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The Anderson-Weiss statistical NMR absorption-line-shape theory, which takes into account 
only the longitudinal local fields, is generalized to the case of arbitrary local fields produced by 
dipole-dipole interactions. We calculate the free-induction drop and the NMR absorption line 
shape which is connected with it through a Fourier transformation, for arbitrary correlation 
times for the molecular motions. We show that the oscillations observed in the drop for not too 
fast molecular motions are caused by the effect of transverse local fields. We compare the 
experimental decrease with the theoretical results in a wide range of variation of the time 
correlation of the molecular motions. The comparison shows good agreement. 

1. INTRODUCTION 

When studying a substance by spectroscopic methods 
(in the NMR, NQR, ESR, optical, IR, and UV bands) im- 
portant information about its properties, structure, and 
composition can be obtained from the absorption line shape 
g(w).'-3 Of course, one needs for this a theory which con- 
nects in a simple way the absorption line shape with the 
properties of the substance-a theory of the absorption line 
shape of a macroscopic system of interacting particIes which 
participate in the thermal motion. In first instance the inter- 
actions and the dynamics of the (magnetic or electric) di- 
pole moments considered are important whereas the ther- 
mal motions may be taken into account to a good degree of 
accuracy using statistical methods.' 

In the present paper we restrict ourselves to construct- 
ing a theory of the line shape in the case of NMR where the 
temperature and other dependences of g(w) are very com- 
pletely studied. The proposed theory can easily be general- 
ized to the optical case as the pseudo-dipole moments of 
molecular spectroscopic transitions rotate in local electric 
fields in the same way as magnetic moments in local magnet- 
ic  field^.^ 

In the NMR case the dipole-dipole interactions (DDI) 
are the most important ones for the dynamics of the dipole 
moments (nuclear magnetic dipole moments). The part of 
the DDI Hamiltonian k', which is diagonal with respect to 
the z axis which is the direction of the magnetic field in 
which the system is placed has the form1 

where p is the magnetic moment of the nuclei studied, rU a 
vector connecting the ith and the jtk spins, BU the angle 
which rU makes with the z axis, and Sf the operator of the 
spin component of the ith nucleus along the q = x,y,z axis. 

It is well known thatg(w) is connected through a Four- 
ier transformation with the autocorrelation function of the 
orthogonal z-component of the total spin of the system' 
which describes the free induction signal (FIS) G(t)  : 

g ( a )  = (2n)-' exp (-lot) G (t) dt, 

G(t) SSP 4p(t)~')lSp {p (0) dX), 
where 

p ( t )  is the density matrix of the spin system with a time 
dependence determined by the evolution equation1 

which has the solution 

p (t)=exp(--itAdz)p(0) exp (itAdZ), (8 

wherep(0) is the density matrix at the initial time, 

and N is the number of spins in the system. 
The problem of the absorption line shape thus reduces 

to evaluating G(t) in a system of strongly interacting parti- 
cles with Hamiltonian ( 1). 

Both the FIS and g(w) in NMR have by now been well 
studied experimentally for many substances. ls4 We note here 
two cases of often-observed characteristics. 

In systems with strong thermal motions, i.e., when 
w,r, < 1, where w: = M, (M, is the second moment of the 
spectral line), r, is the correlation time of the molecular 
motions, G(t)  is monotonically damped and is well approxi- 
mated by an e ~ ~ o n e n t i a l ' ~ ~ ~ ~  

G(t) =esp (-olZr,t). (10) 
In systems without thermal motion, i.e., formally as 

r, -+ M ,  oscillating drops are observed which are well de- 
scribed by the empirical formula proposed by Abragaml: 

G(t) =(bt)-' sin (bt)exp(-aZtZ/2). (11) 
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A theoretical analysis of the case as w , ~ ,  < 1 was given 
in Ref. 1 on the basis of a statistical perturbation theory 
where w , ~ ,  played the role of a small parameter, and in the 
papers by Anderson and Weissss6 who used a statistical the- 
ory in the framework of which only the rotation of the spins 
in logitudinal dparallel to the z axis), local fields described 
by the terms 3P in the Hyi l ton ian  was taken into account. 
The isotropic interaction HO which includes not only longi- 
tudinal but also transverse local fields, perpendicular to thez 
axis, are taken into account only as a source for fluctuations 
in the longitudinal local fields. Although this way of describ- 
ing the FIS gives a physically clear picture of the spin dy- 
namics and is formally applicable for any value of T,, it al- 
ways leads5s6 to a monotonically damped decrease which, as 
is clear from ( 1 1 ), disagrees with the experimental data as 
T, -Am. This is connected with the fact that in that case tak- 
ing H O into account merely through the fluctuations of the 
longitudinal local fields is insufficient and one must also take 
into account directly the effect of the isotropic interaction on 
the spin-polarization rotation itself. 

We note that there occurs in the isotropic interaction 
not only the interaction of the spins with the transverse 

A 

fields, ii" + gy , but also Hz. It will become clear in what 
follows that it is by far simplest to take into account the 
contribution from the transverse local fields to the dynamics 
of the spin polarization in a compound with an isotropic 

A 

interaction H O  which commutes with the total spin operator 
of the system. 

A number of explanations of ( 11) were proposed in 
Refs. 7 to 16, where good agreement was obtained with the 
experimental data of Refs. 1 and 4, thanks to taking into 
account both the longitudinal and transverse local fields. 
However, the theories of Refs. 7 to 16 have a very formal 
character and use a number of not fully justified assump- 
tions, and most importantly are inapplicable for the case 
when there are thermal motions present. 

There is thus so far no theory which would describe the 
FIS for the whole range of T,, notwithstanding the urgent 
need for a development of methods for studying experimen- 
tally the properties and structure of substances at different 
temperatures. 

The development of such a theory of the FIS and hence 
also of a theory of the absorption line shape on the basis of an 
analysis of the mechanisms for forming the FIS in a wide 
range of T, values is the aim of the present paper. 

2. LAYER-POLARIZATION METHOD AND THE ANDERSON- 
WElSS THEORY 

To construct a consistent theory of the FIS it is impor- 
tant to select correctly the variables in terms of which one 
can describe the spin dynamics in a macroscopic system of 
strongly interacting spins (the number of spins in the sample 
is N- The FIS signal itself which is the response of the 
system to a pulse of the radio-frequency field is a particularly 
macroscopic characteristic and is equal to the total polariza- 
tion of the sample, knowledge of which is insufficient to ex- 
plain the mechanism of the observed oscillations and damp- 
ings. On the other hand, the polarizations of separate spins 

can also not be fixed as the basis of the analysis, as they move 
in too complicated a manner. It is important to select for the 
description of the spin dynamics variables which, while pos- 
sessing a rather smooth time dependence, nevertheless 
would enable us to describe the elementary spin processes. 
We shall choose as such variables the components Gq (h,t) of 
the polarizations of the layers h, where q = x,y,z. By the lay- 
er h we mean the set of spins in the sample which at a given 
time are in the longitudinal field h. The advantage of such 
variables is that using them one can not only duplicate the 
phenomenological Anderson-Weiss results but there is also 
a consistent solution of the FIS problem starting from the 
evolution equations for the density matrix (71, which en- 
%bles us to take into account rather rigorously the effect of 
H o  on g(w  ) and on the FIS. 

Generally speaking, the variables introduced here are 
essentially analogous to those introduced when the problem 
of the destruction of the hyperfine structure was considered 
in Ch. X of Ref. 1, in which for the complex layer polariza- 
tion 

G+(h, t)=G"(h, t)+iGv(h, t ) ,  

which characterizes the polarization of all spins of the sam- 
ple in a given hyperfine field h at time t, a phenomenological 
equation was obtained for a discrete set of h. This equation, 
rewritten for a continuous h distribution has the form 

d 
- G+ (h, t)  = ihGt (h, t )  - Q (h) G+ (h, t )  + Q (h) 
dt  

XI g (h') P (h, h') G+ (h', t)  dh', 

g ( h )  is the density of layers, n ( h )  is the probability that h 
changes to another value in a unit time, and P(h,h ' )  is the 
probability that this other value is equal to h '. 

The total polarization G ( t )  which is measured in NMR 
equals 

We note that Eq. (12) and the Anderson-Weiss theory5s6 
give physically similar results: a Gaussian decrease in the 
case of large correlation times and an exponential one in the 
case of short correlation times. One can easily check the lat- 
ter by putting Sl(h) = l / rO  P(h,h ' )  = 1 and use a Laplace 
transformation to solve ( 12). Both the theory of Refs. 5 and 
6 and Eq. ( 12) thus correctly describe the change from the 
broad lines of a solid to the narrow Lorentz lines of a fluid 
when the temperature is raised. However, in neither theory 
are there for any T, oscillations such as ( 11 ). To explain 
these oscillations one needs to take into account the contri- 
bution of the transverse local fields not only to the spectral 
diffusion but also to the rotation of the polarization of the 
layers, for which it is sufficient to add to the right-hand side 
of (12) a term taking into account the rotation of the polar- 
ization of the layers under the influence of the isotropic in- 
teraction. 
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3. EFFECTIVE ISOTROPIC INTERACTION AND 
TRANSVERSE LOCAL FIELDS OF FAR AND NEAR SPINS 

Before finding the contribution of f iO  to Eq. Q2)  we 
show that for each pair of spins i,k one can consider H yk as a 
fast oscillating interaction, i.e., an interaction such that its 
oscillation frequency is much larger than its amplitude. This 
enables us to determine the contribution from H yk to ( 12) 
using simple and well known methods to take into account 
fast oscillating  interaction^"-'^ which consist in changing 
from fast oscillating interactions to effective interactions 
which are time averaged. 

We restrict ourselves to developing an FIS theory for 
the case of a CaF, single crystal. The translational symmetry 
of the cubic lattice formed by the magnetic 19F ( S  = 4) nu- 
clei simplifies the calculations considerably. A generaliza- 
tion of the theory to amorphous substances and to other 
kinds of lattices does not meet with any difficulties of princi- 
ple. 

It is important to emphasize that in a condensed para- 
magnetic substance each spin is surrounded by a large num- 
ber ( Z -  10) of independently oriented near spins. Each spin 
rotates therefore in a mean square local field with a frequen- 
cy 0 , :  

0, = Mamh = '/, max I bih 12'". 
k 

As the local fields at the ith and k th spins are directed 
arbitrarily, the rotation of these spins in different local fields 

A h A  

causes the interaction H yk - (SiS, ) to oscillate with a fre- 
quency ol and 

A 

We now show that the whole interaction H 7, and not 
some part of it oscillates around zero. To do this we consider 
the time variation of the x-compon%nt of the polarization of 
the ith spin under the influence of H yk : 

Hence it follows that 

as the difference within the square brackets vanishes due to 
the translational invariance of the cubic lattice of CaF,. The 
equation obtained means that the ensemble-averaged and 
hence also time-averaged2' effect of the isotropic interaction 
on the x-component of the polarization vanishes. One can 
also easily prove thk for they- and z-components. Therefore, 
the time-averaged H 7, vanishes. 

The amplitude of the effective isotropic interaction Byk 
averaged over the oscillations about zero is, according to 
Refs. 17 and 18 of order of the quantity b k/w,. Mor%over, 
we note that since the oscillating isotropic interaction H yk at 

A h  

any time conserves the total spin Si + S,, Byk clearly has 

the same property. Bearing in mind that the only two-parti- 
cle izt%raction satisfying this is an interaction proportional 
to (S, S, ), we find 

- 
H ~ ~ ~ = ~ ~ ~ ( ^ S S ~ ) ,  (18) 

aik=cb, , ,Z/~, ,  C -1 .  (19) 

The problem then reduces to finding the dynamics of 
the layer polarization governed by the evolution equation for 
the density matrix p: 

where 

characterizing the trajectories of the rotation of the spins in 
the local fields, smoothed by averaging over a time interval 
T- l/w,. It is just these trajectories which determine the 
evolution of the polarizations of the layers for times 
t > T2.'7,18 

The small oscillations of real trajectories about the 
smoothed ones, which are characterized by a small 
( - Z  - ' I 2 )  amplitude, practically vanish when one averages 
the polarizations over the layers when changing to the ob- 
served total magnetization of the sample, because the num- 
ber of layers is n - 2z and the fast oscillating components of 
the polarizations of different layers are incoherent because 
the fluctuations of the local fields which generate them at the 
different spins can be assumed to be statistically indepen- 
dent. 

It is clear from Eqs. (19) and (4)  that the effective 
isotropic interaction BP, depends on the distance /r,, / 
between the spins like Ir,, 1 -6. This means that one must take 
this interaction into account only for the nearest spins, and 
the interaction between all other pairs of spins whizh de- 
pends on Ir,, I like /r,, 1 - 3  may be assumed to equal 3H:, . It 
will become clear in what follows that the contribution from 
the transverse local fields of the near spins can be expressed 
simply in terms of the longitudinal local fields produced by 
those spins, and it is therefore convenient for taking into 
account the transverse fields to include in our considerations 
two local longitudinal fields, h, and hf: 

generated by near and far spins which are numbered by the 
indexes a and p. Following Ref. 13 we call the near spins a 
cell and include in the cell of the ith spin all spins satisfying 
the relation 

For the far spins we have 

bib2 < 0.1 max I biRZ I. 
k 

The parameter 0.1 occurring in (23) and (24) is selected 
such13 that the spins of a cell would contribute to the second 
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moment of the absorption line b '/3 and the far spins a', 
where a and b are the parameters occurring in ( 1 1 ). 

We now define a layer as the collection of spins in the 
sample at which at a given time thez-components of the local 
fields produced by the spins in a cell and the far spins are 
equal to h, and hf [in what follows {h ,  ,hf} = h] . The quan- 
tum-mechanical operators of the components of the layer 
polarization corresponding to the given definition have the 
form 

h 

ForA the operators ?'(h) =? ' (h) ,  ?* (h)  =Sx (h) 
isY (h),  which are the most convenient to use, we have 

relations (see the Appendix) 

Sp {dna(h) sm'(h')) =N2N-26m, -,.R(h)G(h-h'), (27) 

R(h)=Rc(hc)R~(hf), (28) 

R ,  (h,) = (2n)-'J dt exp(ih,t) oos biBt. (30) 
6 

The components Gq (h,t) of the polarizations of the layers 
are connected withp(t) through the relation 

It is convenient to assume in what follows that Gx (h,O) = 1, 
for which it is sufficient to put formally P = 4/N. We note 
the identity, which is important for the problem we are con- 
sidering, 

To prove (32) we act on the operators which occur under the 
trace by the operat2r producing a rotation of 180" around the 
z axis: exp( - i n s  ' ). Such a transformation does not 
change the value of tke trace, ̂ as it is unitary. On the other 
hand, the operators H and S O ( h )  are invariant under a 
rotation and the initial condition (9)  changes its sign. There- 
fore, Go(h,t) turns out to equal itself with opposite sign, 
which proves (32). 

To write down the time evolution of the quantities 
Gx (h,t) and GY (h,t) and thereby also of the quantity G(t) 
which is the total polarization and which equals 

it is convenient to introduce, as in section 2, a complex polar- 
ization of the layers 

and to obtain for it an equation like (121, which describes 
the motion of the complex layer polarization taking into ac- 
count the dipole terms on the right-hand side, which reflect 
the effect of the isotropic interactions on the spin motion. 

4. CALCULATION OF THE CONTRIBUTION OF THE 
ISOTROPIC INTERACTIONS TO THE EQUATION FOR THE 
LAYER POLARIZATIONS 

To evaluate this contribution it is convenient to rewrite 
(7)  in a more compact form 

where 

Equations for the layer polarizations, defined by a set of or- 
thogonal operators$ + (&) and by a density matrixp(t) sat- 
isfying an equation like (34), were derived in Ref. 11. It is 
then convenient to look for the solution of Eq. (34) in the 
form 

where 

andp( t )  does not contribute to the layer polarization and is 
a linzar combination of operators orthogonal to the opera- 
tors S* (z). In the equations obtained in Ref. 1 1 there occur 
coefficients which are very complex to evaluate and which 
are expressed in terms of memory functions. To evaluate 
these coefficients we therefore use below the solution of. Eq. 
(34) in the fprm of an iteration series in the small parameter 
E = llhl ll/llhz 1 1  - 1/3Z 'I2. To construct this series *we 
change in Eq. (34) to the interaction representation in h, : 

The equation for p l ( t )  has the form 

d ,. 
--p'=-i[EL(t), p'l, at 

Using the definition (38) we 

p'(t)=po'(t)+pif(t)=Pp'(t)+(l-P)pr(t), (42) 
h 

where P is the projection operator which separates from 
p ' ( t )  a part like (38). Moreover, using a relation given in 
Ref. 11 which connectsp,(t) withp, ( t )  we find 

t 

p ' ( t ) = p o r ( t ) - i ( l - B ) ~ d t ' ~ ( t r ) , p . ' ( t ' ) ] + 0 ( e 2 )  (43) 
0 

or, with allowance for ( 39 1, 
t 

p(t)= po(t)- i(l-B) J [ji,(t'-t), p.(t) ]dtr+0(e2). (44) 
0 

In going from (43) to (44) we replace in the integrand 
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A 

ph ( t  ') by ( t  ' ) , which is fully legitimate as h, ( t  ' - t )  os- 
cillates with a frequency - Ilh, 11, p , ( t )  changes with a fre- 
quency - (li, 1 1  and the ratio lli, ~ l / l l & ~  11  = E is much less 
than unity. 

We note that at t = 0 ( 4 4 )  is the same as ( 9 )  with 
p = 4 / N .  To find the required equations for the layer polari- 
zations G + ( h , t )  we multiply both sides of ( 3 4 )  by ? - ( h ) ,  
substituting into the right-hand side of the equation the ap- 
proximate expression ( 4 4 )  for p ( t ) ,  and take the trace of 
both sides: 
d 
- G+ (h,  t )  =-iR-' ( h )  Sp{S-(11) [ (;,+?z,), (po+p,) I).  dt 

( 4 5 )  
The evaluation of the trace (see the Appendix) gives 

d 3 - G+ (h,  t )  =-i (- h,+6hc) G+ (4 t )  
dt 2 

where 

~ . . ( h , ,  t )  = ahc hcmRc(hc) Gt(hl  t ) ,  ( 4 7 )  

a 

The function W(h,h l )  is the sum of terms of the kind [see 
(9111 

where p,q#i which are connected with the flip-flop of the 
pth and qth spins and the change in the field at the ith spin 
corresponding to it, i.e., with the spectral diffusion process. 
We note the important relation 

following directly from ( 4 9 ) .  Any kernel satisfying this con- 
dition will qualitatively correctly describe the effect of spec- 
tral diffusion on the FIS. 

The simple generalization of ( 12) to the case when the 
layer polarizations depend on two uncorrelated local fields 
h, ,hf, with account taken of the immediate motion of the 
spins under the action of the transverse part of the DDI, 
therefore gives the equation 

d 3 
- G+(h, t )  = -i (- hf+6hc) G+ (h,  t )  
at 2 

x J R .  ( h ; ) ~ , ( h . ,  h:) G+ (h;, hq., t )  ah:, 

Q = C ,  f ,  q l=f ,  C .  ( 5 2 )  

We note that the first and the two last terms on the right- 

hand side of ( 5  1 ) correspond to the analogous terms in ( 12) 
while the term (4 - 6 )  is a new one in principle and corre- 
sponds to the contribution of the transverse local fields to the 
ratation of the layer polarizations. 

5. SOLUTION OF THE KINETIC EQUATION AND 
COMPARISON OF THEORY WITH EXPERIMENT 

The substitution 

gives 

d 3 - F, (h ,  t )  = - - ihfFf (h f ,  t )  + W t ,  
dt 2 

where 

while 

~ ( t ) = ~ o ~ ( t ~ ~ o f ( t ) ,  

Foa ( 0 )  ( 0 )  

The existence of independent equations for F, ( h ,  , t )  and 
Ff (h f  , t )  is a consequence of the fact that the fields h, and hf 
are uncorrelated. 

It is convenient to look for the solutions of Eqs. ( 5 4 )  
and ( 5 5 )  by putting first Wc = Wf = 0 introducing the 
spectral diffusion into the solution, as shall be done in what 
follows. 

Multiplying ( 54) by exp(i6hc t )  and integrating both 
sides from zero to t we find 

F, (ha, t )  - exp (ibh,t) 
4 

Multiplying both sides of ( 5 9 )  by R ,  (h ,  ) and afterwards by 
h, R ,  (h ,  ) and integrating over h, we get a set of two equa- 
tions for F,, ( t )  and F , ,  ( t ) ,  solving which we find an inte- 
gral equation for F,, ( t ) :  

I 

A similar equation was obtained in Ref. ( 12) for G ( t ) ,  but 
not for F,, ( t )  in the limit as 7, + w . 

One can easily find directly from ( 5 5 )  an expression for 
Fof ( t )  when Wf = 0: 

Fat(t) = R f ( t ) .  ( 6 1 )  

Intheabove 
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where yc = 6, yf = 3/2. Taking into account the discrete 
local field distribution, we have 

( t )  = n c o s  (y.biat), 

RI ( t )  = cos (ytbi, t) .  

We note that using a Laplace transformation to solve 
( 5 9 )  and putting in the solution obtained the Laplace vari- 
able P = iw we find easily 

H (o) = H'-iH" = 5 exp ( - i o t )  R. (L) dt ,  ( 6 6 )  
0 

g. ( o )  = .f exp ( i o t )  F.. ( t )  dt. 

Using ( 5 7 ) ,  ( 6 2 ) ,  and ( 5 ) ,  Eqs. ( 6 5 )  and ( 6 6 )  enable us as 
T,  - co to obtain for the functiong(w) an analytical expres- 
sion 

To take into account molecular motions and flip-flop 
processes which lead to spectral diffusion, we assume that as 
a result of the action of these two processes the quantities b, 
become random functions b ;"t) of the time, and rewrite 
( 6 3 ) ,  ( 6 4 )  in the f ~ r m ' . ~ , ~  

1 

R, ( r )  = (n cos { y, 1 b:vt ' )  d t ' ]  ) , 
B 0 

where the angle brackets indicate averaging over all possible 
trajectories tt, of the changes b i U ( t ) .  In the case of a con- 
densed substance, when the local field distribution to a good 
approximation is described by the normal law, the evalua- 
tion of ( 6 9 )  is given in Refs. 5  and 6: 

4 
R , ( t )  = erp {- - y;M,,j ( t-t ' )  k,(t') dt' }. ( 7 0 )  

9 
0 

where 

k, ( t )=(h,( t )h , (O)  ) l ( h , 2 ( 0 ) )  

are the local field correlation functions 

b,, ( t ) S m z ( t ) ,  Sa"0 =*'/2, h. ( t )  = 2 x (72  

h, ( t )  = 2 x b:;"ttsBz ( t )  , ~i ( t )  =-tii2. ( 7 3 )  

which are below approximated by the expression 

The correlation times rC and .rf are defined by the relation 

where 1/3T2, l / ~ , *  are the contributions to the damping of 
the correlation function of the flip-flop processes and the 
molecular motions, respectively. 

The equations obtained were used to evaluate the FIS 
both in the case of a single crystal without molecular mo- 
tions and when the latter are present. In both cases F o J ( t )  
was calculated using ( 7 0 )  with rC = T2/3  = ( 1/3M2)  ' I2 .  

The function Foc ( t )  was found through a numerical solution 
of ( 6 0 )  while we used in the presence of molecular motions 
Eq. ( 7 0 )  for g ,  ( t )  and when they are absent Eq. ( 6 3 ) .  The 
latter was justified by a direct calculation computer showing 
that the effect of the flip-flop on gc  ( t )  is quite negligible 
when there are no molecular motions. 

To determine the parameter 6 in ( 6 0 )  we used ( 6 3 )  to 
find the quantity d  4Foc ( t ) / d t  which afterwards for t  = 0  
was equated to the exact fourth moment M4 of the absorp- 
tion line which gives the following equation: 

A similar procedure enables us to use the information 
included in M4 to find more accurately the degree, deter- 
mined by the quantity &, of averaging of the isotropic inter- 
actions taking place at small times t -  w; '. The value of S 
calculated using ( 7 6 )  for the three orientations of the CaF, 
single crystal considered turned out to be very close to 
(+) 'I2, which agrees with the result obtained in Ref. 12. We 
performed the actual calculations of the FIS, for all orienta- 
tions considered, for 6 = (4 ) 'I2. 

The calculations of the FIS were performed for a CaF, 
single crystal in the orientations Holl [ l o o ] ,  HoII [110] ,  
Hall [ 1 1  1 1 .  A comparison of the results with the experimen- 
tal data of Ref. 4  showed excellent agreement. The case of 
the orientation Hall [ l o o ]  is shown in Fig. 1. 

The results show that the FIS of a CaF, single crystal 
are, indeed, the product of an oscillating and a monotonical- 

FIG. 1.  Free induction signal in a CaF, single crystal with the orientation 
H(,II [ 1001. The solid lines are the results o f  the theory and the dashed ones 
the experimental data o f  Ref. 4 (between the second and fourth and 
between the fourth and the seventh zeroes we have also shown the FIS 
multiplied, respectively, by 10and 100). 
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ly damped component [see ( 1 1  ) ] which are connected with 
the interactions with, respectively, the spins from the cell 
and the far spins. The possibility to identify F,, ( t )  and 
Fof ( t )  with the oscillating and the monotonically damped 
factors in ( 11 ) also confirms that, as was shown in Ref. 13, 
the quantities a and b in ( 1 1 ) with a good accuracy can be 
found by summing over the spins of the cell and over the far 
spins: 

The results of the calculation of the FIS when molecular 
motions are present for several values of 7,  = rf are shown 
in Fig. 2. It is clear from Fig. 2 that in accordance with the 
experimental data for 7 ,  = rf - 0  the FIS becomes exponen- 
tial, which corresponds to the transformation of the broad 
lines of a condensed substance into the narrow Lorentz lines 
of a fluid.' The last result can also be obtained in analytical 
form. Indeed, when 7, = rf 4 M ;  "' 

Substituting ( 7 8 )  for q = c into ( 6 0 )  we find by solving ( 6 )  
using a Laplace transform 

Finally 

The approach developed here enables us thus to give a 
description of the FIS both in a fluid and in the condensed 
phase, i.e., over a broad range of temperatures. 

In conclusion the authors express their gratitude to T. 
P. Kulagina and A. V. Makarenko for useful discussions and 
their help in this work. 

APPENDIX 

To prove ( 2 7 )  to ( 3 0 )  we rewrite them using the inte- 
gral representation of the 6-function 

FIG. 2. Free induction signal taking into account molecular motions 
(theoretical results): 1 :  T, = 3T,, 2: T, = 0.33 T,, 3: T, = 0.25 T,, 4: 
7, = lo-* T,. 

x { S i + S i -  exp [ -i ( x c h c + x j h , + x ~ h ~ + x  

Straightforward calculations give 

S p { S +  ( h )  S-(h') ) 

1 
= 2"-'NS (h-h') [- 2n j dx, erp  (- ii.h.) 11 cos ( b i a s )  ] 

a 

X [&I dxi exp ( - i z jhJ )  cos (b iRt)  1. 
P 

Replacing x, by t we have from this 

R(h)=Rc(hc)R,(h , ) ,  ( 8 3 )  

where 

1 
R.(h.) = - dt exp (-ih.t) cos (b ia t ) ,  

2n 
u 

Neglecting the discrete distribution of the fields h, ,hf 

R,(h,)  =(2nM,)-'" exp(-h,2/2Mq), (85 

To calculate 

we substitute into the trace Eq. ( 3 6 )  for h,  , ( 3 5 )  for h,, and 
(44) forp, +p,. We use Eq. ( 3 8 )  forp,(t). Applying now 
the integral representation for the &function we find 

Q = 1 d h / [ ~  (h,  h') - w (h, h') ] G+ (h', t )  , ( 8 9 )  

3 
K (h,  h') = - - ih,6 (h-h') - i6hC6 (h-h') 

2 
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The index a' in (92) is taken over the spins which simulta- 
neously belong to the cells of the ith and the a t h  spins. As 
their number is very small even for neighboring spins we can 
put C,  = 0, which gives 

3 ~ ( h ,  h') = - - ih,S (h-h') - i6hC6(h-h') 
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