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The statistics of the fluctuations of the conductance G and of the density of states v in an 
ensemble of small samples having identical macroscopic characteristics is investigated in a 
field-theoretical approach using the nonlinear a-model. It is shown that at not too large 
deviations from the mean the fluctuations are described within the framework of one- 
parameter scaling (the scaling parameter is the average conductance (G ) ). The validity of this 
statement is based on the Einstein relation and on the continuity equation. In the metallic 
region (G)e2/fi) fluctuations of G and v that are not too large are described by a normal 
Gaussian distribution. In the region of the Anderson transition ( G  5 e 2 / f i ) ,  however, one- 
parameter scaling leads to fluctuations that deviate greatly from Gaussian. The probability of 
large fluctuations of G and v is much higher than Gaussian even in the metal region: the tails 
of the G and v distribution functions turn out to be logarithmically normal. The presence of 
non-Gaussian tails is due to the instability of the standard a model when account is taken of 
the additional vertices that arise in a consistent description of the high fluctuation moments. 
To consider each of the moments it is necessary to introduce independent scaling parameters 
whose number increases with increasing order of the moments, so that the one-parameter 
scaling breaks down. 

$1. INTRODUCTION 

Scaling theory in Anderson's localization problem was 
ultimately formulated by Abrahams, Anderson, Licciar- 
dello, and Ramakrishnan,' and has long been universally 
accepted. This theory is based on the assumption that the 
only significant scaling parameter of a sample is its residual 
conductance G. This means that the change of the dimen- 
sionless conductance of a d-dimensional cube due to the 
change of its dimension L is described by the equation 

Perturbation-theory calculations2 in the region of metallic 
conductivity (G) e2/fi) in conjuction with the renormaliza- 
bility hypothesis' yielded the following result for the Gell- 
Mann-Low function: 

The result (2 )  was confirmed by direct calculation of 
B(g) in a field-theoretical approach using the nonlinear o 
model proposed in localization theory by Wegner3 and 
further developed by other~.~-"t follows from ( 1 ) and (2)  
that at d = 2 the dependence of the conductance on the scale 
is given by 

where go is the conductance of a d-dimensional cube whose 
edge equals the mean free path I at T = 0. Equation (3)  is 
valid down to g- 1. Extrapolation of this expression to the 
region of small g is in fact the only microscopic confirmation 
of one of the main qualitative conclusions of localization 

theory,' viz., that localized states exist at d = 2 for arbitrar- 
ily weak disorder (go+ cc ). Doubts were cast, however, on 
the microscopic validity of one-parameter scaling. 

The results ( 1 )-(3) are valid for conductance averaged 
over realizations of the random potential (over the disposi- 
tion of the impurities). It was made clear in a number of 
recent papers that the characteristics of individual samples 
cannot be determined from averaged quantities. This forces 
us again to check whether the one-parameter scaling ( 1 )- 
(3)  can be applied to the localization problem. 

The concept of average conductance is untenable be- 
cause the conductance of an ensemble of sample having iden- 
tical macroscopic characteristics fluctuates noticeably from 
sample to (see also Refs. 35-37 and the bibliog- 
raphies therein). It was recently established24q25 that even in 
the region of weak localization (g) 1 ) these fluctuations are 
anomalously large: 

(here SG = G - (G ) and (...) denotes averaging over the 
realizations of the random potential, i.e., over the entire en- 
semble of samples). The relative size of these fluctuations is 
SG /G m L d ,  i.e., it decreases more slowly than L - 
even at d = 3. 

Of course, the actual sample investigated in each experi- 
ment has a uniquely defined impurity arrangement in each 
experiment. If the fluctuations (4)  from sample to sample 
are appreciable, a macroscopic approach based on the calcu- 
lation of (G ) is inadequate. On the other hand, a microscop- 
ic calculation of non-averaged characteristics is neither real- 
istic nor very instructive. 

Under these conditions it is natural to regard the con- 
ductance as a random quantity. Besides mere calculation of 
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(G ), a study must be made ofthe entire distribution function 
of the conductances in an ensemble of samples having identi- 
cal macroscopic characteristics. This approach was named 
mesoscopic. The fluctuations of the conductance and of oth- 
er sample characteristics over the ensemble are customarily 
called mesoscopic. At low but finite temperature T, these 
fluctuations are significant if the sample dimension satisfies 
the condition 

I<< L< L,, I;,', (5 

where L, = (DWT)  is the diffusion length within the time 
fi/T, and L, = (Dr, ) ' I 2  is the phase-coherence-loss length 
of the electron wave function ( D  is the phase-coherence-loss 
time in inelastic scattering) Samples with dimensions (5 )  
are now called mesoscopic. 

The mesoscopic fluctuations in the metallic-conductiv- 
ity region ( g  > 1 ) have manifested themselves in the form of 
reproducible aperiodic oscillations of G as functions of the 
magnetic field H 3X-4' or of chemical potential E, .44 The as- 
sumption that the conductance-fluctuation statistics of a 
given sample, as a function of H or E,, can be identified with 
the statistics of the fluctuations in an ensemble of samples 
was set forth in Ref. 25 and is called the ergodic hypotheses. 

We have discussed so far only the mean squared fluctu- 
ations (6(G)') and only in the lowest perturbation-theory 
ordering; '. It would be desirable, however, to have theory 
similar to scaling theory, ' capable of describing not only (G ) 
but also the mesoscopic fluctuations. To  develop such a the- 
ory we must be able, first, to calculate the high moments of 
the fluctuations and, second, sum the corrections to them in 
all orders of perturbation theory in g, '. All this will be done 
in the present paper using a field-theoretical approach. 

52. PRINCIPAL RESULTS 

The first problem to be solved is that of the dependence 
of ( (SG) 2, on the system dimension L with increase of L .  
This problem cannot be solved for d g 2  within the frame- 
work of perturbation theory, since ( 4 )  is subject to correc- 
tions that diverge as L - cc . These corrections, however, can 
be quite easily summed if the one-parameter scaling is valid. 

The irreducible fluctuation moments ((SG)2), can in- 
deed be described within the framework of one-parameter 
scaling if n is not too large. This statement is based on the 
Einstein relation between the conductance G and the diffu- 
sion coefficient D, and on the continuity equation. One-pa- 
rameter scaling means that summation of all the divergent 
(logarithmically at d = 2)  corrections to these moments re- 
duces to replacing the classical conductanceg,, in all the non- 
logarithmic expressions by its renormalized valueg(L) [Eq. 
(311. ')  

The conductance variance is independent of go [see 
(4)  1.  A dependence o n g  sets in therefore only when higher- 
order nonlogarithmic corrections are taken into account. 
Therefore ( (6G)*) remains universal in the metallic-con- 
ductivity region ( g $ l )  accurate to powers o f g  '. The mean 
value of the conductance, on the other hand, changes in this 
region by a factor go, with go$ 1 (Fig. l a ) .  

We consider also the mesoscopic fluctuations, investi- 

FIG. 1. Irreducible moments of the fluctuations of the conductance ( a )  
and of the density of states ( b )  vs the system dimensions L:I-average 
conductanceg; 11-variance of conductance ( (Sg) ') ' I 2 ;  111-higher fluc- 
tuation moments ((6g)n)c,,.,, at n <g,,; IV-average density of states v,,; 
V-variance of density of states ( (6~) ' ) ' " ;  VI-higher fluctuation mo- 
ments ((SV)")~,,,,  at n <g,,. 

gated in Ref. 27, of the density of states. The mean squared 
fluctuations ( ( S Y ) ~ )  ' I 2  also change by a factorg,,, increasing 
from -v0 go (Ref. 27) at  L-1 to -v0 at L - L O = [  
x expg,, where Y, is the mean density of states and is known 
to be independent of disorder (Fig. l b ) .  

We shall show also that the higher fluctuation moments 
of the conductance and of the density of states increase with 
increasing L. At n <g,, we obtain for the cumulants 
( (6G)" ),, (the irreducible mean values of (SG)" ) the 
expression 

whereg(L ) is given by Eq. ( 3 ) .  A similar relation holds also 
for the moments of the density of states. 

I t  can be seen from (6)  that in the metallic conductivity 
regiongs  1 the higher (n  > 2 )  cumulants are small. At large 
g and and not too large 6g, the f(6g) distribution is close to 
normal Gaussian. I t  follows at the same time from ( 3 )  and 
(5 )  that the high cumulants increase with increasing L and 
that ((SG)n)cl,, ,  becomes of the order of (G ) at g -  1 (Fig. 
l a ) .  This means that the distribution f(SG), as well as the 
distribution ~ ( S Y ) ,  deviates strongly from Gaussian in this 
region. 

We show also in this paper that even at g s  1 the tail of 
the distribution function differs drastically from Gaussian: 
the normal distribution 

is replaced at 6g 2 A by the logarithmic normal distribution 
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A similar asymptotic form is obtained also for the distribu- 
tion function of the density of states by making the changes 
u - u/2 and Sg -gSv/v,. Here 

In the quasi-one-dimensional case we have g, -g(L = a ) ,  
where a is the transverse dimension of the wire. It is remark- 
able and patently not fortuitous that the distribution (7) ,  
obtained by us for g > 1 and for arbitrary dimensionality d, 
coincides with the exact distribution obtained in Refs. 17 
and50ford= 1 andg< 1. 

It is of fundamental importance that the asymptotic de- 
pends on the unrenormalized value of the conductance g. 
This is direct evidence of violation of one-parameter scaling. 
The point is that to describe the moments ((SG)" ), at 
n 2 A2) 1, which determine in fact the tails of the distribu- 
tion function (7),  it is necessary to take into account addi- 
tional scaling parameters (that are independent of g) .  

Violation of the one-parameter scaling theory, due to 
appearance of additional scaling parameters, was observed 
in Ref. 10 in connection with the question of the frequency 
dependence of D. The diffusion-equation corrections that 
arise at finite distances and at finite times are known to be 
manifested in the dependence of the diffusion coefficient D 
on the frequency w and on the wave vector q. In the classical 
case this dependence can be represented in the form 

~ ( n ,  m ) = ~  +x y.,. ( w ~ ) ~ ( q l ) ' ~ ,  (8 
n.m 

where r = I /v, is the free-path time. 
Of course, at w r g  1 and q l g  1 these corrections are 

small compared with the quantum corrections to the diffu- 
sion coefficient (the latter are logarithmic at d = 2).  The 
quantum corrections to the coefficient y,,, , however, cause 
it to increase (when the scale or frequency is changed) in 
proportion to (Ref. lo),  so that at n > A2-go the 
corrections (8) become significant. The coefficients y are 
then described by a number of additional scaling param- 
eters. This makes, in particular, the Anderson transition 
much more complicated: not only does the diffusion coeffi- 
cient decrease in the region g 5 1, but the equation that de- 
scribes the electron-density fluctuations in this region also 
differs drastically from the diffusion equation. 

We consider in the present paper only the homogeneous 
static conductivity (q = w = 0) .  The additional scaling pa- 
rameters needed for the description of the higher moments 
of the mesoscopic fluctuations turn out then to be analogous 
to the coefficients y , ,  in Eq. (a) ,  and the role of the bare 
small parameter (wr)" is assumed by the ratio (I /L)2n.  

The relation In y , ,  oc n2 found in Ref. 10 turns out to be 
universal. We show in the present paper that an analogous 
increase obtains for the contributions made to ( (Sg)" ), and 
((Sv)" ) r ,  by the additional scaling parameters. Thus, the 
contribution to ((Sg)" ), in excess of (6)  is 

This yields in the perturbation-theory region g; 'ln L / l g  1 

This quantity decreases at n <go with increase of the dimen- 
sion L, so that the cumulant ( (Sg)" ), is determined for such 
n by the "normal" one-parameter contribution (6) ,  and the 
normal Gaussian distribution is valid at sufficiently small 
Sg. On the other hand, for moments of the order of n 2 go the 
dominant role is assumed by the additional contribution 
(9) ,  which increases with the sample dimension L, and it is 
this which leads to the distribution function at Sg 2 A a g;l2. 

The plan of the paper is the following: In $3, starting 
from the usual model of noninteracting electrons in a ran- 
dom potential, we obtain a functional representation of the 
mesoscopic fluctuations. In $4 is derived an analogous rep- 
resentation for the fluctuations of the density of states. In $5, 
with the mean squared fluctuations as the example, we show 
how to develop a regular perturbation theory by using the 
obtained functional representation. In $6, on the basis of the 
Einstein relation and the continuity equation, we prove cer- 
tain exact relations for the renormalization-group charges of 
the theory, which lead, in particular, to the results illustrat- 
ed in Fig. 1. In $7 are considered the "normal" contributions 
to the higher fluctuation moments, which lead to Eq. (6).  In 
$8 we study the contributions to the cumulants described by 
the additional scaling parameters that lead to (9) .  In $9 is 
derived the asymptotic of the distribution function (7) .  A 
preliminary report of the results of the present paper was 
published in Ref. 45, where the ergodic hypothesis was 
proved. 

$3. FUNCTIONAL REPRESENTATION FOR CONDUCTANCE 
FLUCTUATIONS 

In the field-theoretical description of the kinetics of 
non-interacting electrons it is customary to use a functional 
representation of a density-density ~ o r r e l a t o r ~ - ~  from which 
the diffusion coefficient can be determined. To study the 
mesoscopic fluctuations of the conductivity it is necessary to 
use a functional representation of the electron-electron cor- 
relator.46 We use as the basis a field-theoretical formulation 
with functional integration over Grassman (anticommut- 
ing ) conjugate fields ~ ( r )  and x ( r )  (Ref. 47), which is de- 
scribed in Ref. 4 (see also Refs. 10 and 48). The expression 
for the conductance Gap (a and f l  are vector indices in d- 
dimensional space) can be written in the form 

which is the functional form of the Kubo f~ rmu la .~ '  The 
currentYb is given here by3' 

jab = - ie J {xa(l) Vxb(r) -of (r) xb (r) 1 ddr. ( 12) 
2m,L 

The angle brackets (...),, in ( 11 ) denote functional averag- 
ing with weight exp (iY): 

(13) 
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The functional of the action J' is defined as 

8= J X f 1  (r) {(eF-2%) GabSiq (0,) " b )  xb  (r) ddr (14) 

(7 + + 0, and E~ is the Fermi energy), where 2? is the sin- 
gle-particle electron Hamiltonian 

and U(r)  is a Gaussian random potential with a correlator 

1 
<U(r) U(rr)>=-6(r-r'). 

nvo't 
(16) 

Here v, is the average single-spin density of states, T = I /u , ,  
and 1 is the mean free path. 

The superscripts a and b in ( 1 1 )-( 13) indicate that the 
fields xa ( r )  and xa ( r )  stem from the retarded V r  (a = 1 ) 
or advanced (6'" ( a  = 2)  Green's function of the electron in 
the usual representation of the conductance in terms of exact 
Green's functions in a random field U(r)  (see Fig. 2 ) .  

For subsequent averaging over the realizations of the 
potential we assign to each Green's function in Fig. 2 a re- 
plica index A that runs through the values 1 to N and trans- 
form, following Ref. 4, to "spinor" fields 

In this notation, expression ( 1 1 ) is transformed into 

where the current matrix J is given by 

In Eq. ( 18), C * are the projectors: 

The first factor in (20) leaves in (18) the current compo- 
nents that are off-diagonal in the upper indices in accor- 
dance with ( 11 ). The second (quaternion) factor that acts 
in "spinor" space retains in the current ( 19) the productsxx 
that enter in ( 12), and sets the productsxx and x x  equal to 
zero. Here .ri are quaternion units r,, = I and r ,,,,, = iu x,y,, 

(0 are Pauli matrices). 

FIG. 2 Arrangement of the indices in the current loop: A ,  B = 1,2, ..., B- 
replica indices; i-index numbering the current loops; a, &vector in- 
dices; a, b-indices of the retarded (a = 1 ) and advanced ( a  = 2)  Green's 
functions. 

The expression for the nth power of the conductance is 
similar to ( 18): 

Each field 4 and y5 ( 17) acquires here an additional index i 
that numbers the current loops (Fig. 2 ) ,  and the matrix J,  is 
diagonal in these indices. (The vector indices of the conduc- 
tances, which were left out of ( 2  1 ), can be easily restored in 
any specified expression). 

Averaging of ( 18) and (21 ) over the impurities re- 
duces, when account is taken of ( 16), to replacing in ( 13) 
the action functional Y (14) by the effective functional4 
S = S O + S , n f ,  

The number of replica components in the final expressions is 
N = O .  

In Eq. (23), q ( r )  is a Hermitian real-quaternion matrix 
with the structure: 

The matrix A, which governs the analytic structure of (22) 
where 7 --r + 0 )  indicates the presence of a retarded and of 
an advanced Green's function in the initial expression (Fig. 
2 

This matrix, just as the prefactor of the exponential in (2 1 ), 
breaks the symmetry of the upper indices. Functional aver- 
aging with theaction (22) and (23) will bedesignated by the 
symbol ((...))xx. 

I t  is convenient to rewrite expression (21) averaged 
over the realizations of the random potential by using the 
generating functional 

e2 I L  82 
(G") = (-)l Jj, t r - 7  9'' L h l l x n  N=U* ahi lh=o (26) 

i=l 

where the functional S [ h ]  is proportional to the current ma- 
trix (19) :  

The structure of the matrix h is so chosen that the differenti- 
ation in (26) does not alter the prefactor in ( 2  1 ): 

The symbol tr in (26) stands for the trace over all indices, 
except i andj, which number the current loops, and the nota- 
tion h,, = h, So is used. 

The next standard step that follows the introduction of 
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the effective action S is transformation from the "fast" vari- 
ables $ and t,b with a range of the order of the electron wave- 
length, to "slow" variables Q ( r )  that describe the diffusive 
m ~ t i o n . ~ - ' ~ , ~ ~  This transformation is described for expres- 
sion (26) in Appendix I, where it is shown that the mean 
value ( (...) ) ,, in (26) is replaced by 

Here 

2 = 1 0 9  e x p ( - ~ [ Q ;  h=0]), 

and the generating functional is given, in the principal ap- 
proximation in I /L, by 

where t = m D  /8, D = v,l / d  is the diffusion coefficient, and 
[h, Q] = hQ - Q h. The matrix Q( r )  is Hermitian and has 
the same structure (24) as the matrix q ( r ) .  The nonlinearity 
of the functional (29) is due to the geometric limits imposed 
on the field Q: 

Note that in the presence of an external magnetic field 
the action (22) would contain a vertex with structure (27),  
in which h would be replaced by r,Ae/c (A  is the vector 
potential of the magnetic field). Therefore, apart from this 
substitution, the functional (29) is the same as the a-model 
functional in a weak external magnetic field.4 

It is shown in Appendix I that in the derivation of the 
functional F[Q; h]  there appear, besides (29),  vertices of 
arbitrary power of (I /L)h.  The most important, in the se- 
quel, will be vertices with structure 

The small parameter ( I  /L)2'" - ' )  is included in X,  (see 
Appendix I ) .  It is clear from (26) that the vertices (31 ) 
make no contribution to (G ). In the calculation of ( ( G ) "  ), 
on the other hand, account must be taken of all @, with s<n .  
We shall show that it is precisely the vertices ( 3  1 ) which 
determine the asymptotic form of the conductance distribu- 
tion function. 

$4. FUNCTIONAL REPRESENTATION OF THE 
FLUCTUATIONS OF THE DENSITY OF STATES 

The density of states in any realization of a random po- 
tential is written as usual in terms of the exact Green's func- 
tions as 

Using the functional averaging (13) introduced in 93, we 
rewrite this expression in the form 

which reduces, after transforming to the fields $and t,b ( 17), 
to 

We are interested in the nth power of the density of states for 
a given energy E .  It is convenient to express this quantity in 
analogy with (26) with the aid of a generating functional. 
Averaging, as in 93, over the realizations of the random po- 
tential, we get 

where 

Here q(r)'  is the matrix field (23), w is a matrix having the 
index structure of (24) and the form 

A is the matrix defined in (25) ,  and (v)  = 2v0 is the average 
density of states and is independent of the sample size L.  

Unlike (34), the quantity investigated in Ref. 27 was 
the state-density correlator (v(E' ) v (E,) ) at different ener- 
gies. The point is that for the isolated sample considered in 
Ref. 27 we have ( v ( & , ) v ( ~ , ) )  + co as I&, - &,I -0. Here we 
discuss a sample making contacts with a bulky metal. For 
such a sample (v2 (E)  ) is not singular, owing to the broaden- 
ing of the energy levels. If the level broadening in an isolated 
sample is y 2 D /L ', the results that follow hold also for this 
case with y replacing D /L 2. 

As a result of the change to the slow variables Q( r ) ,  the 
mean value ( (  ...)),, of (34) is transformed, as above, into 
(28), where the functional (29) acquires, in the leading ap- 
proximation in I /L, an additional vertex 

In the calculation of the fluctuation moments of the density 
of states (34) it is necessary to take into account also vertices 
containing higher powers of wA: 

An equation for coefficients Y,  that are small in the param- 
eter (I /L)" is given in Appendix I. 

Expression (35) and hence (37) is similar in structure 
to that entering in the a-model functional used for the analy- 
sis of the conductivity at a finite frequency w (Refs. 3-5). 
The essential difference is that in our case w is the matrix 
(36). Vertices with high powers of @ A ,  including those of 
type (38),  were first considered in Ref. 10 in an examination 
of the instability of one-parameter scaling in the Anderson 
localization problem. 

We can write also a general functional expression for 
mixed fluctuation moments of the conductance and of the 
density of states: 
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advantage of the parametrization (42) is that in the replica 
<Gn$'""= ("I_,) 16nN " ($) TI (L) limit N = 0 the Jacobian of the transition from Q ( r )  to W(r) 

z<no<n+m 

I 
is unity. 

(39 1 The perturbation theory is constructed in terms of the 
( N , ~ , w ) = o  dimensionless parameter 

Here 

1 
- 7 w A ~ } b r  2 1, 

The summation in (42) is over all permutations P of the 
noncommuting matrices hQ and wAQ. The permutation-de- 
pendent coefficient X,, (9) is proportional to ( I /  
L)2'" + - . We shall hereafter be interested in the cumu- 
lants, i.e., those parts of the fluctuation moments which are 
determined only by connective perturbation-theory dia- 
grams. 

$5. PERTURBATION THEORY 

The formalism developed in §93,4 permits a perturba- 
tion theory to be constructed in regular fashion. For practi- 
cal calculations it is necessary to change from the variables 
Q(r) to independent variables in such a way that the con- 
straints (30) are automatically satisfied. It is most conven- 
ient to parametrize the field Q in a manner similar to that 
introduced in the supersymmetric approach of Ref. 9: 

Here W(r) is an anti-Hermitian matrix of form (24), anti- 
diagonal in the supetior indices a and b, and arbitrary in all 
other indices. The functional integration in (28) is now over 
the independent variables W l 2  ( r )  = - [ W2' ( r )  ] + . The 

The functional of the zeroth approximation is Fo, obtained 
from F-F[Q; h = 0; w = 01 (40) in lowest order of the ex- 
pansion in W: 

It is expedient to calculate in (39) first the functional inte- 
gral, and then take the derivatives with respect to the sources 
h and w .  In this case exp{ - I;'[Q; h; w ] )  is expanded in 
powers of F - F(, and is averaged with a weight exp( - F,,) 

The Gaussian mean values are calculated in the momentum 
representation by using an equation that follows directly 
from (44) and (45): 

The subsequent calculations are considerably simpli- 
fied by using the following identities4' which can be verified 
by using (46):  

t 
<Tr(W (q)PW ( q f ) H )  >, = - 6 (q+ql) {Tr (APAR+-PR+) 

8qZ 
+TrAPTrAR-TrPTrR} ,  (47) 

FIG. 3. Diagrams for the conductance variance: squares w ~ t h  
d e f two and one free vertices represent the first terms of the ex- 

pansions of Tr  [h,  W ]  ' and T ~ ~ Q V Q  In terms of W, respec- 
tively. A square without free vertlces corresponds to 
Tr(V W )  W' wh~ch appears upon expansion of exp ( - F )  ~n 
(40) (F=F[Q; h = 0, w = 01 ). 

9 
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Here P and R are arbitrary real quaterion matrices and A is 
the matrix (25).  Functional mean values containing more 
than two matrices W, which appear when Q is expanded in 
terms of Win accordance with (42),  are calculated by using 
the Wick theorem and Eqs. (47) and (48). 

We illustrate first the developed formalism with the cal- 
culation of the mean squared conductance fluctuations 
( (SG),) in the leading approximation in I / L  as the example. 
We use for this purpose Eqs. (39) and (40) with n = 2 and 
m = 0. 

A contribution to the cumulant ((SG)') in the lowest 
(second) order of perturbation theory is made only by the 
vertex Tr[h, Q] ,. This contribution, obtained by expanding 
in accordance with (42) each of such vertices up to second 
order in W, is best illustrated using the diagrams of Figs. 3a 
and 3b. In any order of expansion in W, the quantity Tr[h,  
Q]' is represented by a polygon with two free vertices corre- 
sponding to h and the remaining vertices to W; wavy lines 
denote the pairings ( WW),, i.e., diffusons (or cooperons) 

[see (47) and (48) 1. The analogy between these diagrams 
and those of the impurity ("crossover") technique2 is ob- 
vious. Note that the additional dashed lines that appear in 
the polygons of the impurity technique2 are taken into ac- 
count here automatically, just as in the a-model formalism 
for the perturbation-theory calculation of the density-den- 
sity ~orrelator.~. '  

Diagram 3c, which is impossible in the impurity tech- 
nique because it does not correspond to two current loops 
joined by a dashed lirle, turns out in the present approach to 
be proportional to Trh 4. Differentiation of (39) causes this 
contribution to vanish, since Trh contains no cross ( i# j )  
terms because the source h is diagonal in the indices i and j 
that number different current loops, hG = h i  SG. In the gen- 
eral case of calculation of an arbitrary fluctuation moment 
the differentiation with respect to the sources causes vanish- 
ing of all contributions except those that have the structure 
(Trh 2 )"  (Trw)" after (47) (48) are averaged. 

Diagrams 3a and 3b are proportional respectively to 
(Trh ,12and (Trh, hs )2 .  Differentiating (39) using the rela- 
tion 

d Z  
tr [Tr h,hb] =32N2(6,$pa+6aa6p~) 

dhaViahp,j 
(49) 

we obtain for these diagrams the result 

which coincides with the of the impurity diagram 
technique. Here 

FIG. 4. Diagram for the variance of the density of states in the lowest 
order in g, '. A triangle represents the first term of the expansion of the 
vertex TrAQ in terms of W. 

where the infrared divergence is cut off by the reciprocal of 
the system dimension. 

The succeeding perturbation-theory terms introduce in 
(50) corrections of relative value proportional to (gop 'I2 )"  . 
At dg2 these corrections are not small if the sample size L is 
large enough, and they must be summed. The corresponding 
diagrams of order g; 'I,14Ld-4, generated by the vertex 
Tr[h, QI2, are shown in Figs. 3d-3h.5' Direct calculation 
using (47) and (48) shows that diagrams 3d,e,f and, inde- 
pendently, 3g,h are mutually cancelled. Also cancelled are 
the analogous corrections to (50),  not shown in this figure, 
and due to the vertex TrhQVQ. 

It will be shown below that the corrections to ( (SQ) ,), 
which are proportional to (go-'I,)" (the principal logarith- 
mic corrections if d = 2)  cancel out in all orders of perturba- 
tion theory. 

Figures 3k,l,m show the nonlogarithmic corrections to 
(50); their relative value is -g, '. These corrections do not 
cancel out. Of course, they are negligibly small compared 
with (50).  It will be shown below, however, that the loga- 
rithmic encumbrances in these diagrams make the variance 
of the conductance non-universal in the dielectric region, 
i.e., at L -LC,  where LC - 1 exp go is the localization radius at 
d = 2. The mean squared fluctuations of the density of states 
are obtained from (39) and (40) at n = 0 and m = 2. In the 
lowest order of perturbation theory they correspond to a 
single diagram (Fig. 4 )  that coincides, naturally, with the 
diagram2' of the usual impurity technique. As a result, 

The corrections to ( ( 6 ~ ) ~ )  which are not proportional 
to (gop'I,)" are not cancelled. In the next section we shall 
sum them by the renormalization-group method and also 
prove that there are no renormalizations in ( (SG),) . 

$6. EXACT RELATIONS AND ONE-PARAMETER SCALING 

An effective method of summing logarithmic correc- 
tions is known to be the renormalization of all the charges on 
which the functional depends, followed by calculation of the 
required quantities (e.g., cumulants), in first nonvanishing 
order of perturbation theory, with the aid of a renormalized 
functional. We consider in $6 only the renormalization of 
the functional (40) that yields both the results (50) and 
(52) for the second-order cumulants, and their logarithmic 
corrections that contain no powers of the small parameter I / 
L. 

We rewrite this functional in a form that shows explicit- 
ly its dependence on all the renormalization-group charges, 

1358 Sov. Phys. JETP 64 (6), December 1986 Al'tshuler etal. 1358 



the number of which is formally equal to the number of ver- 
tices: 

We shall prove that in the functional (53) the renor- 
malization-group charges z,-, , whose unrenormalized val- 
ues are equal to unity, are not renormalized. This means that 
the functional (40) depends in fact on a single charge 
t cg - ' ,  i.e., on the dimensionless conductance, and that the 
one-parameter-scaling hypothesis is valid for this func- 
tional. 

No calculations whatever are needed to prove that the 
charges z are not renormalized. The fact that the chargez, is 
not renormalized follows from the already noted coinci- 
dence of the vertex (37) with the vertex that describes the 
frequency dependence of the conductivity. The charge at 
this vertex is not r e n ~ r m a l i z e d ~ - ~  by virtue of the particle- 
number conservation law. Note that the identity z, = 1 
leads, in particular, to the known statement that there are no 
logarithmic corrections to the density of states, since (v) is 
obtained after differentiating the functional (53) with re- 
spect to w [see (39) ]. 

The average conductance (G ) is determined in the low- 
est order of perturbation theory, as follows from (39) and 
(40), by the vertex Tr[h,  QI2. The renormalized, i.e., ob- 
served, value (G ) is proportional to the renormalized charge 
z,t - ' at this vertex.46 On the other hand the charge t - ' at the 
Tr(VQ)' vertex determines the renormalized value of the 
diffusion coefficient. Consequently, 

It is clear therefore that the condition z, = 1 which is valid in 
the unrenormalized case is preserved also upon renormaliza- 
tion, inasmuch as only under this condition does (54) go 
over into the Einstein relation which, of course, should re- 
main in force. This conclusion is confirmed also by a direct 
calculation in the one-loop appr~ximation.~'  

The functional (40) can be used also to calculate the 
local conductivity 

To this end, the source h should be regarded as a field that 
depends on r, and the partial derivative d ,/aha aho in (39) 
must be replaced by the functional one d ,/ah, (r)Shs (r') .  
After this replacement we obtain from (39) and (53),  in 
lowest-order perturbation theory, 

In the static limit considered here it follows from the contin- 
uity equation div j = 0 that uas (q )  should have the struc- 
ture of a transverse projector. It is clear from (55) that such 
a structure is produced only if z: = z,. Since the continuity 
equation cannot be violated in renormalizations, the condi- 
tion z, = 1 leads also to the condition z, = 1. 

Thus, the particle-number conservation law, the Ein- 
stein relation, and the continuity equation result in a one- 
parameter renormalization group for the functional (53).  
This means that summation of all the corrections containing 
g, " ( Iz )  '" (at  d = 2 we have Iz  - In L /I) reduces to replacing 
the classical value of the conductanceg,,(L ' in all the 
expression by its exact (renormalized) valueg (at d = 2 and 
in the one-loop approximation we have g =go  - In L /I) .  

Since the mean squared conductance fluctuations (50) 
are independent of go, the principal logarithmic corrections 
(g; to this quantity cancel out. There remain, how- 
ever, corrections of order g; " - ' I ; ,  obtained from the more 
complicated diagrams 3k, 31. and 3m which are proportional 
tog; I .  Summation of these corrections adds to (50) a cor- 
rection -g-' that becomes substantial at scales exceeding 
the localization length L C .  In these scales, the dispersion of 
the conductance is no longer a universal quantity. In the 
metallic region g >  1, on the other hand, the dispersion 
( (SG) *) remains constant (Fig. l a ) .  The corrections of the 
mean squared density fluctuations are accounted for by re- 
placing Go by Gin this expression. As a result we arrive at the 
plots shown in Fig. 1 for the mean squared fluctuations as 
functions of scale. 

We emphasize that the exact relations considered here 
impose no contraints on the charge renormalization in the 
additional generating functional (41 ) .  The point is that 
these relations were obtained by considering mean values. 
The functional (41),  however, does not contribute to the 
mean values, since it contains higher powers of the sources w 
and h. 

$7. HIGHER-ORDER CUMULANTS. NON-GAUSSIAN 
DISTRIBUTION FUNCTION 

We consider in this section any "normal" contributions 
to the higher-order cumulants, as obtained from the generat- 
ing functional (40) without allowance for (41). In accor- 
dance with the results of the preceding section, only nonlo- 
garithmic perturbation-theory contributions need to be 
taken into account in the calculation of the cumulants, using 
the nonrenormalized value ofg. We confine ourselves to the 
lowest order of perturbation theory and disregard the contri- 
butions-g--" , which are small in the metallic region. 

A diagrammatic representation for the simplest non- 
Gaussian cumulant ( ( S V ) ~ )  is shown in Fig. 5. Analytic ex- 
pressions for all the contributions are obtained from (39) 
and (40) with n = 0 and m = 3. The diagram 5c is propor- 
tional to I2Z& 4L - 2d , wereI, is determined by (5  1 ), i.e., at 
d = 2 this diagram is proportional to g, 41n L /1. Such cor- 
rections must cancel out in the renormalizable one-param- 
eter theory. The point is that all the logarithmic corrections 
arise in perturbation theory on account of the expansion of 
the single charge g-' = (go - In L /I)- ' .  Therefore to any 
diagram containing In L /1 there must correspond a nonlo- 
garithmic diagram of lower order in g, '. On the other hand, 
there exist no diagrams proportional to g; 2d.  

Indeed, direct calculation shows that diagram 5c is can- 
celled by the corresponding contribution of diagram 5d. The 
latter contains, besides Z2Z&; 4L - 2d , a contiribution pro- 
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(just as a pair of Tr  hQVQ vertices) leads to a factor g.  It is 
clear thus that the contribution of each such diagram is pro- 
portional tog  - " - '" + ' , which goes over into ( 6 )  at m = 0. 

c. 

FIG. 5. Diagrams for ( ( S v )  '). 

portional to (I,)'g; 4L - 2d, which cancels out the contribu- 
tions of diagrams 5a and 5b. It is thus found that 
( ( 6 ~ ) ~ )  = 0 in the leading approximation in 1 /L. 

The cancellations of all the contributions to ( ( 6 ~ ) ~ )  is 
accidental, since it is due neither to the renormalizability 
requirement nor to any other general relation. The remain- 
ing third-order cumulants differ from zero. We present the 
results for the mixed moment ( (Sv) 'SG ) . 

Using (39) and (40) with n = 1 and m = 2, as well as 
the diagrammatic formalism developed in $5, we obtain after 
replacing go(L /lid- by g: 

where 

The contribution proportional to l /d in (56) is determined 
by the vertex Tr hQVQ. Note that this vertex made no contri- 
bution in the lower-order perturbation theory to either (G ) 
or ( (6G)l) .  

The relative value of the cumulants (SV(SG)~) ,  and 
( (6G) 3 ) c  is also found too be of the order of (56).  Compar- 
ing (50) with (56) we find that in the metallic conductivity 
region g$  1 the non-Gaussian corrections are small. Near 
the Anderson transition (g 5 1 ), however, the third-order 
c u ~ ~ u l a n t s  become comparable with the second-order ones. 

Let us estimate the order of magnitude of the contribu- 
tion made to the higher cumulants by the functional (40).  
The cumulant ((SG)" ( 6 ~ ) "  ), , is a sum of diagrams con- 
taining n + m - 1 loops and having m vertices Tr  wAQ, k 
vertices Tr(hQI2, and 2(n - k )  vertices TrhQVQ 
(O<k<n).  The contributions containing I ,  with s)6 must 
contain also the integrals I?, which are logarithmic at d = 2. 
These contributions, as already mentioned, cancel out by 
virtue of the renormalizability of the theory. Therefore each 
of the n + m - 1 independent integrations over the momen- 
tum yields a factor of order g-'L ; each vertex Tr(hQ) 

$8. ADDITIONAL CONTRIBUTIONS TO CUMULANTS 

The functional (40) is insufficient for the calculation of 
the higher-order moments, and hence also of the distribution 
function. We shall show that these moments are determined 
by the contribution of the functional (41 ), notwithstanding 
the small unrenormalized value ( I  /L)2'n + " - I )  of the 
charges it contains. ( In  the present section we consider only 
the two-dimensional case.) 

We identify first the perturbation-theory diagrams to 
which allowance for the functional (41 ) corresponds when 
the cumulant (G" ), is calculated. A contribution to (39) is 
made by the vertex Tr(hQ)2n if it breaks up, after functional 
integration with respect to Q, into a product of matrix traces 
(Trh ')" . It follows from the averaging formula (47) that 
this calls for at least n - 1 W-pairings. In accordance with 
the rules of $5, the quantity Tr(hQ)2" averaged in this man- 
ner is represented by a (4n - 2)-sided polygon having 2n 
free vertices and 2n - 2 vertices pairwise joined by wavy 
lines (Fig. 6 ) .  The contribution of such a diagram to the 
cumulant (G n):dd is proportional to ( I  /L)'" (g; 'ln L /I) 
n -  I , i.e., is small compared with the contribution (6 )  of the 

diagrams that stem from the functional (40) .  However, the 
number of these "additional" diagrams is proportional to n2. 
This is easily demonstrated by considering the correspond- 
ing diagram of the usual crossover technique (Fig. 6).  The 
two boundary current loops are distinguished from among 
the total number n, meaning that the number of possible 
diffusion arrangements is of the order of C2, -n2. 

To obtain the correction to the value of (G ")Zdd in the 
next order in g; 'ln L /I, one more diffuson must be added. 
In each of the diagrams of Fig. 6 this can be done in z n 2  
ways, so that n3 equivalent correction diagrams are pro- 
duced. In each succeding perturbation-theory order the 
number of diagrams increases by approximately n2 times. 
Thus, the additional contribution to the cumulant, (G n):dd, 
contains a series in terms of the parameter n2g; 'In L /I. 

FIG. 6. Additional contribution to the nth cumulant in the lowest order of 
perturbation theory. 
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We shall show that summation of this series, which is 
essential because of the topologically large number of dia- 
grams, compensates for the unrenormalized smallness of 
(G n):dd. An effective method of summing these diagrams, 
which can of course not be implemented directly, is a renor- 
malization-group analysis of the generating functional (41 ). 

We consider now the vertex ( 3 1 ) of the functional (4  1 ) , 
which makes a contribution (G "):dd to the nth moment of 
the conductance fluctuations. It is shown in Appendix 2 that 
renormalization of this vertex generates in succession ver- 
tices continuing 2n matrices h and increases continuously 
the number of matrix traces. The most important at  n $1 are 
the vertices in which the number of fields Q is equal to its 
maximum 2n: 

where s = (s ,,..., s, ,... ) is a set of natural numbers satisfying 
the condition 

It is necessary to include in the renormalization-group 
scheme all the possible vertices Wn ( 57). 

The normalization-group equations for the charges X.; 
are derived in the one-loop approximation in Appendix 2 
and can be symbolically written in the form 

OX,,' dXm' Lrf X n s f ,  
0 E-= 

dln LIZ du {so 

where 

and the first equality of (59) follows directly from ( 1 )  and 
(2) .  In Eq. (59),  L "," is a matrix that is independent of u and 
whose rank is equal to the number of different sets {s} (58),  
i.e. to the number of ways that n can be broken up into a sum 
of natural numbers. 

The matrix equation (59) can be represented in an op- 
erator form that follows directly from Eq. (A.II.7) (see Ap- 
pendix 2)  : 

where 

and the "creation" and "annihilation" operators are 

The initial condition for Eqs. (61 ) at  u = 0 is of the form 

since the unrenormalized generating functional (41 ) con- 
tains (a t  w = 0 )  only the vertices ( 3  1 ). At large n, the value 
of X, (0) is proportional to go(21 /L  ) 2n  - n -' (the exact 
values of the unrenormalized charges X, ( 0 )  are given in 
Appendiix I, see (A.I.8) ). At arbitrary u, the solution of 
(61 ) takes the form 

where Y!," is an eigenvector of the operator (62) ,  EL" is the 
corresponding eigenvalue, and ci are the coefficients of the 
eigenvector expansion of the initial state (64) .  

The asymptotics of Y,, ( u ) ,  i.e., the asymptotics of the 
renormalization-group charges X :, ( u )  for sufficiently large 
u,  are determined by the smallest eigenvalue E I,"'. It is re- 
markable that the eigenvector Yi,"' corresponding to the 
smallest eigenvalue E I,"' can be written in the explicit form:"' 

Acting on this vector by the operator (62),  we can directly 
verify that 

Thus, the growth of all the charges XL in (57) following 
renormalization-group transformations is given by 

where go is the unrenormalized and g the normalized [in 
accordance with ( 3 ) ]  value of the dimensionless conduc- 
tance. The contribution of the functional (41) to the nth 
moment of the conductance is proportional, according to 
(39) ,  to the charge X pO.....O.O'. By calculating the functional 
derivative of (39),  we obtain the additional contribution ( 9 )  
to the fluctuation moment ( G  "),. 

A similar growth takes place also for the additional con- 
tribution to the nth fluctuation moment of the density of 
states, defined by the vertices 

with 1s) satisfying the condition (58).  These vertices are 
generated in succession upon renormalization of the vortex 
(38) that enters in the unrenormalized generating func- 
tional (41 ) . The change of these vertices in renormalization- 
group transformations isAalso described by Eqs. ( 6  1 ) and 
(65),  where the operator L,  derived in a somewhat different 
notation in Ref. 10, differs slightly in form from (62):  

The smallest eigenvalue corresponding to this operator is 
found to be 
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The rules (7 1 ) and (65) were asserted in Ref. 10 for small n 
and proved asymptotically for n > 1. That they are exact for 
arbitrary n can be verifying by applying the operator (70) to 
the same eigenvector (66) as in the case of conductance fluc- 
tuations. In the upshot we arrive at a variation of Y ",similar 
to that in (68) for X", Using (39),  we find the contribution 
of the functional (41) to the nth moment of the density of 
states: 

Note that in contrast to expression (9 )  for (G n):dd, expres- 
sion (72) for the additional contribution to the fluctuation 
moment of the density of states it is possible to determine 
even the numerical coefficient. 

Substituting in (72) the expression I /L = exp(g -go )  
that follows from ( 1 ) and (2 ) ,  we find that this contribution 
becomes large for the momentum with number 

For the conductance fluctuations, the additional con- 
tribution (9 )  becomes significant at n k A'. In particular, in 
the weak-localization region (g%ln L /I) we get the condi- 
tion n kg,. 

Let us estimate the contribution to (vn)gdd and (G ")gdd 
from the eigenvalues that follow the smallest ones. It follows 
from (65) that this contribution is small in the parameter 
exp [ ( E  Lo' - E t' ) u 1.  The eigenvalue that follows the 
smallest one turns out to be - (2n2 - 7n) for the operator 
(62) and - (n2 - 3n + 1)  for the operator (70).  We have 
therefore under the condition (73) 

which follows from (60), (67), and (7  1 ), so that the contri- 
bution of the eigenvalues that follow E p' can be neglected 
for all u. 

$9. ASYMPTOTIC FORMS OF DISTRIBUTION FUNCTIONS 

Knowing the cumulants, we can reconstruct the distri- 
bution functions f ( x )  of the conductance fluctuations 
(X = Sg) of the density of states ( x  = Sv) by using the 
known formula 

m Co 

The cumulant K, is the sum of the "normal" contribution 
(see $7) and of the additional contribution (9 )  or (72). The 
distribution function can therefore be written in the form of 
a convolution: 

m 

f ( x )  = 3 ~ N ( x - Y ) ~ . ~ ~ ( Y ) ~ Y ,  
- m 

(76) 

where y ( d )  and f add (x)  are distribution functions that 
lead respectively only to "normal" or only to "additional" 

contributions to (75).  The func t ion7  ( x )  is close to Gaus- 
sian, since the normal non-Gaussian cumulants are small in 
the weak-localization region g > 1  (see $7).  

To calculate f add (x ) ,  we note that with increase of n the 
cumulant K f d  increases so rapidly that for values of n satis- 
fying (73) we have 

To calculate f add (x)  we can therefore leave out of (75) the 
exp symbol. The result is a known expression for the charac- 
teristic function in terms of the fluctuation moments 

in which the moment M, is replaced by the cumulant K, . 
This is natural, for under condition (77) we have M ,  = K, 
accurate to terms of order exp( - nu) ,  i.e., accurate to the 
parameter (74).  

Substituting in (78) the expression for K, , whose struc- 
ture is 

[see (9 )  and (72) 1,  we obtain an asymptotic series. Here C, 
are coefficients that vary slowly with n. We sum this series by 
an artifice similar to Bore1 summation, using the identity 

CC 

We present, to be definite, the calculations for the dis- 
tribution function of the density of states, for which [see 
(72) 1 

Substituting (79)-(8 1 ) in (78) and changing the order of 
summation over n and integration with respect to w, we ob- 
tain 

m m 

We have expressed here the coefficient C, in the form of an 
integral with respect to the parameter a. As a result we ob- 
tain for the distribution function f add (Sv) 

m 

(83) 
whereB(x) = 1 fo rx>OandO(x)  =Oforx<O.  

Substituting in (83) Eq. (60) for u and calculating the 
convolution of (76) with the Gaussian funct iony (Sv) we 
obtain for large positive Sv the expression given in $2 [see 
(7 )  ] for the asymptotics of the distribution function f(Sv) . 
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The tail of the distribution function f(Sv) is much 
weaker at negative Sv than at  Sv > 0. This is clear even from 
the fact that the odd cumulants K 2 ,  + , are not small com- 
pared with the even K ,, . At the accuracy to which (83) was 
derived, f(Sv) = 0 at  Sv < 0, as follows from the fact that the 
coefficient of ( - iwg) in the square brackets of (82) is posi- 
tive-definite. We were unable to prove this positive-definite 
property in general form. The coefficients C, in (79) were 
calculated only in the lowest approximation in exp( - nu) ,  
i.e., in the parameter (74) .  I t  can therefore only be stated 
that if f ( x )  does indeed have a tail of type (7 ) ,  the ratio 
f( - 1x1 )/f( 1x1 ) at large 1x1 is small in terms of the param- 
eter 

We estimate now the values of Sv starting with which 
the distribution function f(Sv) takes the asymptotic form 
(7 ) .  The total distribution function is obtained by the convo- 
lution (76) of the function f "** (Sv) (83) with the normal 
distribution function (Sv), the variance being given by 
Eq. (52) in which, in accordance with §6, Go must be re- 
placed by G. calculating (76) by the saddle-point method, 
we verify that the asymptotic form (7)  sets in at 

where A for d = 2 is determined by the relation (78). 
We discuss now the distribution of the fluctuations 6g. 

In this case 

and calculations similar to the ones described above yield an 
equation similar to (83), accurate to the prefactor of the 
exponential and to replacement of u by 2u. The integral (76) 
leads to a logarithmically norma1 asymptotic (7)  that is val- 
id for Sg > A (73).  At small Sg the distribution function be- 
comes normal with a variance ( (Sg)') - 1 that is universal 
in the metallic region. 

So far, only the two-dimensional case was considered in 
$5 8 and 9. We proceed to a generalization to the case of 
arbitrary dimensionality d = 2 + E .  I t  suffices for this pur- 
pose to take into account the term ~g in Eq. ( 2 )  for g. There 
is no need to consider the similar terms of Eq. (59) for X,, 
and Y, , since they lead to correction of order 1 to the eigen- 
values En - n 2  (67),  ( 7  1 ) . As a result, the only change com- 
pared with the two-dimensional case reduces to replacing u 
(60) by 

in accordance with the definition of u, viz., du /d ln (L  / 
I) = g- ' .  Here, as everywhere else in this article, go is the 
dimensionless conductance of a d-dimensional cube of size I. 
Equation (86) is therefore applicable in the quasi-one-di- 
mensional or quasi-two-dimensional case. The point is that 
the effective dimensionality in these cases is formed over 
scales of the order of the transverse dimensions a s 1  of the 

sample. Three situations should be considered: ( I )  quasi- 
two-dimensional case, (11) quasi-one-dimensional case in 
which the two transverse dimensions are of order a ,  and 
(111) quasi-one-dimensional case in which one of the trans- 
verse dimension is smaller than or  is of the order of 1. If L is 
small compared with the localization length and go> 1, the 
parameter u is given by 

The value of u for sufficiently large L is u, (go,  a ) ,  
where u, is given by (86) and g, is the conductance of a 
sample of size L = a. The absence of one-parameter scaling 
is once more manifested in the difference between (87) and 
(86).  

Expression ( 7 )  for the asymptotics of the distribution 
functions remains valid at  any dimensionality, if expression 
(86) and (87) is used for u. The value of A (the fluctuation 
scale at which the asymptotic ( 7 )  sets in) is then 

1 L aZ = - ln-. 
u 1 

In the quasi-one-dimensional case we have u cc L,  mean- 
ing that the coefficient of In2 Sgin (7 )  is proportional to L -'. 
Just such a dependence of this coefficient on the chain length 
was obtained in Ref. 17 for the purely one-dimensional case. 

We emphasize once more that it is impossible to de- 
scribe mesoscopic fluctuation moments as the additional 
scaling parameters, were proposed in Refs. 51 and 52. It 
follows from our present results that such an approach is 
inadequate. On the one hand, the lower fluctuation moments 
(n  <go)  are splendidly described at g > 1 within the frame- 
work of one-parameter scaling. On the other, to describe 
high moments we need the much more elaborate scheme of 
§8, in which each moment is determined by a large number 
of scaling parameters. 

We note in conclusion that near the Anderson transi- 
tion the conductance fluctuations are of the order of its mean 
value. This fact must be taken into account in the discussion 
of the fundamental problems of this transition, such as 
whether a minimal metallic conductivity is present or not. 

We are deeply grateful to A. A. Abrikosov, A. G. 
Aronov, V. N. Prigodin, D. E. Khmel'nitskii, B. I. 
Shklovskii, and V. I. Yudson for valuable discussions. 

APPENDIX I 

Derivation of the Q-functional 

We describe in this Appendix a procedure for deriving a 
generating functional that depends only on the slow fields 
Q ( r ) .  Applying, as usual, the Hubbard-Stratanovich trans- 
formation to the functional integral (26),  we reduce the ac- 
tion (23) to a form quadratic in the initial fermion fields: 
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(A.I. 1 ) 

where So, S[h],  and S[w] are determined by expressions 
(22), (27) and (35 ), respectively, and the Hermitian field 
Q(r)  has the structure (24). The integral (26) is then trans- 
formed into the integral (28) over fields Q(r )  that vary 
slowly in space, where 

The integral (A.I.2) is calculated by the saddle-point 
method. In the class of spatially homogeneous matrices g ,  
the saddle-point condition for h = 0 and w = 0 is of the 
form4z5 e2 = 1, ~ r g  = 0. To derive (40) from (A.I.2) we 
must expand the integrand in powers of the gradients of the 
fields Q(r ) satisfying the condition (30), and also in terms of 
the sources h and w. 

Expansion in the gradients leads in the first nonvanish- 
ing order to the ~ t a n d a r d ~ - ~  a-model functional (29), (40) 
at h = 0 and w = 0. Zero-gradient vertices containing 
sources h and w are obtained by expanding (A.I.2): 

Here ((  ...)) is the functional averaging ( 13) with weight 
exp (iS),andSistheaction (A.I. l)  inh =O,w = 0,andthe 
field Q ( r )  is assumed to be spatially homogeneous: 
Q( r )  = a .  The Gaussian integrals in (A.I.3) are calculated 
by using the Wick theorem with allowance for only connect- 
ed diagrams. The paired mean values are given in the mo- 
mentum representation by the expressions4' 

Here Y (p)  is the Green's function corresponding to the ac- 
tion S: 

where 6 = p2/2m - E, . 
Taking (A.I.4) into account, we reduce (A.I.3) at 

w = O t o  

It can be seen from (A.I.6) and (A.I.5) that F[h]  breaks up 
into a sum of vertices containing 2n matrices n and an arbi- 
trary even number, not larger than 2n, of matrices Q. The 

contribution of the vertices containing three and more 
sources h in a row vanishes when (39) is differentiated. The 
most important, as will be shown in Appendix 11, are vertices 
from which h is also absent. For these vertices we obtain 
from (A.I.6) 

where h = (ha ha ) ' I 2 ,  

(ad is defined in (43 ) ) . 
Equation (A.I.7) was derived for spatially homogen- 

eous fields Q. When fields that vary in space are considered 
we get, besides (A.I.7), vertices containing gradients of the 
fields Q(r) .  Calculating these vertices in lowest order in h 
and VQ we arrive at the functional (29). The contribution of 
the gradient vertices and the high (n ?go% 1 ) fluctuation 
moments turns out to be small in the parameter exp( - n) .  
The point is that none of the gradient vertices contribute, in 
first order, to the fluctuations of interest to us, those of ho- 
mogeneous quantities. 

In the study of fluctuations of the density of states we 
need take into account only vertices that contain powers of 
wAQ. The contribution of vertices containing ws with s > 1 
vanishes when (39) isdifferentiated. Using (A.I.3)-(A.I.5) 
we obtain for h = 0 

where 

APPENDIX II 

Derivation of renormalization-group equations for 
additional charges 

Within the framework of the renormaliza- 
tion of the nonlinear a model at d = 2 we separate the "fast" 
and "slow" components of Q(r) :  

Here Qo(r) is the "fast" field, which is expressed with the aid 
of the parametrization (42) in terms of the matrix W,(q) 
with "fast" momenta q, and RI - ' < q < 1 - ' (A is a scale fac- 
tor).  The "slow" unitary matrices U reconstruct the "slow" 
field g ( r )  in the form 

The renormalized functional is obtained after integrating 
over Q,,(r): 
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To carry out the renormalization-group transforma- 
tions (A.II.3) in the one-loop (linear in t a g -  ' ) approxima- 
tion, the integrand in (A.II.3) must be written in the form 
exp ( - F + F,) exp ( - F,,) and F - Fo must be expanded 
up to terms quadratic in Wo using the parametrization (42) 
for Qo. The functional Fo, just as in perturbation theory, is 
given by (44),  in which, however, the matrices W(q) are 
replaced by matrices Wo(q) that contain only "fast" mo- 
menta. 

Consider the changes produced in the vertex ( 3  1 ) by 
the renormalization-group transformations. After separat- 
ing the "fast" fields in accordance with (A.I I . l ) ,  we get 

We expand the density p, of the functional @, up to terms 
quadratic in W, 

Z l i -  1 

The term $, in (A.II.5) is independent of Wo and reformats 
the vertex @, in terms of slow variables 6, = ~ r ( h Q ) * " .  
The term linear in Wo makes no contribution to the mean 
value. Averaging in (A.II.5) the term quadratic in W,, by 
using (47),  we get 

7,-1 

We have left out of (A.II.6) the terms proportional to N, 
which make no contribution in the replica limit N = 0, as 
well as the terms with a number of Q matrices smaller than 
2n. Their contribution to the renormalization-group equa- 
tions will be analyzed below. 

Renormalizing the vertices containing products of p ,  
we arrive ultimately at a functional containing all the ver- 
tices of type (57).  In the one-loop approximation it is neces- 
sary to expand'the factors p, in each of the vertices (57) in 
accordance with (A.II.5) and, retaining in the product 
(pl)S1 . . . (pm )Sm. . .  only the terms quadratic in Wo, carry out 
the averaging using (47) and (48).  As a result we get the 
contribution of any of the vertices (57) to the renormaliza- 
tion of the functional 

Differentiation of (A.II.7) with respect to In A ' leads to 
the system of linear differential equations (61),  in which we 
havezhanged to the more convenient form (62) of the oper- 
ator L. 

As noted in Appendix I, the derivation of a generating 

functional gives rise, besides (41) ,  to vertices in which the 
number of Q matrices is less than that of h matrices. An 
example is the vertex 

Vertices containing less than 2n fields Q are generated also in 
the renormalization (57) (they were left out of (A.II.6) ). It 
is important that these vertices make no contribution to the 
renormalization of the charges at the vertices (57) :  h can- 
not be changed into hQhQ by a renormalization-group trans- 
formation. 

The renormalization of the charges X,, ' at the vertices 
(A.II.8) is described by renormalizaiton-group equations in 
which the charges X :, at  the vertices (57) enter as inhomo- 
geneous terms. It is important that the eigenvalues of these 
equations, which are determined by the number of fields Q, 
turn out to be smaller than (67) .  Therefore their increase for 
large n is determined by the inhomogeneous terms X and is 
also given by (68) .  Consequently, allowance for these terms 
would change only the prefactor of the exponential in the 
equation K, a exp(un2) for the growth of the high fluctu- 
ation moments. 

"Here and elsewhere g means the mean value of the dimensionless con- 
ductance, and Sg_g(G - (G ) ) / ( G  ). 

"We are considering the conductance of a cube of volume L" at zero 
external-field frequency and at T = 0. 

' l f i  = 1 here and everywhere else, except in the final results. 
4'The termscontaining R + in the right-hand sides oftheseidentities corre- 

spond to Cooper contributions, and the remaining ones to diffusion con- 
tributions. Equations (47) and (48) are valid also in the presence of a 
weak magnetic field if the Cooper contributions are discarded and the 
elements of matrices P and R are assumed to be complex numbers. 

"Note that certain topologically possible diagrams, such as, e.g., diagram 
3i, do not appear at all in the chosen parametrization (42).  The sum of all 
diagrams of a given order does not depend, ofcourse, on the parametriza- 
tion, but the coefficients preceding the individual diagrams do depend. 
Thus, in the usual crossover technique, to which the parametrization 
Q I '  = (I - Q "Q ") 1'2corresponds,7 thediagram 3iand thosesimilarto 
it differ from zero, while the diagrams 3d and 3h vanish. 

"We are grateful to V. I. Yudson who pointed out this Ansatz that dates 
back to the theory of representations of symmetric groups (see, e.g., Ref. 
49). Note that the relation such as (67) was first obtained by Wegnefl' 
as an anomalous dimensionality of operators connected with the mo- 
ments of a local density of states. 
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