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We consider the Brillouin scattering of a strong polariton wave, assumed to be narrow-band 
Gaussian noise, in a direct-gap semiconductor. We show that notwithstanding the incoherence 
of the pumping the effects caused by the coherence of the scattered polaritons and the phonons 
which are in resonance with them-the mixing of polariton and phonon states, the 
renormalization of the spectra, the formation of a gap in the density of states and in the 
spectral density of scattered anti-Stokes polaritons, and oscillations in the intensity of the anti- 
Stokes waves after the pumping is switched on-are conserved (although they are appreciably 
weakened when the intensity and the spectral width of the pump are increased). (These effects 
were considered for the case of coherent pumping by Ivanov, Keldysh, and Tikhodeev, [Sov. 
Phys. JETP 57,234 (1983); 63, 1086 (1986); 64,45 (1986)l.) 

$1. INTRODUCTION 

Characteristic for the behavior of systems which are 
removed from equilibrium by a strong external field is the 
occurrence of correlations which are additional to the ones 
occurring in a state of thermodynamic equilibrium. As a 
rule, such correlations are not universal (in contrast to the 
equilibrium case) and are determined by the external field 
and the specifics of the system; they turn out to affect appre- 
ciably the behavior of the system. Phenomena typical of the 
situation described here take place in Brillouin scattering of 
a strong coherent polariton wave in a semiconductor. The 
coherence between scattered polaritons and resonance 
phonons which arises in this case leads' to the formation of 
mixed polariton-phonon (phonoriton) modes, the restruc- 
turing of the spectrum and of the occupation numbers of 
both the phonons and the polaritons." There is experimental 
evidence in favor of the phonoriton restructuring of the spec- 
trum during anti-Stokes scattering by optical phonons in 
CdS.3 Various effects caused by this restructuring (near the 
threshold of induced scattering when the transient wave is 
abruptly switched on) are considered theoretically in Refs. 4 
and 5. In a formal description of these effects the coherence 
of a strong polariton wave (pump) was used in an essential 
way. It is therefore of interest to analyze which of the effects 
considered "survive" when one uses an incoherent pump. 

In the present paper we consider the anti-Stokes2' Bril- 
louin scattering of a strong noisy polariton wave. In this 
paper we describe such an electromagnetic wave with a fre- 
quency E, close to the polariton resonance frequency as 
Gaussian noise with a vanishing average field amplitude, 
( E  ) = 0, and a pair correlation function 

(E(0, t)E*(r, t ' )  )cnnoexp{-61tr-tl-I-ieo(tl-t)-ipor). (1.1) 

 here^^ = &(po), po is the quasimomentum of the wave, ~ ( p )  
the polariton dispersion law, no the spatial polariton density 
which is connected with the intensity of the passing wave 
through the relation 

and S is the spectral width of the noise (the reciprocal of the 
correlation time). In other words, such a wave is a macro- 
occupied polariton mode (the number of particles n,Vin it is 
proportional to the volume) with a quasimomentum po and 
random phase. The averaging in ( 1.1 ) is performed over the 
appropriate density matrix which from an experimental 
point of view is equivalent to averaging over an ensemble of 
realizations. However, when we study stationary phenome- 
na this averaging is equivalent, by virtue of the ergodicity of 
stationary random ~rocesses ,~ to averaging over the obser- 
vation time t ) S - ' .  

The simplest to describe is the scattering in the case of 
narrow-band noise S < r  where r = y,,, + y,,,y,,,,,,, is 
the reciprocal of the polariton (phonon) life time. From a 
formal point of view one finds the solution for S = 0. The 
general prescription for finding any final answer reduces 
[see $2, Eq. (2.5) 1 to averaging the appropriate expression 
evaluated for coherent pumping over a Rayleigh intensity 
distribution. Such a result is natural for Gaussian noise (the 
so-called adiabatic approximation, see Ref. 6) .  Many of the 
results obtained are therefore intuitively obvious. We ana- 
lyze in $3 the behavior of the polariton density of states (the 
imaginary part of the retarded Green function) and the spec- 
tral density of the scattered polaritons in the frequency and 
momentum range close to the anti-Stokes resonance for sta- 
tionary backward scattering. We show that when the pump- 
ing intensity increases there occurs a pseudo-gap (as in dis- 
ordered systems7) in the density of states which is 
considerably more smeared out than the gap for coherent 
pumping. In particular, the density of states in the center of 
the gap decreases with increasing I proportional to I - ' l d  
and not to I - ' as for coherent pumping. 

We consider in 43  also non-stationary scattering when 
the pumping is switched on suddenly. In the coherent case 
there occur after the switching on of the pumping oscilla- 
tions in the intensity of the anti-Stokes line5 similar to the 
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nutations of a two-level system. In the case of noisy pumping 
the oscillations of the anti-Stokes line are damped. This re- 
sult corresponds to the suppression of the nutations of a two- 
level system in a noisy field." 

At the end of $3 we consider Stokes scattering. In the 
approximation for the given noisy pumping used in the pres- 
ent paper there do not exist stationary solutions for the 
Stokes lines in contrast to the scattering of a coherent wave 
when there are stationary solutions right up to the threshold 
I, for induced scattering (stochastic instabilityh). The 
growth in the amplitude of the Stokes waves starts without 
having a threshold; in the time range t > 7, where i cc I - ' it 
proceeds faster than exponentially, proportional to 
exp[t ' r / i ] .  

In the case of Gaussian noise with a finite spectral 
width, considered in $4, there is no general rule for calculat- 
ing any quantities such as there is when S = 0. However, in 
the framework of the T-approximation (see Ref. 4)  one can 
for the case of stationary scattering completely sum the per- 
turbation theory series in the external field for the retarded 
Green function. The summation method (reduction to an 
infinite continued fraction) was, as far as we know, first ap- 
plied in Ref. 8 to calculate the linear polarizability of a three- 
level system. This method was used also in the theory of 
disordered systems9 to calculate the electron density of 
states. It was shown in Ref. 9 that writing the solution as a 
continued fraction is convenient for a numerical analysis. As 
to the statistical Green function, even in the r-approxima- 
tion and the stationary case one can only carry out an exact 
summation under the condition that the phonon life time is 
considerably longer than the polariton life time, or vice 
versa. (From an experimental point of view this case is, of 
course, the most common one. ) Taking into account that S is 
finite leads (as in Ref. 9 )  to a yet larger smearing out of the 
pseudo-gap in the density of states; as S/T - 0 the solution 
goes over into the one obtained for S = 0 by averaging over 
the Rayleigh distribution. 

On the whole we can conclude that when a noisy polari- 
ton wave is scattered in a semiconductor the effects connect- 
ed with the additional coherence of the scattered polaritons 
and phonons do not disappear although they are consider- 
ably weakened. 

Concluding this section we consider how these effects 
must manifest themselves experimentally. We asusme that 
we use as a pump a narrow-band noisy source with S <  I?. 
Stationary effects (renormalization of the spectrum and of 
the populations) can be studied using a single realization 
under the condition that the observation time t)S- I .  Tran- 
sient processes (oscillations of the anti-Stokes and growth of 
the Stokes components) develop over times t 5 T-I. Noise 
effects must thus manifest themselves when one averages 
over a series of pulses (of length t,,,,, < a p L )  in each of 
which one observes the scattering of a coherent pump. 

$2. PERTURBATION THEORY FOR SCATTERING OF AN 
INCOHERENT WAVE 

We use as in Refs. 4 and 5 a diagram technique for non- 
equilibrium processes. lo.' ' We consider first stationary scat- 

tering. The rules for constructing a diagram perturbation 
theory in terms of the polariton-phonon interaction which 
was formulated in Ref. 4 remain valid, except for the rule for 
describing the external field. As the amplitude of the field is 
zero on average the anomalous vertices" of (I .  1.7) for the 
creation and annihilation of a polariton withp = p , ,  are also 
zero. The anomalous Green functions (I. 1.8) and (I. 1.9) 
also vanish. All quantities with diagrams which in the case of 
coherent scattering contain different numbers of anomalous 
creation and annihilation vertices are, in general, also zero 
due to averaging over the phase. 

The statistical component of the free polariton Green 
function which is proportional to the correlator ( 1.1 ) de- 
pends on the intensity of the external field. We isolate it and 
take it into account separately. After Fourier transforming 
with respect to the frequencies and momenta it has (in the 
triangular representation) the form 

As we assume the field to be Gaussian, the higher correlators 
vanish. The action of an incoherent external field is in the 
resonance approximation thus completely described by a 
diagram perturbation theory containing the lines (2.1 ) be- 
sides the free propagators of scattered polaritons and phon- 
ons ( I .  1.2) to ( I .  1.4) (Fig. 1 ). I t  is convenient for what 
follows to combine the latter with the vertices ( I .  1.5) of the 
polariton-phonon interaction and to write them in the form 
(see Fig. 1 ) 

E,*{,"J" (p', pTT) =@p,mp,,(cIx),f,, ( o x )  ,JJ , , I  ( 2 n ) &  

x 6 (kf+p-p') (2.-~) '6 (kT'+p-p") 

where 

].,, i n ,  ].,! = 1,2 are time i n d e x e ~ . ~ '  
Comparing the perturbation-theory series constructed 

thus with the series for coherent pumping one can easily 
formulate the following correspondence rule illustrated by 
Fig. 2. To  obtain all diagrams for any quantity A in the inco- 
herent case one must construct all diagrams for A with the 
same number of anomalous creation and annihilation ver- 
tices in the coherent case. After that one must join by lines 
(2.2) the creation vertices with annihilation vertices in all 
possible ways. We note that from a diagram for the coherent 
case with m anomalous vertices of each kind we obtain m! 
diagrams for the incoherent pumping. For finite S these dia- 
grams are, in general not equal to one another. However, in 
the limiting case of narrow-band noise, S = 0, the relation 

FIG. 1. The correlator (2 .2)  of the external field, E .  
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FIG. 2. Rule for the correspondence of diagrams for coherent and noisy 
polariton waves. 

E(p', p") =@ (p') @ @  (p"), (2.3) 

where 

%(PI) =QPv(2n)'6 (p-pol (2n)'6 (k'f p-p') (2.4) 

is the anomalous vertex (1.1.7) for coherent pumping, is 
satisfied. Hence, in that case all m! diagrams are equal to one 
another and to the original diagram for coherent pumping. 

This statement allows us to obtain a general rule for the 
summation of diagrams for any quantity A(n,) describing 
the scattering of a narrow-band incoherent polariton wave 
with density no [or intensity I o f  ( 1.2) ] ifwe know the corre- 
sponding function Ace, (no) for the coherent case: 

m - 
A (no) = e-c~,.h(6no) dg= p,{n) ~ . , ( n )  dn, (2.5 

where 

Pno {n) =no-' exp {-nlno) 

is an exponential distribution corresponding to the Rayleigh 
distribution of the amplitude. 

To prove Eq. (2.5) we must expand A,,, (no) in a per- 
turbation theory series in powers of no: 

m 

We then get in the incoherent case (when S = 0 )  
m 

A (4 = mlA.,.,nom. 
m=O 

Using the representation 
rn 

m! = Jbme-cdc 
0 

and interchanging summation and integration in (2.8) we 
prove (2.5). 

In concluding this section we consider the non-station- 
ary scattering of an incoherent wave when it is suddenly 
switched on. This problem was solved for coherent pumping 
in the T-approximation in Ref. 5. We shall assume that the 
noisy wave, switched on at time t = 0, is Gaussian noise with 
a correlation function differing from ( 1.1 ) by additional fac- 
tors B(t)B(t '), where B(t) is the step function: 

( E ( 0 ,  t ) E * ( r ,  t ' ))~noO(t)O(t ' )  

As in the case of stationary scattering the anomalous 
Green functions [the off-diagonal components of the matrix 

( I I .4)]  vanish. One sees easily that the above formulated 
rule of correspondence between diagrams for the coherent 
and incoherent cases remains valid. In the limit as S - 0 the 
dependence on t and t '  of the corresponding function 
E (p't,pVt ' )  can be factorized and an equation such as (2.3) is 
satisfied. The summation rule (2.5) is thus also valid for 
non-stationary scattering. 

$3. SCATTERING OF NARROW-BAND NOISE, 6+0  

We use Eqs. ( I .  1.18) and (1.2.5) and calculate in the T- 

approximation the polariton density of states I ImG I,, (p)  I 
and the spectral density ofthe backward scattered polaritons 
Npol (p )  for coherent pumping:5' 

[ N p o l  (P) = l / Z i ( ~ p o l - G ~ o l + G ~ l )  ] coh=" fphN+@p2 I ~ ( P )  I-', 
(3.2) 

where 

Zr(p)=a(p)b(p) -@p2, 
~ ( P ) = E - ~ ( P ) + ~ Y P o ~ ,  b ( ~ ) = ~ - ~ O - ~ ( p - ~ o I ~ i " f p h ,  (3.3) 

.V+=[elrp(fiulpo-p+IIkBT)-11-' 

is the equilibrium number of resonance phonons with mo- 
mentum p, - p+ which is in resonance for the anti-Stokes 
backward scattering, see (1.1.1 ); u is the sound speed. In 
(3.2) and henceforth we neglect the thermal source of polar- 
itons = 0. 

To obtain the corresponding functions IIm G I,N,,,, 
for the incoherent case as 6 -0 we use Eq. (2.5). For a quali- 
tative comparison of the behavior in the coherent and the 
incoherent cases we performed numerical calculations the 
results of which are given in Figs. 3 and 4 (for I ImG iol / ) and 
Figs. 5 and 6 (for N,,, ) . Figures a refer to the coherent and 
figures b to the incoherent case. The quantities I ImG k,, I, 
Npol /N+ are shown as functions of the frequency and of the 
longitudinal momentum. The central point in all figures 
[with coordinates p + = ( E  + ,p + ) , see (I. 1.1 ) ] is the region 
of anti-Stokes resonance for backward scattering. In that 
point the polariton and absorbed phonon terms intersect. 
Quantities with the dimensions of frequency 
( E ,  (G  Iol ) -',N;,') are measured in units y,,, , and momenta 
in units 2y,,, /co. In the calculations we used the following 
parameter values: u = 1/3, co = 2, y,,, = 1, y,, = 1. The 
pumping strength in dimensionless units Q2+ /y;,, 
( +  @ , +  ) is equal to 1 (Figs. 3 and 5)  and 9 (Figs. 4 and 
6 ) .  

It is very clear from Figs. 3 (a )  and 4 ( a )  how the 
phonon and polariton modes mix when the intensity of the 
coherent pumping increases, tails occur in the polariton den- 
sity of states and extend along the phonon term, and a gap is 
formed in the density of states. In the incoherent case (Figs. 
3b and 4b) there also occurs a mixing and a trough in the 
density of states is formed but much less well pronounced. 
The spectral density of the backward scattered polariton 
wave (Figs. 5 and 6 )  behaves similarly. 

The speed at which the density of states diminishes at 
the center of the gap when the pumping strength increases 
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FIG. 3. The polariton density of states IIm GI,,, y,,, as 
function of frequency and longitudinal momentum for 
@+/y,,,, = 1 (explanation in the text): a: coherent case, 
b: incoherent case (the numbers in the upper left-hand 
corner of each figure are the minimum and maximum val- 
ues of the function shown, p, = p + ,, ). 

FIG. 4. The same as in Fig. 3, for @+/y,,, = 3. 
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FIG. 
YPOl/ 
case. 

5. The spectral density of scattered polaritons N,,, 
' N ,  for @+/y,,, = 1: a: coherent case, b: incoherent 

FIG. 6. The same as in Fig. 5 for @+/y,,, = 3. 
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can be estimated quantitatively. It follows from (3.1 ) that 

where 6 = y,,, y,, cP r2. Using (2.5) we get for incoherent 
scattering 

* 

In strong fields when 6 4 1  the exponential integral 
El (6)  -exp( - 6) Ilng 1 .  Hence, the density of states in the 
center of the gap decreases in the incoherent case when the 
pumping strength increases as 6 11116 / a I - ' l n l  which is ap- 
preciably more slowly than in the coherent case (porpor- 
tional t o c a r - I ) .  

The intensity of the scattered polaritons is for non-sta- 
tionary scattering of a coherent pump described by Eq. 
(11.5). In the simplest case y,,, = y,, = r / 2  this formula 
has for the anti-Stokes component the form 

(3.6) 
where 

This result corresponds to the damping of the nutations of a 
two-level system in a noise field.6 

In concluding this section we give some results referring 
to the Stokes scattering of a narrow-band noisy wave. The 
considerations given in $2 are formally independent of 
whether we consider anti-Stokes or  Stokes scattering. One 
can thus expect that Eq. (2.5) remains valid also in the 
Stokes case. However, in our statement of the problem when 
the pumping intensity is assumed to be given by an external 
source there is no stationary solution in arbitrarily weak 
fields (stochastic instabilityh) in contrast to the scattering of 
a coherent pump when there are stationary solutions right 
up to the threshold of induced scattering. This is clear from 
(2.5) in which the integration is performed over all intensi- 
ties, among which there are also those which exceed the 
threshold in the coherent case. We consider therefore the 
non-stationary problem. We write down that part of (11.5) 
which gives the exponential increase of the Stokes wave 
[N, , , ] , , ,  whenI>I ,  fory,, = y,,, = r / 2 a n d p  = p -  [see 
( I . l . l ) ] :  

where 

For a noisy pump we have 

The time-dependence of (11.15) together with the corre- 
sponding dependence in the incoherent case calculated using 
(2.5) for the same parameter values as before is for @+/ 
y,,, = 3 shown in Fig. 7. As earlier, a refers to the coherent 
and b to the incoherent case. I t  is clear that the averaging of 
(2.5) leads to a suppression of the oscillations in the intensi- 
ty of the scattered polariton wave except for the first period. 

FIG. 7. The function N,,, ( t , p l  ) (N+ 
The time is measured in units y;, and 
2~, , ,  /co. 

for @+/y,,, = 3. 
the momentum in 
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The integrand in (3.8) contains a simple pole on the integra- 
tion contour. This non-integrable singularity arises in the 
threshold region for induced scattering in the framework of 
the T-approximation which is, as was shown in Ref. 4, not 
applicable in that region. We assume that taking the diver- 
gent diagrams near the threshold completely into account 
leads to the singularity in (3.8) becoming integrable. Using 
the Laplace method to estimate the integralsI2 and noting 
that the singularity of the factor of the exponent does not fall 
for large t in  the important region of integration we find that 
for t>;= MI' 

NPol(p-, t ) - ' l2n'"( l+W-)@-t  esp [(@-t)'-rt].  (3.9) 

For the scattering of a noisy wave of arbitrary intensity the 
Stokes waves must thus grow faster than exponentially. 
Leaving this growth regime occurs with a delay which is 
inversely proportional to the pumping strength (thanks to 
this there does not arise a paradox when we are considering 
pumping with I -0) .  For clarity we recall that this effect 
must occur after averaging over a large number of realiza- 
tions. 

Under actual conditions, of course, the pumping 
strength in each point of the semiconductor is not fixed by an 
external source (as in our idealized statement of the prob- 
lem). The growth process is limited by particles leaving the 
passing wave and the amplitude of the Stokes waves emerges 
at a stationary value. It follows from our considerations that 
the establishment of a stationary picture proceeds complete- 
ly differently for coherent and for noisy pumps. 

$4. SCATTERING OF NOISE WITH A FINITE SPECTRAL 
WIDTH 

If s f 0  the rule (2.3) for factorization is not satisfied 
and there does not exist a general rule like (2.5 ) for summing 
any diagrams. However, in the framework of the r-approxi- 
mation one can for the stationary case solve the problem for 
the retarded and advanced Green functions by a method 
proposed by Elyutin.' This method breaks down already for 
the statistical Green functions and allows us to solve the 
problem only when y,,, g y,, or vice versa (and arbitrary 
8 ) .  

We start with the calculation of G i,, . In the framework 

of the ~-approximation any diagram for G Lo, consists (see 
Fig. 8 )  of a "spine" containing a product of alternating func- 
tions 

and "ribsv-arbitrarily entangled lines E ,  (2.2),  which after 
integration over momenta are reduced to the form 

The functions a ( & )  and b(&) occurring in (4.1 ), (4.2) are 
defined in (3.3). Here and henceforth we shall not write 
down the momentum arguments: p for the G :,,,, lines and 

P - Po for G :,,,I . 
The method for summing such diagramsR is based upon 

the fact that their magnitude depends only on the number of 
ribs passing over each line of the spine and does not depend 
on the entanglement of the ribs. For instance, the diagrams 
of Fig. 8 have the same magnitude and are equal to 

This property follows from the analyticity of the functions 
G :,, in the upper &-halfplane. It enables us to calculate G ko, 
as a sum of "simple" diagrams (such as Fig. 8a) for which 
the ribs are not entangled and for which, hence, the vertices 
are not renormalized. One needs only correctly take into 
account the number of diagrams which are equal in magni- 
tltde to the given simple diagram. As a result (see Refs. 8 and 
9)  finding the function G Lo, reduces to solving an infinite set 
of coupled equations 

We can write the solution of the set (4.4) in the form of an 
infinite continued fraction 

1 Q: QP2 2QPZ 
- b (e) +iG- a( ; )  +2i6- b ( 8 )  +3i8- ' 

To find G i, one must in (4.5) interchange the functions a 
and b. 

We now turn to the calculation of F,,, (p). In the T- 

approximation any diagram for F,,, also consists of ribs and 
vertebra which in contrast to the diagrams for G Lo, contain 
(at an arbitrary place) one function such as 

b 

FIG. 8. Diagrams for G k, . 
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to the left of which stand the G :,, and to the right the G ",, , 
a = pol, ph. As the functions (4.6), (4.7) are not analytical 
either in the vertex or in the lower E-half-plane diagrams 
with entangled ribs are not equal to the corresponding sim- 
ple diagram. We were not able to obtain a general rule of 
summation similar to (4.5) for any relation between S, y,, , 
and y,,, . However, in the case when one of the dampings is 
appreciably less than the other ( y,,, 4 y,, or vice versa) one 
easily finds a solution. For instance, when y,,, < y,, 

where G i,, is the infinite continued fraction (4.5). 
To prove (4.8) we evaluate the imaginary part of any 

diagram for G Lo,. It is proportional to the imaginary part of 
the vertebra 

To evaluate the imaginary part we use an identity which is 
valid for any complex numbers a,, a ,,..., a, : 

Im (a1az . . . an) =Im al Re (az*a3' . . . a,') 
+Im a, Re(alaa'. . . an*)+. . . Ima ,  Re(ala,. . . a,-l), 

and also Eqs. (4.6), (4.7). We get 

The first term on the right-hand side of (4.9) is the sum of all 
vertebra diagrams for F,,, with the topological structure 
~onsidered.~ '  The second term (proportional, as should be 
the case, to the number of thermal phonons) is small pro- 
vided the polariton damping is small, as it is proportional to 
y,,, . When y,,, < y,, and for arbitrary S for each diagram of 
a given topological structure therefore the relation 

holds. This proves Eq. (4.8). It follows from the proof that a 
similar relation holds for F,, : 

Using (4.5), (4.8) and the results of the numerical analysis 
of similar expressions given in Ref. 9 we may conclude that 
taking into account a finite S leads to an even larger (as 
compared to the case when 6 = 0 )  smearing out of the pseu- 
do-gap and of the singularities of the spectral density of the 
scattered polaritons. One can also verify that the small pa- 
rameter which leads, when it tends to zero, to the solutions 
obtained here going over into the solution (2.5) for 6 = 0 is, 
indeed, S/T < 1. 

"The effect of the exciton-photon interaction on the phonoriton restruc- 
turing of the spectrum was analyzed in Ref. 2. 

"Some results regarding Stokes scattering are given at the end of $3. 
"Here and henceforth formulae from Ref. 4 are indicated by the Roman 
number I and those from Ref. 5 by a 11. 

"In contrast to the representation chosen in Ref. 4 we shall in the present 
paper use the positive frequency part of the phonon Green function for 
the anti-Stokes scattering. The directions of the lines of the scattered 
polaritons and of the phonons in Fig. 1 are thus the same in contrast to 
the directions chosen in Ref. 4. 

"An error slipped into Eq. (1.2.2). The off-diagonal components of the 
matrix Z,, must change place. 

'"We have here not written the Re sign in the right-hand side of (4.9) as 
either it is real (for mirror-symmetric diagrams) or it becomes real 
when we add to (4.9) the mirror-image diagram. 
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