terms U, in electric field: 1-characteristic 
term U, in a weak electric field, 2-in the limiting case of a strong field. FIG. 2. Energy scheme for electron motion in an electric field directed 
&,-thermal binding energy.   field binding energy. along the z axis (&,-binding energy, &--energy of emitted electron). 
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experimental data of Sah et aL3v4). 
In strong fields the optimal location of the term U, is 

determined entirely by the most favorable conditions for the 
passage of the nucleus (dashed curve 2 of Fig. 1 ) . The ioni- 
zation has the character of cold emission, and its probability 
is determined by electron tunneling from a bound to a free 
state. It turns out here, however, that the most favorable 
conditions for the passage of the nucleus occur when the 
binding energy E~ of the electron exceeds the thermal bind- 
ing energy &,. This increase is due to the electron-phonon 
interaction, and E~ coincides with the optical binding energy. 
The temperature correction to the argument of the tunnel 
exponential was also obtained. 

Multiphonon thermofield emission was considered ear- 
lier in a number of p a p e r ~ . ~ - ' ~  The authors restricted them- 
selves only either to the thermoactivation regime5.'.'0 
(which usually sets in above room temperature), or present- 
ed their results in a form that requires laborious numerical 
 calculation^.^^^^^ In the most extensive study, Makram- 
Ebeid and Lannou9 use, following Oppenheimer, the poten- 
tial energy of an electron in an external electric field as the 
perturbation that causes the transitions. Since the ionization 
probability vanishes in the absence of a field in this calcula- 
tion method, they propose simply to add to the calculation 
result the probability of thermoemission in a zero field. This 
method, however, is unsubstantiated and leads to an incor- 
rect dependence of the thermoemission probability in the 
weak fields in which the experimental data for silicon were 
mainly obtained (see $3 below). 

$1. EXPONENTIAL DEPENDENCE 

In the adiabatic approximation, the state of the electron 
is determined by the instantaneous position of the nucleus, 
and the nucleus itself moves in an effective potential U(X), 
where X is the configuration coordinate of the nucleus. In 
Fig. 1 the term U2 is the potential energy of the nucleus 
without the electron. Parallel to U, are the terms U, 
= U2 + E,  which correspond to the electron-plus-nucleus 

system when the electron is detached from thecenter and has 
an energy E .  Values E < 0 are possible in the presence of a field 
(Fig. 2). 

The term U, = U2 - E, (X) is the potential energy of 
the nucleus when the electron is bound to the center, and 
E, (X) is the binding energy. When the nucleus moves, the 
binding energy varies and the point X = X, corresponds to 
vanishing of the bound state ( E ~  (X, ) = 0).  This is the point 
at which the terms U, and U, cross. An adiabatic transition 
of the electron from the bound state into a free one with 
energy E takes place at the point X ,  at which the terms U, 
and U, cross. If the energy level E of the nucleus lies below 
this crossing point, the transition is via tunneling of the nu- 
cleus from term U, to term U, . The transition probability of 
thenucleus contains then, according to Ref. 1 1, the exponen- 
tialexp( - 21s2 -s,l) ,  where 

are the actions accumulated by tunneling from the turning 
points a ,  and a, to the term crossing point X,, and M is the 
mass of the nucleus. The energy E is reckoned from the bot- 
tom of the parabola U, . The probability of the electron tran- 
sition from the bound to a free state with energy E < 0 also 
contains an exponential corresponding to electron tunneling 
through a triangular potential barrier (Fig. 2).  As a result, 
the system transition probability is of the form 

where F is the force exerted on the electron by the electric 
field. To calculate the ionization probability this expression 
must be averaged over the equilibrium distribution of the 
nucleus in energy and integrated over the final energies E of 
the electron. The result, with exponential accuracy, is 
W a  exp( - a, ), where Q, is the lowest value of the func- 
tion 

and B(E,E) is given by 

where E, is the thermal binding energy of the electron (see 
Fig. 1 ). Minimization of the function (E,E) with respect to 
the variables E and & leads to equations for the optimal val- 
ues of E, and E,: 

where T, = filds,/dE I have the meaning of the tunneling 
times of the nucleus from the corresponding turning points 
to the term-crossing point. The upper sign in (4)  pertains to 
the case when the term-crossing point X,  is located to the 
right of the classical turning points, and the lower to the case 
when X, lies between a ,  and a,. 

1. We consider first the case of weak electric fields. In 
this case E is small and can be neglected in Eq. (4) .  This 
equation determines then the optimal value of E,, which 
does not depend on Equation ( 5 )  yields the optimal value 

I&,/ = F2r2/2m, and for T we have 

where T,, denotes the value of T, at E = 0 and E = E,. 
Expanding the function 9 in powers of E and confining 

ourselves to the first term of the expansion, we get 

Substituting this expression in (2) and using the expression 
= F2r2/2m, we get 

The explicit field dependence of the ionization probability in 
a weak electric field is thus 

W= W ,  exp (FZz3/3Am), ( 9 )  

where Wo is the thermoionization probability in a zero field. 
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Note that this expression was obtained without any assump- 
tion whatever concerning the form of the potential curves. 

We determine now the temperature dependence of r. At 
low temperatures (k, T <  h ) ,  the optimal energy level E, 
lies near the bottom of the term U2 (Ref. 1).  According to 
( 6 ) ,  r has then a linear dependence on T -': 

~=~,+h /2k ,T ,  
-. 

(10) 

where r0 denotes the value of r, at E = E = 0. 
The constant r, determines the variation of the term U,, 

i.e., the dependence of the binding energy E, on the coordi- 
nate of the nucleus. Three models are used in the literature: 
1 ) The model of Huang and Rhys,I2 in which it is assumed 
that this dependence is linear. We write it in the form 
tb = flMw2Xc (X, - X)/2, wherepis the coupling constant 
and w the frequency of the vibrations on the term U,. In his 
model the curves U, and U2 are two parabolas that are 
moved apart and have the same vibration frequency. In fact, 
when the level emerges to the continuum (near the point X, ) 
we should have E, - ( X ,  - X)2, i.e., the terms should touch 
rather than cross. Nonetheless, the model of Huang and 
Rhys can be a good approximation if the tangency region is 
small or if the symmetry of the level does not coincide with 
that of the edge of the band. 2 )  In Ref. 1 was considered a 
model in which the quadratic relation E, =PMw2 
(Xc - XI2/2 is preserved in the entire range of X (the tan- 
gency model). The terms U, and U2 correspond then to dif- 
ferent vibration frequencies w, = w ( 1 - 8 )  'I2. 3)  The 
Kubo model,13 in which the terms U, and U, have different 
frequencies but a common equilibrium point. They cross and 
the E,  (XI dependence must be written in the form E, 

=PMw2(Xc2 -X2)/2,  and then w, and w ( l  +P)"'. In 
these models r, is of the form 

with eT/&2 = P (  1 + P / 4 ) ,  C = 1 + 4//3 in the model of 
Huang and Rhys, E = / E ~  = /?/( 1 - P) in the tangency mod- 
el, and & T / E ~  = fl in the Kubo model. For weak coupling we 
have ET/E2 zP, C-4/P for all models, and lnC> 2 always in 
the tangency model. We assume hereafter that E, 5 E, . The 
electron-phonon coupling is frequently characterized in the 
literature by the Hyang-Rhys factor S. which is equal to the 
ratio of the polaron shift to the phonon energy h,. It is 
connected with the introduced constant fl by the relations 
S h ,  = E,/C in the Huang-Rhys model and S h ,  = in 
the tangency model. Note that the expression "weak cou- 
pling" (Pg 1 ) used here does not presuppose smallness of S. 

To find the limits of the applicability of the linear de- 
pendence ofron T -' we obtain Eo with theaid ofEq. (4) .  At 
small E the times r, and 7, depend on E quite differently. As 
already mentioned, r2 is practically constant, but r2 has a 
logarithmic divergence due to the density of the barrier to 
the nucleus. Assuming U2 = Mw2X2/2, we easily obtain 
r2z  (2w)-Iln (4&,/E), and Eq. (4)  yields 

from which we see that E,g&, > E,, and consequently r,, is 

constant and equal to ro [Eq. ( 1 1 ) ] for k, T <  h. At very 
low temperatures, k, T < h / l n  (&,/&I),  E, becomes 
smaller than h. The saddle point in terms of E can not be 
used in this case and it must be assumed that E, = %/2. 
Nonetheless, relations (9)-( 1 1 ) remain in force. In the case 
of weak coupling ( p <  1 ), Eo remains smaller than E, (and 
the tunneling character of the transitions is preserved) also 
if k, T >  h. In this case, however, Eq. ( 12) becomes inval- 
id. A more general expression for E, can be obtained by us- 
ing the fact that at E, < E~ and for weak coupling the terms 
near the level Eo take the form of almost parallel parabolas 
spaced vertically E ,  apart. An equation similar to that used 
above for r2 viz., r, = (2w) -'ln [4&,/(E + E,  ) 1, can there- 
fore be used for r,. Equation (4)  yields then E, = &,/ 
[exp(h /k ,  T)  - 11 (in accordance with Ref. I ) ,  and we 
obtain 

It can be seen that if k, T >  h the temperature dependence 
of the time r becomes weaker. Expression ( 13 ) for r is valid 
so long as E,<E,, i.e., in the entire region k, T g h / b .  

In this region, the probability of thermoionization in a 
zero can be represented in the form 

T WO exp 1-0 (E,, 0) I, 0 (E,, 0) = - [~wT-a] 
Ao , (14) 

where a = 2 in the tangency model, a = 1 - C - '  in the 
Huang-Rhys model, and a = 0 in the Kubo model. It is seen 
from ( 13) and ( 14) that the choice of model for the terms at 
k, T <  &/P influence the field and temperature depen- 
dences of the ionization probability only via the constants C 
and a. 

The field dependences of (9)  and ( 13) can be obtained 
from simple considerations. The probability W(E) of emis- 
sion of an electron of energy E can be estimated to be the 
product of the probability n = (E. + E ) / &  of absorption of 
vibrational quanta by the electron tunneling probability: 

where N,  = [exp(h /k ,  T )  - 1 ] - I .  Optimizing the expo- 
nent with respect to E, we obtain Eqs. (9) ,  ( 13), and ( 14) 
accurate to the term a. This derivation is due to Keldysh,l4 
who obtained Eq. (9)  at r = fi/2k, T, corresponding to tem- 
peratures so low that r,, in (6)  can be neglected. Keldysh's 
result was later duplicated in Ref. 15. 

At high temperatures, when k, T >  h/fl the optimal 
energy Eo of the nucleus approaches the energy at which the 
terms E, meet. Nonetheless, the exponential dependence of 
the transition probability exp [ - 2 (s, - s,  ) ] is preserved so 
long as the difference between the actions is large. For the 
function O(E,O) at E, - E<E, we get, using the equations of 
the Appendix, 

where q = 5/2, 7 = 2/( 1 - /3) for the tangency model,','6 
q=3/2,  7 = 4 / 3 ( 1  + P / 4 ) X ( l  + P / 2 )  for the Huang- 
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Rhys model, and q = 3/2, 77 = 2/3 ( 1 + B )  for the Kubo 
model. From (15) we obtain the optimal value (E, 
- ~ ~ ) q -  = 3/4~:/k, T, whence Wo a exp [ - 8(E0,0) 1, 

where&, is the energy at which the terms U, and U, meet and 
is reckoned from the bottom of the term U,. The first term of 
( 16) corresponds to the classical thermoactivation depen- 
dence of the transition probability, but the second term, so 
long as it is large (so long as k, T < E, ), increases substan- 
tially the ionization probability on account of the tunneling 
of the nucleus. 

We now obtain for k, T >  h / P  the value of T in Eqs. 
( 7 1 4 9 ) .  At c2  -E04&, we have according to (A.2) 
wr  = [ ( E ~  - E O ) / ~ 2 ]  'I2, whence 

Respectively for the Huang-Rhys, Kubo, and tangency 
models. The first equation of (17) agrees with the Tima- 
shev's r e ~ u l t . ~  

The field dependence of the ionization probability in 
weak fields is thus given by Eq. (9) ,  in which T is determined 
by Eq. (13) i f k , T < h / P a n d b y  (17) i f k , T > h / P .  

For the Huang-Rhys model we can deduce, using Eq. 
(25) below, expressions that are valid in the entire tempera- 
ture interval: 

We ascertain now the conditions under which Eqs. ( 8)  
and (9)  are valid, i.e., the field can be regarded as weak. In 
models with crossing terms, the corresponding criterion co- 
incides with the condition that the field term in (8 )  be 
small" compared with O(E,O) : 

The characteristic force Fo corresponds to the field for which 
the electron tunneling time from a state with binding energy 
E= becomes of the order of the period of the nucleus vibra- 
tions. The condition ( 18) means simultaneously that the op- 
timal energy of the emitted electon is IE,/ <E, (since the 
equation 1 ~ ~ 1  = F2r2/2m can be rewritten in the form 
1 ~ ~ 1  = E T  ( F / F o ) 2 ( 2 ~ ~ ) 2 ) .  

In the term-tangency model the condition for the valid- 
ity of (8)  at k, T < h / P  is also given by the inequality ( 18 ). 
At k, T >  h / P ,  however, it can be shown that (8 )  is valid 
only up to fields F <  Fo( 1 - P )  ' ' 2 ~ ~ / 2  (note that wr  < 1 
here). In stronger fields, while JE,( remains smaller than E,, 
the field dependence of W is altered by the influence of the 
field on the optimal energy Eo of the nuclear transition. The 

corresponding relation (24) will be obtained below. 
2. We proceed to consider strong fields, when the opti- 

mal energy /E,/ of the emitted electron approaches E,. Using 
(4 )  and (5 )  we readily verify that this energy becomes equal 
to&, at2'F/Fb=.2k, T / k .  In stronger fields, the bottom of 
the term U,,, drops below the bottom of U,. The ionization of 
a center in weak fields can be regarded as thermoionization 
facilitated by the field. In strong fields, on the contrary, the 
ionization has in the main the character of cold emission 
influenced by the interaction between the electron and the 
vibrations of the nucleus. This interaction necessitates cor- 
rections to the principal field exponent of the exponential 
Qc - (2m)1'2~,3'2/W, due to tunneling of the electron 
through a triangular barrier. In very strong fields, the opti- 
mal energy E, is determined entirely by the most favorable 
conditions for the nuclear transition. Under these conditions 
the term U, lies lower than U,, so that the terms cross at the 
minimum point of U, (Fig. 1, curve 2 ) .  The cold-ionization 
probability is, with exponential accuracy, 

The "field binding energy" E~ exceeds the thermal energy. 
This effect is similar to the known difference between the 
optical (E,,, ) and thermal (E, ) binding energies. It can be 
seen from Fig. 1 that in the Huang-Rhys model 
E~ = E, ( 1  + C-I ) ,  and in the tangency model cf = E ~ /  

( 1  -PI. 
If the binding energy is comparable with the band gap 

E, , the electron-tunneling probability cannot be calculated 
in the effective-mass approximation, and account must be 
taken of the true energy spectrum E ( k )  in the forbidden band 
(at  imaginary k). In the Kane model, for example, E/ in ( 19) 
must be replaced by EJ', where 

Let us find the corrections to the argument of the expo- 
nential (19). At I E ~  close to&/, the barrier to tunneling by the 
nucleus is due almost entirely to the action s,. The nuclear 
transition probability is therefore determined by the prob- 
ability of finding the nucleus on the parabola U, at the point 
of term crossing. Then 

where d l  is the energy distance from the bottom of the pa- 
rabola U, to the crossing point of terms U, and U,. The 
connection between E l  and E for different models is given in 
the Appendix. Equation (20) can be obtained also from the 
explicit expressions (A. 1 ) fors, ands2. Optimizing the func- 
tion @(E,,E) with respect to E at cf - 161 4~~ we get 
W a  exp( - @, ), with 

4 (2m)'" mo, e f Z  tie, 
@,=-- E,'/l - b - - cth - 

A F2 2kBT9 
(21) 

3 AF 

where b = 4 / ( C +  1) in the Huang-Rhys model and 
b = 4P /( 1 - p )  in the tangency model. Equation (2  1 ) de- 
scribes the effect of interaction with local vibrations on cold 
ionization of the center by a strong electric field. If 
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k,  T < h ,  it is valid under the condition F >  Fo. If account is 
taken of the Kane spectrum, E~ in the first term of (21) is 
replaced by E/*, while b is replaced by b * = b( 1 - .zf/Eg ). 

At k, T> h / P  we can write down expressions that are 
valid for the entire range of electric fields, from weak to 
strong. The reason is that at high temperature the transition 
of the nucleus between the terms U, and U, occurs at an 
energy close to the term crossing. It can therefore be as- 
sumed that 

(This approach was used in Refs. 5,7, and 10. ) After deter- 
mining the minimum of the function cP(Eo,&) with respect to 
E, we readily obtain: 

a )  For the Huang-Rhys model 

fiw F p= (C2+C) ''A - - . 
k,T Fn 

This expression goes over into Eq. (21 ) at p% 1 and into Eq. 
(8)  at pg I .  

b)  For the term-tangency model 

fio F P=(l-fJ)" ----- - 
4fJk,T F ,  

This equation is valid for F >  F@T( 1 - P )  11*/2. At p% 1 it 
goes over into (2 1 ) , while at P< 1 it yields 

Figure 3 shows those regions of the (T,F) plane in 
which the relations derived above are valid. 

In the Huang-Rhys model it is possible to obtain for Eo 
an explicit expression." We can then write for arbitrary 
fields 

FIG. 3. Schematic representation of  the regions of applicability o f  differ- 
ent theoretical equations for the ionization probability o f  the center: I- 
Eqs. ( 9 ) ,  (13 ) ,  (14)  fork,T<fim/B,and ( 9 ) ,  (16 ) ,  (17)  fork,T>fim/ 
p ' ;  11-(24) for the tangency model and ( 9 ) ,  (16), ( 17) for the Huang- 
Rhys and Kubo models; 111-(21). The tentative boundaries o f  the re- 
gions are determined by the curves: 1 - F = F0/2wr; 1' - F = F&k, T /  
2&(l - P ) ' l 2 ;  2 - F=F@?-(l -B )112 /2 ;  3 - F =  FO tanh(fim/ 
2k, T ) .  

FIG. 4. Field dependence of  the argument o f  the exponential ofthe center- 
ionization probability W a  exp( - @, ) in the Huang-Rhys model 
( C  = 10) at various temperatures: 1 - k ,  T = 0.25fim; 2 - k ,  T 
= 0.5fim; 3 - k ,  T = fim. 

fio t+ 2 Fo -@.=I I-yI [ * 2 w r ( ~ ) - ( l + E ' ) " + ~  chT] +3T:Yh. 
e?. 

fio 8=- l ~ o l  k,T' Y = - 9  

E T 

where the upper and lower signs correspond to the cases 
y < 1 and y > 1, while y is the solution of the equation 

(FnIF) ~ ' ~ = 2 o . t  ( y )  . (26) 

Figure 4 shows an example of the calculation of the 
argument of the exponential in the ionization probability 
W a  exp( - cP, ) in accordance with Eqs. (25) and (26). 

$2. CALCULATION OF THE COEFFICIENT OF THE 
EXPONENTIAL 

We calculate the probability of electron transition from 
a bound to a free state by perturbation theory, using the 
nonadiabaticity operator as the perturbation. The corre- 
sponding calculation in a zero field leads in the limiting cases 
only to a small numerical difference (Ref. 1 ) from the exact 
results. We calculate first the electron matrix element 

Here $, and $, are wave functions corresponding to the 
bound and free states of the electron, and in which the coor- 
dinate X of the nucleus enters as a parameter. We assume 
that the potential of the center has a zero radius.I6 The elec- 
tron wave functions satisfy then in the presence of an exter- 
nal field the relation (in atomic units) 

with the boundary condition 

where u(r)  is the potential energy of the electron in an exter- 
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nal field, x = ( 2 m ~ ,  ) ' I 2 ,  and E, is the binding energy at 
V = 0. The wave function $, of the bound state is equal, 
apart from a factor, to the Green's function of (28 ) :  
$, = C,G,  (r ) ,  where C, is a normalization constant and GI 
satisfies the equation 

[-1/2A+V(r) + ~ ~ ] G ~ = 8 ( r ) .  

The binding energy E, is determined from the boundary con- 
dition 

It is assumed that the quantity dependent on the position X 
of the nucleus is only the short-range part of the potential, 
i.e., x and hence E, . The wave function of the free state can 
be written in the form 

where $Lo' is a function of the continuum without allowance 
for the short-range potential, and Gk is a Green's function 
satisfying the equation 

The coefficient C, is determined from the boundary condi- 
tion (29) 

It can be seen that the function $, depends on x ,  meaning 
also on the coordinate X of the nucleus, only via the coeffi- 
cient C, . For M ,, we obtain 

To calculate the integral J, we multiply the equation for G 7 
by G, and the equation for G, by G 7 ,  subtract one from the 
other, and integrate over d 3r. We then obtain 

The expansion of the Green's functions at small r begins 
with the term ( 2 ~ - r )  - ', and the last expression can therefore 
be rewritten as 

J = -  
d x i+y  

( r - ( r )  ] =--. 
d r  r+o 2n ~ a * f & ~  

Substituting this expression in (30) ,  we get 

In a weak electric field this expression simplifies substantial- 
ly. The influence of the field need be taken into account only 
in the continuum wave function. Then C ,  = ( 2 ~ - X )  ' I 2  and 
we can neglect E, and y in the denominator, so that 

Using this expression for the matrix element and calculating 
the transition probability in analogy with Ref. 1, we get 

where WO is the thermoionization probability in a zero field. 
In an electric field we have 

where is the energy of motion along the field, k, is the 
transverse vector, and L is the renormalization length. Inte- 
grating with respect to k, we obtain 

4nht 2te 
I = (-- ) 'Ii JdEU erp (- +) I (0) I 

m -- 

Here $,,I (z) is an Airy function normalized to a ( ~ ~ ~  - E; ). 
The integral with respect to can be evaluated exactly, and 
it turns out asa  result that I = exp(F 27"3fim), while for the 
ionization probability we obtain Eq. (9 ) .  The approxima- 
tions made are valid if the characteristic energy of the emit- 
ted electron = F2r2/2m is small compared with the 
characteristic binding energy AE, , which is determined by 
the width of the saddle in the calculation of the integral with 
respect to the nuclear coordinate X in the matrix element of 
the transition. For the tangency model we have AE, 
= [9D(t2 - E,,) ( h ) 2 ]  ' I 3 ,  and for the Huang-Rhys and 

2 114 Kubo models AE, = [4D 2 ~ ,  - EO) ( h )  1 . 
We present also an expression for Wo at kB T< h / P  in 

the tangency model': 

4 '1' A sh (Aol/2kBT) 

W" 61 (ca ) m ; h  ( h o / 2 k , ~ )  exp[--O (E,, 0 )  I ,  

where the principal term of the argument of the exponential 
O(E,,O) is given by Eq. ( 14).  

We proceed now to the case of strong electric fields (at 
kB T < h this is the field region F > F,,) . Nonetheless, the 
fields are still assumed to be weak enough for the argument 
4(2m)  1 1 2 ~ , 3 1 2 / 3 ~ ~ f  the tunnel exponential to be large. It 
can be shown hereI6 that y = - ( I E ,  ) ' I 2  in expression 
( 3  1 ). In a strong field the term-crossing point X, is located 
between the turning points. Using quasiclassical vibrational 
wave functions of the nucleus and recognizing that the main 
contribution to the exponential is made by the vicinity of the 
point X, we obtain for the matrix element of the transition 

X J ~ X M , ~ ( X )  expl--v (x-x.)zI.  (33 

Here Y = 1(2fi)pl[M/2(EI - ~ ~ ) l ' ~ ~ d ~ ~ / d X l ~ = ~ , .  The 
integral is evaluated along the real axis, the singularity of 
Mi, is located at X = X, + is, and the small imaginary part 
8 is due to the weak nonstationarity of the bound state. Cal- 
culation, using (33 ) ,  of the probability of ionization by a 
strong field yields 
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where E/. is the field binding energy, and the principal part of 
@, is given by (2 1 ). Note that in the strong-field limit the 
use of the nonadiabaticity operator as a perturbation yields 
not only the correct argument of the exponential, but also 
the correct prefactor that coincides with the result of Dem- 
kov and Drukarev.I8 

$3. COMPARISON WITH EXPERIMENT 

The data of Sah's g r o ~ p ~ . ~ , ' ~  on thermoionization of 
deep centers in silicon pertain to fields that are weak (as 
defined in the present article). A quadratic field dependence 
of the logarithm of the ionization probability obtains for 
many deep centers (Au, Ag, Zn, Co, radiation defects). Ref- 
erence 2 contains a detailed discussion of the data on ther- 
moemission electrons and holes from an acceptor level of 
gold, and it is shown there that these data are well described 
by relations (9)  and ( 10) for T, independent of temperature. 
This shows that under the experimental conditions we have 
k, T < h and rO = In C /2w in accordance with ( 1 1 ) . The 
experimental data on thermoemission of electrons yielded 
h /k , l n  C--,410 K. It can therefore be assumed that h/ 
k, - lo3 K. This permits an estimate of the characteristic 
field F, = 2(m~ , ) "~w.  It turns out that F 0 z 4  lo6 eV/cm. 
The maximum wr in the experiment is approximately four. 
Therefore, according to criterion ( IS), a quadratic depen- 
dence of In W on the field can be expected up to fields 
F<5.105 eV/cm. In the experiments of Sah and co- 
w o r k e r ~ ~ . ~ ~ ' ~  the fields used were up to Fz 1.5. lo5 eV/cm. 
In Ref. 20 are given data for electron thermoemission from 
the same level of gold in fields up to Fz5.5.105 eV/cm. 
Figure 5, in which these data are shown in appropriate scale, 
show that the linear dependence of In Won F2 is preserved 
almost in this entire field interval. Figure 6 shows the tem- 
perature dependence of the time T (at m = 0.33 me ), deter- 
mined from these data, together with the data of Ref. 3. The 
slope of the lines agrees with the theory [Eq. ( l o ) ] .  The 

F2, 10'0 ( e V / ~ m ) ~  
FIG. 5. Dependence of the logarithm of the probability of electron ther- 
moemission from a gold acceptor level in siliconZ0 on the square of the 
electric field at various temperatures: A - 220 K; - 250 K; 0 - 280 K; 
A - 3 10 K; - 340 K. 

FIG. 6 .  Dependence of the time of nucleus tunneling on the reciprocal 
temperature for ejection of electrons from a gold acceptor level in silicon, 
determined from the data of Refs. 3 (0 )  and 20 (0). 

value h / k ,  In C ~ 9 6 0  K from the data of Ref. 20 differs 
from the value -410 K from the data of Ref. 3. 

The authors of Ref. 20 reduced their data by using the 
equations of Makram-Ebeid and L a n n ~ u . ~  This data reduc- 
tion yielded unrealistic values of the parameters, particular- 
ly of the energy h / k ,  --, 110 K. The reason, in our opinion, 
is that these equations do not hold in weak fields. 

For gallium arsenide, owing to the lower oscillation fre- 
quency and the small effective mass of the electron, it can be 
assumed that the characteristic field Eo will be of the order of 
lo5 eV/cm. Therefore the experimental data of Ref. 9, in 
which F--, ( 1-4).  lo5 eV/cm, pertain apparently to the re- 
gion of intermediate or strong fields. This is attested also by 
the observed sublinear dependence of In Won F (see Fig. 4 
for comparis~n) . 

APPENDIX 

In the considered models of the adiabatic terms, the 
expressions for the actions and the tunneling times of the 
nucleus are of the form 

where 2, and 2, are the crossing energies of the terms U, and 
U,, and El = E, = E are the nuclear vibration energies. The 
energies .El and El are measured from the bottom of the term 
U,, and 2, and E, from the bottom of U,, while w, and 
w, = w are the frequencies of the vibrations on the terms U,  
and U,, respectively. At low z, ( 1 we have the asymptotic 
expressions 

The term-crossing energies are connected with the ener- 
gy of the emitted electron y= /&I/&, by the following rela- 
tions: 
1 ) in the term-tangency model 

2) in the Huang-Rhys model 
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4 
C = - + I ,  (A.3b) 

P 
3 )  in the Kubo model 

ET E T e l  = - 1 1 ,  r, = ( I - y ) .  (A.3c) 
13 

"Note that condition (18) means that the term quadratic in the field in 
(8) is the principal one in the field dependence of the logarithm of the 
therrnoionization probability. The condition under which the correc- 
tions to the quadratic term of (8)  in the argument of the exponential are 
less than unity is more stringent than ( 18) and is given in 52.  

"The vicinity of the point F / F ,  = 2k, T/liw was investigated in detail by 
Dalidchik.' 

3'Note that Eq. (32) is valid for any external sufficiently smooth potential 
V(r) (particularly a Coulomb potential), when its influence on the 
bound state can be neglected and when the characteristic energy of the 
emitted electron is I E ,  I (Ae, . 
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