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We consider the properties and structure of the localized states produced on defects in systems 
that undergo transitions into a disordered phase. It is shown that the local rise of the transition 
temperature always leads in this case to the appearance of localized states. Singly and doubly 
period solutions are analyzed for the order parameter in the one-dimensional model of a 
soliton lattice. The nonlinear superposition principle is used to obtain, in the same model, a 
solution that describes the localized state, and also to consider the problem of formation of 
deep impurity levels in a forbidden band of the electron spectrum. The applicability of the 
results to specific systems with electronic and magnetic transitions into an inhomogeneous 
state is discussed. 

INTRODUCTION deep levels connected with the LS in the forbidden band of 
The presence of defects in crystals with electronic phase the electron spectrum is solved in $6 for a one-dimensional 

transitions can lead to the onset of localized states (LS)- soliton lattice. 

"local phase transitionsm-above the homogeneous transi- - 
tion point. This situation is realized, for example, if the tran- 
sition temperature rises locally near the defect. Many exam- 
ples of systems with LS are known by now: surface 
magnetism,' local structural transitions,' localized super- 
conductivity,' localized spin-density wave (SDW),4 and 
others. Whereas the different transitions into a homogen- 
eous phase have been considered in sufficient detail, much 
less has been learned about the behavior of defects in transi- 
tions into an inhomogeneous phase. Yet this question is of 
considerable interest, since there are many known systems 
that undergo electronic and magnetic phase transitions into 
inhomogeneous states, including quasi-one-dimensional 
Peierls' and ~pin-Peierls'.~ systems, quasi-one-dimensional 
superconductors in an exchange field,' band antiferromag- 

and modulated long-period magnets. " 
The temperature T, at which localized states appear at 

a defect above the point of transition into an inhomogeneous 
phase, the subject of the present paper, can be solved by 
analyzing the corresponding free-energy functional, in 
which account must be taken of higher terms in the gradients 
of the order parameters. The linearized equations for the 
order parameters can always be solved (see $$2,3), but in 
many cases of practical interest it is possible also to solve the 
nonlinear equation, by using their integrability property and 
the close analogy with the higher Korteweg-de Vries 
( KdV equations. 

Let us list the main results of the paper. In $2 we deter- 
mine the onset temperature and structure of the LS near a 
planar defect in the three-dimensional model of the inhomo- 
geneous transition. In $3 we consider, for the same model, 
the formation of LS near a point defect. In $4 are analyzed 
singly and doubly periodic solutions of the nonlinear equa- 
tions for the order parameter in the one-dimensional model 
of a soliton lattice. Using the principle of nonlinear superpo- 
sition we obtain in $5, in the same one-dimensional model, 
an exact solution for the LS. The problem of formation of 

92. LOCALIZED SOLUTION NEAR A PLANAR DEFECT IN 
THE THREE-DIMENSIONAL MODEL 

We determine in this section how the presence of a 
planar defect, capable of enhancing the tendency to a phase 
transition, influences the temperature of the inhomogenous 
transition and the structure of the resultant LS. Assuming a 
short-range transition potential (falling off at distances 
shorter than the correlation length 0, we can describe the 
system by adding to the free-energy functional the term 
- yS (x  ) $2 ( r  ) , where u ( x )  is a one-dimensional S function, 
and the coordinate axis x is perpendicular to the plane of the 
defect. The generalized order parameter $ can describe, for 
example, a magnetic Peierls or a superconducting transition. 
Note that the defects considered in this and following sec- 
tions represent local rises of the transition temperature. In 
principle, defects can add to the functional also terms that 
are linear in $, viz., defects of the "local field" type. 

We assume that in the absence of a defect the transition 
is of second order, and that the system can be described by 
the functional 

where f, is the correlation length at T = 0. As usual, we 
assume that only the coefficient a = ( T -  T,,)/T,, is tem- 
perature-dependent; here T, is the temperature of the transi- 
tion into a homogeneous state, and at a temperature T, > T,, 
we actually have a transition into an inhomogeneous state 
with wave vector qi =PC; 2/2 and 
a, = (T, - T,)/T, = B2/4anda,  = (T,/T,)/T,, =,G2/4. 
Clearly, the condition for the functional ( 1 ) to be able to 
describe the inhomogeneous phase is the inequality ( < 1. 
We have confined ourselves in ( 1 ) only to terms quadratic in 
$, since the temperature of the transition and the form of the 
LS are determined by a linear equation obtained by variation 
of ( 1 ) with respect to $: 
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where we have used the dimensionless coordinates x-x/  
f ( T )  and f 2  = <:/a'I2 and similarly y-y/<, z-z/<. In the 
absence of a defect, the transition is to a state with a dimen- 
sionless wave vector q: = 1, corresponding to the maximum 
transition temperature T,. 

In  the presence of planar defects, near which the ten- 
dency to a phase transition becomes stronger, the LS is pro- 
duced somewhat above the temperature of the volume inho- 
mogeneous transition. We can expect in our case $"' to 
decrease in oscillatory fashion with increasing distance from 
the defect plane x = 0. It is curious, however, that the most 
favorable (see below) is a solution with "fast" modulation 
over the plane x = 0, with a wave vector close to q,,. Thus, a 
planar defect causes the appearance of a solution that is in- 
homogeneous in two coordinates (in the x = 0 plane and in a 
perpendicular direction). 

We solve Eq. (2 )  by taking Fourier transforms, and 
seek the solution in the form $ = exp(iky) f (x ) ,  where the y 
axis lies in the plane x = 0. Substituting this form of the 
funciton $ in (2 ) ,  we obtain for the Fourier component 

f , = ~ f ( ~ = O ) / [ l + ( k ~ + q ~ ) ~ - ~ ( k ~ + q ~ ) ] ,  (3 )  

where? = y/((o~' '4) ,B = 18 (/a '12 .  Using the "self-consis- 
tency" condition 

we write the equation for the local transition temperature 
T, : 

The vector k, which describes the modulation over the plane 
x = 0, should be chosen to maximize T,. Integration yields 

wherep, = [ 1 - f i  '/4] ' I2 .  I t  is easy to verify that the maxi- 
mum value of T, corresponds to the condition 
(B/2 - k 2 ) 2  = 0 :/3; it follows then from (5 )  that 

The excess of the LS temperature (T, ) above the corre- 
sponding critical temperature ( T, ) of the volume transition 
into the inhomogeneous state (T, - Tc )/To a (y/{,,)413, is 
stronger in terms of the parameter y/fo < 1 than in the case 
of an LS in a system that undergoes a homogeneous transi- 
tion (where (T ,  - T,)/Toa (y/{,)" 

If only solutions homogeneous over the x = 0 plane are 
considered, meaning that k = 0 is chosen, we obtain a much 
smaller increase of T, compared with Tc viz., (T, - T, / 
T, oz (Y/<,)~,  as in the homogeneous case. Note that the so- 
lution with k = 0 appears precisely in the case of a planar 
effect of the "local field" type [the term - yS(x)$(r )  in the 

FIG. 1 

functional ( 1 ) 1,  and can be easily obtained by the method 
used above. 

The distinguishing feature of the considered localized 
solution is that the wave vector of its modulation over the 
plane x = 0 is k-  1 and practically coincides with the opti- 
mal period of the inhomogeneous state. In the direction per- 
pendicular to the plane, the solution changes much more 
slowly and oscillates downward as 1x1 increases, with a char- 
acteristic wave vector g ar y'"< 1 (see Fig. 1 ). 

A defect of the type considered is, for example, a do- 
main wall in a ferromagnetic superconductor. It is known" 
that an inhomogeneous superconducting state can arise in a 
uniform exchange field at a temperature T <  T *  (tricritical 
point). The effective exchange field becomes weaker near 
the domain wall, and the Ginzburg-Landau expansion ( 1 ) is 
applicable near the tricritical point. 

The model considered can also be used to describe sur- 
face ordering in ferromagnets with inhomogeneous (long- 
period) structure. "' 

$3. LOCALIZED SOLUTION NEAR A POINT DEFECT IN A 
THREE-DIMENSIONAL MODEL 

We consider in this section the influence of point defects 
on the properties of systems that undergo a transition into an 
inhomogeneous phase. Assuming a short-range defect po- 
tential, we can describe it by adding to the functional a term 
- yS(r)  $'(r), where S ( r )  is a three-dimensional S func- 

tion (the generalization to the case of a "local field" defect is 
trivial). The linear equation that describes the LS structure 
and determines the temperature T, of the onset of the LS 
takes in dimensionless coordinates the form 

Note that the presence of the term A'$ in ( 7 )  of a term 
leads to a substantial difference between our problem and 
the situation in which a defect is present in a system that 
undergoes a transition to a homogeneous state. In the latter 
case, since the term a(V$) '  in the free-energy functional is 
positive, there is no need to include in (7)  the term -A2$ 
(provided that there are no grounds for assuming 8 to be 
anomalously small). The problem of the temperature at 
which the LS occurs becomes equivalent to the problem of 
finding the lower energy level in the "potential" produced by 
the defect - yS(r) .  The role of the energy is assumed in this 
case by the quantity - (T,, - T) .  In the one-dimensional 
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case (on a planar defect) an LS is always produced and 
T, > To, meaning that there is always a bound state in a one- 
dimensional potential well.'' The situation is different for a 
three-dimensional well: there is no bound state in a shallow 
potential well." This means that the point defects, generally 
speaking, may also not lead to formation of LS, i.e., T, = To. 

The picture is entirely different if the transition is to an 
inhomogeneous phase. In this case the equation for the order 
parameter is not longer analogous to the Schrodinger equa- 
tion and, as will be shown, a localized state on a point defect 
is always produced at a temperature T, > T,. 

Transforming to the solution ( 7 ) ,  we note that the 
spherically symmetric solution of the Laplace equation 
V'$ + k *$ = 0 satisfies (7)  provided that 

(8 )  

Since the wave vector k is complex, the solution of interest to 
us takes the form 

sill I:,r 
$(r)=$(O) -- esp  (-k,r). 

/;,r 

Thus, the decrease of the order parameter with increasing 
distance from the defect is oscillatory. The temperature at 
which the LS sets in can be easily found by substituting the 
solution (9)  in the free-energy functional ( 1 ) . This tempera- 
ture corresponds to vanishing of the coefficient of $'(O). 
Using the fact that $(r )  satisfies Eq. ( 7 ) ,  and integrating in 
(1 )  in succession by parts, we write the condition for the 
onset of the LS in the form 

from which we find the temperature of the local transition 

A point defect leads thus always to the appearance of an LS 
at a temperature somewhat higher than the temperature of 
the volume transition into an inhomogeneous state. The fact 
that such LS exist can have interesting physical conse- 
quences. Thus, for example, in the case of an inhomogeneous 
magnetic transition (long-period ferro-magnets"') at a tem- 
perature T, > T, (T, is the temperature at which the mag- 
netization wave appears), when the LS is produced the de- 
fect acquires a magnetic moment 

sin k,r 4~ 
esp (-k,r) 4nrz (0) - 

0 k,pL ' 

The appearance in the paramagnetic phase of such local mo- 
ments should increase drastically the susceptibility below 
the temperature T,, and the system considered is similar in 
this sense to a superparamagnet. In the case of inhomogen- 
eous superconductivity in an exchange field, the spatial fluc- 
tuations of the pairing constant or of the exchange field 
should lead to a strong smearing of the superconducting 
transition. 

As applied to band antiferromagnets with spin density 
waves (SDW), the question of formation of LS was consid- 
ered in Ref. 4. in the framework of the three-dimensional 
model of the electron spectrum. 

574. PROPERTIES OF THE NONLINEAR SELF-CONSISTENCY 
EQUATIONS IN EXACTLY SOLVABLE ONE-DIMENSIONAL 
MODELS OF ELECTRON SOLITON LATTICES 

In the preceding sections we considered only linearized 
solutions of three-dimensional equations for the order pa- 
rameter. Unfortunately, there is no known general proce- 
dure for obtaining for nonlinear equations three-dimension- 
al solutions that minimize functionals of type ( I ) ,  with 
allowance for terms $', ( $ $ I ) * ,  $' etc., given the boundary 
conditions at the defect. The situation is different for one- 
dimensional systems, where there are many exactly solvable 
models that describe physical situations of importance for 
actual applications (the continual model of the Peierls struc- 
tural t ran~i t ion ,~ ."  the model of a band ferromagnet with 
SDW,X3y the model of a superconductor in an exchange 
field,' and others). I t  is very important that the exact soliton 
solutions, obtained by microscopic analysis of these models 
by the inverse-scattering-theory problem, can be relatively 
simply constructed by minimizing the corresponding func- 
t ional~  (naturally, in the parameter range in which these 
functionals are valid). Since the construction of soliton solu- 
tions, in terms of functionals, has been previously discussed 
for the indicated one-dimensional systems very brieflyx." 
even in the absence of defects, we shall discuss this interest- 
ing question in greater detail. 

In the absence of defects, the initial functional with or- 
der parameter $ (as already mentioned, $ is generalized here 
and can describe all the aforementioned types of phase tran- 
sitions) is conveniently written in the form 

where $,is the characteristic value of the order parameter at 
T=O.  When a transition to a homogeneous state 
($  = const) is considered, it usually suffices to retain in 
(13), besides the term quadratic in $, the contributions 
a qh4. In our case, when the transition is to an inhomogen- 
eous phase (8 < 0 ) ,  it is necessary to retain the term 
a ($" 1'. The characteristic value of the wave vector of the 
inhomogeneous structure is qi - Ifl I/<:, and for an ap- 
proach based on a functional to be valid it is necessary, first, 
to stipulate lP I < 1, i.e., restrict the analysis to the vicinity of 
the Lifshitz point. Second, analysis of the coefficients of the 
functional ( 13) for the aforementioned models shows (see, 
e.g., Ref. 13 for the Peierls model) that the coefficient of the 
term $' vanishes simultaneously with f l .  This requires that 
the terms ($*I)' and $', whose coefficients have no anoma- 
lies near the Lifshitz point, be taken into account in (13).  
Thus, the expansion ( 13 ) is valid because of the specific be- 
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havior of the coefficients /? and b in the investigated model 
systems. 

Using the subsitutions $-p = $/go, x-x/c0, we ob- 
tain an equation for the order parameter: 

A general analysis of ( 14) is difficult, but some of its solu- 
tions can be indicated. 

Let us show that the single-period solution of the first 
modified KdV (mKdV) equation 

is also a solution of (14) if the constants A and B and the 
second integral Care  suitably chosen. The periodic solution 
( 15) is known to take the form of the soliton lattice p a sn x. 
The solution ( 15) can be easily expressed in quadratures, 
since the first and second integrals of ( 15 ) are known: 

cp"-2AcpJ+B(p =0, (16) 

cpa-rlrp4+Bcp2=C. (17) 

The equality of the first integral of ( 15) to zero ensures sepa- 
ration of the periodic solutions. Differentiating (15) and 
combining the result with ( 16) multiplied by A ,  adA2p " and 
also with ( 17) multiplied by A,p, where A ,, A,, and A,  are 
numerical factors, we obtain an equation of type ( 14). From 
the conditions that the coefficients in the equations be equal, 
we obtain the connection of the constants A ,  B, and C with 
the parameters of the functional: 

A= [g&(g2-32c/3) ]/l(i, B= (b-2A?)/(2OA-2.), 

It can be seen that A - g -  1, but for the approach itself to be 
valid the characteristic period -B " '  of the solution must 
be large compared with c,,, as is possible when 1 b, 0 / < 1. This 
condition is indeed met in the models considered. Note, 
however, that simultaneous vanishing o f 0  and b is not man- 
datory for the solution to be valid, provided only that 16, 

/ ? I  < 1. Therefore when the soliton-lattice models are gener- 
alized to the case when the coefficients b a n d p  do not vanish 
simultaneously (but nevertheless at nearby points on the 
phase diagram), the foregoing analysis remains correct. 

It was noted in Ref. 14 that for the microscopic model of 
a Peierls transition near the doubling there exists a singly as 
well as doubly periodic solution. The functional approach, 
as will be demonstrated, also leads to this result. However, 
whereas the coefficients c and g in ( 13) were previously re- 
garded as arbitrary, they must now be subject to a number of 
constraints. Namely, for the indicated microscopic models 
p = b / 2 , ~ = 6 , g =  10: 

F - 5 (arp2+P (c$+cpf2) +w"'+10(ew')2+2w6)di, ( 19) 

and the equation for p takes the form 

Using the Miura t r ans fo rmat i~n '~  we introduce the function 
u = q, ' + p ' and show that it satisfies the second KdV equa- 

tion, whose solution yields in fact the doubly periodic func- 
tion p ( x ) .  We write the second KdV equation in the form 

where I, are integrals of the KdV equation" 

We rewrite (21) in the form 

At thesame time, multiplying ( 10) by p ', we can represent it 
by 

Comparison shows that (25) and (23) are equal if c, = 1, 
c ,  = - 0, c,, = a. We conclude thus that the solution p ( x )  
of (20) indeed leads to the second KdV equation for 
u = p ' + p ', i .e . ,p(x) is in the general caseadoubly period- 
ic function. 

The choice of some particular solution of the self-con- 
sistency equation (20) (singly or doubly periodic) is dictat- 
ed by energy considerations. Unfortunately, it is difficult to 
calculate the free energy ( 19) for the doubly periodic solu- 
tion, and the question of the regions where singly and doubly 
periodic solutions exist remains moot. 

Thus, in the region were the Landau expansion is valid, 
the functional language is fully adequate when is comes to 
obtaining nonlinear periodic one-dimensional solutions. 

55. FORMATION OF IMPURITY LS, AND LOCAL PHASE 
TRANSITION IN THE ONE-DIMENSIONAL MODEL OF AN 
ELECTRONIC SOLITON LATTICE 

I t  was shown previ~usly'.~ that an exact solution of the 
type of soliton lattice exists for a number of models of elec- 
tronic phase transitions at arbitrary temperature Tand arbi- 
trary values of the noncongruence parameter p .  We recall 
t h a t p  describes the deviation of band occupation from one- 
half in the Peierls-transition model, the separation between 
the electron and hole Fermi surfaces in the SDW and CDW 
models, and the spin splitting of the electronic states in an 
exchange field in superconductors. The phase diagram of the 
investigated models in the coordinates (T, p )  contains a re- 
gion of homogeneous ( C )  and inhomogeneous ( I C )  struc- 
tures). On the (T ,  p )  diagram there are transition lines 
TI  (p ) Tz (p ) and T, (p  ) between the symmetric, homogen- 
eous, and inhomogeneous phases (Fig. 2).  These three lines 
intersect at the Lifshitz point 8 ( T  * =:0.31$,,, $*=:0.604$,,, 
where I),, is the order parameter at T = 0 in the model with 
ideal congruencep = 0 ) ,  near which the Landau expansion 
is valid. The parameter $ can be regarded here as small 
(131 < T,p)  and slowly varying I$ ' /$]  <[; I ) .  The potential 
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FIG. 2. 

of the defect is assumed, as before, to be short-range, and the 
origin is taken to be the location of the defect. 

To describe LS on a defect above a volume transition, 
we use a functional of type (19) with account taken of the 
contribution of the energy defect, whose variation yields the 
equation 

C,((pl'-10(p(pn-10(p2qf'+6qj) -2C2(qN-?(~')+i)C,rp 

= D ( v ) s ( x ) .  (26) 

The coefficients C,, C,, and C, and the dimensionless vari- 
ables p and x are defined in Appendix 1, where the form of 
the source function D ( p )  (D = GT/Sp) is also discussed for 
some specific situations. 

We begin with the region I on the phase diagram (Fig. 
2),  where 2C,/C, < (C,/C3I2. Far from the point O, at 
C, > 0, we can neglect in the functional( A. 1 ) the contribu- 
tion of the terms -C3. Equation (26) is then simplified and 
takes the form of the first integral of the mKdV equation 
with a point source: 

The boundary conditions for p far from the defects are 
p( + C C )  = 0, p ' (  f C C )  = 0, so that integration of (27) 
yields 

is an arbitrary constant that determines the boundary con- 
dition on the defect: 

tcpY0) +dl'"-A"' 
B = exp (-20) = 

[cpZ(O)+X]'"+X'" ' 

Matching the solutions (28) and (29) at the origin, we get 

4X(I+ B)8'"/(I-8)2=D (q)/2CZ. (30) 

For systems with a defect of the "local field" type, 
D ( p )  = D, this solves the problem completely. As for sys- 
tems with local phase transitions, where D ( p )  -p,  Eq. (30) 
determines for them the line on which the LS arise. Specifi- 
cally, if we choose D ( p )  = F,p,  Eq. (30) yields in the linear 
approximation the condition for absolute instability with re- 
spect to formation of LS: 

4 (C,C,)'"=F,>O. (31) 

In the region 4(C,C,) ' I 2  < F, the amplitude p ( 0 )  at the de- 
fect is given by 

In the immediate vicinity of the Lifshitz point, where C2-0 
(but is still in region I ) ,  the terms - C, must be retained. We 
have then near the absolute-instability line (3  1 ) 

cp"O) =8aC,'"(4a"b2) [F,-4a(f ,C,) ' . ] /DC,  , (33) 

0 .  / , - ~ [ ~ : ' ~ 3 + ( 2 ~ , / ~  ) I '  ] ' . 

(34) 
We proceed to consider region 11, where 2C,/C, > (C,/C,)2 
and retention of the terms -C, in (26) is necessary in prin- 
ciple. We are interested now only in real solutions that are 
even in x and tend to zero as x - cc . In the absence of a 
source, Eq. (26) is satisfied by the solution of the first mKdV 
equation: 

for 
jf;h=bf*iaf, j = l ,  2, 

Solutions of (35) that decrease as x -  + cc are two com- 
plex-conjugate functions: 

, (x) = i j l / s h ( i j A x j ) ,  cpz=rpl. (37) 

We introduce the functionsp, ( x )  and q, ( x )  , which are con- 
nected with p, ( x )  by the Miura transformation: 

and thus satisfy the first KdV solution that is conjugate to 
(35). The method of constructing an exact real solution of 
Eq. (26) from the complex auxiliary solutions (37) is based 
on the principle of nonlinear superp~si t ion, '~  which yields, 
in particular, in explicit form a new solution of the second 
KdV equation, expressed in terms of three other solutions of 
the same equation: the arbitrary solution (p,,q,) and two 
solutions (pj , q, , j = 1,2), that are connected with (po,qo) by 
the Backlund transformation [see (A.2) 1 .  We choose for 
(p,,q,) the trivial solution of (26) p, = go = 0, and then the 
Backlund-transformations parameters must be chosen to be 
in the form - iz :"/2 forp,, q l  and iz y2/2 forp,, q,. Using 
Eq. (A.'2), we write the solution of interest to us in the form 

We turn now to the question of the boundary conditions 
at the origin (x  -0). The solution of interest to us should be 
continuous and have continuous derivatives up to second 
order, inclusive. This follows from the condition for the ap- 
plicability of the functional (19). The third derivative q7 " 
has at x = 0 a discontinuity of first order. The system of 
equations 

cp"(+O) =cp"( -0) , cp"'(+O) -I#"'(-0) =D [Cp (0) ]/C, 
(42) 

determines thus a pair of arbitrary constants @,,, . 
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Linearization of (39) with allowance for (42) yields 
the LS absolute-instability line for systems with local phase 
transitions ( D p )  = F , p ) :  

Near this line we have for p ( x )  the result (39),  which coin- 
cides with the solution of the linearized equation (26): 

~ ( ~ ) = ~ ( ~ ) e s ~ ( - a ' l x l )  {cos 6' jxl+(af/b')sin b'lsl),  (44) 

where p ( 0 )  is given by relation (33) with the substitutions 
a-al,b-ib'. 

We point out the characteristic features of the spatial 
variation of p ( x ) :  In region I, p ( x )  falls off exponentially 
far from the defect, while in region I1 periodic oscillations 
are superimposed on the exponential decrease. The local- 
transition line Td (p) given by relation (43) is shown in Fig. 
2. 

We examine now in greater detail some physical conse- 
quences of the existence of LS in the model of a band antifer- 
romagnet with congruent sections of the Fermi surface. Spe- 
cific examples of such systems can be dilute alloys of 
chromium." In these systems p ( x )  describes the distribu- 
tion of a linearly polarized SDW, therefore the one-dimen- 
sional source conjugate to p ( x )  can be the local magnetiza- 
tion in the direction of the SDW polarization. This can be, in 
particular, a chromium surface oriented perpendicular to 
the ( 100) direction, near which ferromagnetic order sets in 
below the Curie point Tc =: 800 K. Near the Nee1 tempera- 
ture ( T,, -- 3 12 K < Tc ) we have thus a magnetic moment 
frozen on the surface; this moment plays the role of the "lo- 
cal field" for the SDW, forming an LS on a scale {( T) at any 
temperature T <  T,. A source function of the "local field" 
type for a microscopic model of a planar spin-polarized de- 
fect in a system with SDW is calculate f A4). 

A nonmagnetic defect in a system with SDW plays the 
role of a self-consistent source for f (0 ) .  An LS is produced in 
this case below the local-transition temperature Td ( p )  and 
an uncompensated magnetic moment appears on the d e f e ~ t . ~  
Calculating the coefficient F, for the model of a nonmagne- 
tic point defect [see (A.5)  1,  we find from the condition for 
the LS existence (F, > 0 )  that at I <  1 (where U is the 
dimensionless constant of the electron-impurity interac- 
tion) the moment at the defect is equal to 

. 71 ,~  l ( i k ~ ~ $ ~ c p  (0) IF@, l /nT,  (45) 

p ( 0 )  is given by relation (33) in region I or by its analog in 
region 11, and p, is the Bohr magneton. The condition for 
the existence of an LS above T, at I < 1 reduces to the 
requirement U, > 0. Note that in our microscopic calcula- 
tion for a substitutional impurity [see Eq. (A.5) ] we have 
assumed for simplicity that the maximum of the spin-density 
distribution S ( x )  - p ( x )  is centered exactly on the defect, 
i.e., we assumed that the phase of the SDW to be fixed. Oth- 
erwise it would be necessary to introduce a complex order 
parameter p = p Re + i p  ,,,, , that describes the SDW phase 
collapse, and the problem would become much more com- 
plicated. This is possibly just what occurs in case of an inter- 
stitial impurity. 

The presence of localized moments Md leads to a Curie- 
Weiss behavior o f x (  T)  at TN < T <  Td . Such a behavior was 
experimentally observed in chromium alloys (see the bib- 
liography in Ref. 17). 

$6. FORMATION OF IMPURITY LEVELS IN CRYSTALS WITH 
ELECTRONIC SOLITON LATTICES 

So far we have investigated the question of penetration 
of LS near the point of transition into the inhomogeneous 
phase. We now consider LS considerably below the transi- 
tion point, in the region of a modified phase having the struc- 
ture of a soliton lattice. The functional approach used above 
is no longer valid, since the order parameter 4 is neither 
small nor slowly varying. We turn therefore to the usual 
Green's function method. In the entire analysis that follows 
we use a two-band model of a metal with a quasi-one-dimen- 
sional (corrugated) spectrum that is unstable to formation 
of a charge density wave (CDW).  The corresponding order 
parameter will be traditionally designated by the symbol 
A ( r ) .  The Hamiltonian of the model takes in the mean-field 
approximation the form 

E , ( - ~ V )  
I I= ( -A(r) ) It12, 

( r )  c L  ( - - - iV)  
(46) 

where g( kx) = u, kx, u, is the velocity on the Fermi surface 
in the direction of the vector Q = Qe, that combines the 
electron and hole sections of the Fermi surface, 7 ( k l  ) is the 
transverse corrugation of the spectrum, while 171 < W( W is 
the width ofbands ( 1 ) and ( 2 )  in thex direction). Generally 
speaking, however, 1 ~ 1  can be larger than or of the order of 
/AI; g is the effective potential of the interaction that forms 
the CDW. 

It is convenient to write the single-particle Green's 
functions of the Hamiltonian (46) in a mixed representa- 
tion, taking the Fourier transform with respect to time: 

where the plus sign is used for the components Y : ,  and 3 :, , 
and the minus sign for 9:, and tYi,. We write the order 
parameter 1 A 1 in the form 

A ( r )  =d (5) exp [iQ.c+ , Q - - y - ] ,  (48) 

where the vector Q, determines the modulation of the CDW 
in the transverse direction. The actual choice of Q, depends 
on the possible anisotropy of the interaction constant g(Q,  ) 
and also on the form of the corrugation of the electron spec- 
trum 7 (k, ). 

We take the Fourier transforms of the functions 9: 
with respect to the transverse coordinate (p ,  -p i  ), after 
substituting - 
!9,,c(x. x'. q-, m ) = G ,  (x, x', ~)e\~~~il~-,qL)(x--xl)/uF], 

(49) 
~ = @ - - ~ I + ( ( I . L ) ,  q* ( q l )  = ' / ~ [ l l ( q - + Q -  L )  *q(ql-QIi2) 1 
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we arrive at the following one-dimensional equation 

where j is a unit matrix in the band-index space 

ivFd/dx -A(x) ) (51) 
-A(x) -ivpd/dx ' 

The Green's functions G are of the form (see, e.g., Ref. 18) 

while G :, and G 7, are obtained by making the substitutions 
u,  -v,, En + -En in (52) and (53).  It is convenient to 
write the functions u,  and v, in the form u, v, 
- - 2- It'( f ; I '  + i f L Z ' ) ,  - where f ,!"f F' are solutions of the 

Lame equation IX  

3 (x) = A T  SII ( x A T / ~ R . : .  .!), (55) 

sn(y,y) is the Jacobi elliptic function, and En = E, A, are 
the eigenvalues of Eq. (53).  We make next the substitution 
x-xA,/v,y. 

I t  is easy to verify that the self-consistency equation for 
the order parameter A ( x )  

is identically satisfied upon substitution of G,, from (53).  
We consider now the problem of a single point defect 

with identical potential matrix elements in the band indices 
( U ,  = U), although the last restriction is immaterial and is 
included only as part of the method. The Green's function of 
the system with the impurity can be expressed in the known 
method in terms of the Green's function 9' of an ideal sys- 
tem and the total vertex of the electron-impurity scattering: 

where r, is the coordinate of the impurity center, 

The energy of the localized impurity state is determined by 
the pole of the vertex (58): 

We consider the simplest case 7, =0, which can hold, 
for example, if Q, = ( ~ / a ,  ,.ir/a, ) in the tight-binding ap- 
proximation for transverse corrugation of a quasi-one-di- 
mensional center 

(a, and a, are the periods of the lattice in the transverse 
directions, while W, and W, are the overlap integrals. I t  is 
easy to verify that at 7, = 0 the problems of calculating the 
energy of the local level for the corrugated and purely one- 
dimensional models of the electron spectrum are perfectly 
similar and the summation over the transverse quasimomen- 
tum q, reduces to renormalization of the density of states in 
the one-dimensional model. Substituting the Green's func- 
tions (52) and ( 53) in explicit form in (6  1 ) and introducing 
the state density with allowance for the spin degeneracy" 

(t--<!')@L ( E - - E - ' )  ( E ' - E - ' )  1 
d e ,  (60) 

?lye, ' [ ( E ' - E , - )  ( € ' - E - ' )  1 ' 

where E and K are complete elliptic integrals of the first and 
second kind, and L is the dimension of the system in the x 
direction, we obtain 

I =-UA ( E , ) ,  (62) 

It ( ~ , E / E +  ) is a complete elliptic integral of the third kind. 
The function M(E') is such that M(E,) = 0 at E: > E: and 
E: <E,- (we recall that E +  and E- are the end points of the 
single-electron spectrum in systems with soliton solutions). 
Solutions of (63) exist thus only at energies E~ <E: <E: , 
i.e., in the forbidden band. 

Let us investigate some limiting cases. As y- 1 (the 
limit of a loose-mesh soliton lattice) Eq. (63) takes the form 

while A(x)  = A, tanh x. Assume that the impurity site is in 
the region of the positive half of the CDW, i.e., x,, > 0 (the 
chosen amplitude is assumed to be A, > 0 ) .  Far from the 
soliton wall, the bound state occurs at a< 0, and its energy is 

Similarly, in the negative half-wave region the bound state 
sets in at 8> 0: 

The results (67) and (68) agree with those known for homo- 
geneous structures. '' If, however, the defect is near a soliton 
wall, the situation is in principle different. Let the impurity 
site be at the center of the wall (x,,  = 0 ) .  In this case we have 
two roots: 
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FIG. 3. Plots of E,,(U) for different x,,: a - U(0, 
,y 6-U>O;L=sn(x,,,y) 

It is quite understandable that for any sign of the potential v 
there exist within the forbidden bands two local levels sepa- 
rated from the conduction (valence) band and from the cen- 
tral soliton band. In the limits y- 1, x,- + cu one of the 
levels merges with the soliton band and is lost. Figure 3 
shows plots o f ~ , ( D )  for different x, (a  limit lxol = 2K(y) is 
imposed by the fact that sn x is periodic function). The gen- 
eral properties of the impurity states in the soliton lattice 
allows them to be grouped into several blocks. At D<o a 
level in the energy interval E ~ + ) < E , < E +  is separated from 
the conduction band, and a level in the interval 
E;- )<E, 5 - E is separated from the central soliton band. 
At U >  0 the levels separated from the valence and soliton 
bands have respective energies E+<E,<E;-' and 
E- <E,<E; + ). Energies E; + ' are obtained as asymptotic val- 
ues as D- + m: 

If the defect locations in the lattice are not correlated, 
the coordinatex, runs randomly through all the values in the 
interval from 0 to 2K(y). The impurity levels ~ , (x , )  are 
therefore spread over the entire forbidden band. The form of 
the impurity-state density depends on the ratio of the sizes of 
the soliton wall and of the region of almost constant ampli- 
tude value of A (x) .  In the limit of a loose-mesh lattice, the 
density of the impurity states takes the form of an abrupt 
maximum at energies E,  with a spread region a&,- K- I .  

Let us estimate the range of validity of the results. We 
calculate the correction to the CDW amplitude at the defect 

Allowance for the corrugation of 7, (q, ) does not lead 
to qualitative differences in the results if 17, I 5 IE,~. In the 
opposite case 17 / 2 &,I, it can be readily seen that the impuri- 
ty states become damped because of the intersection of the 
energy E, of the local state located inside the gap with the 
itinerant-electron spectrum which is corrugated in the trans- 
verse direction. A more detailed analysis calls for knowledge 
of 7 + (q, ) in explicit analytic form and is not presented here. 

The problem of localized defects on planar defects (e.g., 
on the surface of the sample) in crystals with soliton lattices 
has much in common with the case of a pointlike impurity. It 
is not necesary here, however to sum over the transverse 
quasimomentum (the planar defect is assumed oriented per- 
pendicular to the x axis). The corrugation leads now to for- 
mation of a two-dimensional electron band with a dispersion 
~ ( q ~  ) = E, + 7, (q, ) along the plane of the defect. Thus, 
particularly in band antiferromagnets, spin-polarized sur- 
face states can be formed on the sample boundary or on the 
domain walls, and surface magnetization results. 

The authors are deeply grateful to S. A. Brazovski? and 
A. P. Levanyuk for a discussion of the results and for helpful 
remarks. 

APPENDIX 1 

Equations for the coefficients in the Ginzburg-Landau 
functional 9 are obtained by the standard temperature 
Green's function method. The dimensionless variables are 
defined as $-+ qop,x - $,+/vF, where u, is the velocity on 
the Fermi surface, and $, is the order parameter in the BCS 
model for T = p = 0. In this notation, 

location. In the limit of a loose-mesh lattice we have 
SA(x,) = f (D)h , ,  where f(U) =. - 2DZ for 1 and - r[rp(O) I ~ ( x )  )ax, 
f(U) =: -2 for ( U I $1. We actually have ~ S A  (x,) I -A, al- (A. 1) 

t 
ready at / U ( k 1, and all the results of $6 are approximate, so 4P 90"2  cs=-( I - - @ , ) ,  c 2 = -  
that for a more rigorous analysis the impurity potential must 2 nT ~ ( T G T ) ~ '  

be made self-consistent. $ c 4 ~ 4  T-To C, = ---- t = - 
In systems with SDW, the entire analysis is almost en- 8 ( n T ) &  ' T O  ' 

tirely similar to the case of CDW. The only difference lies in (A.2) 

the spin polarization of the impurity states, which results in ~ l = ~ ~ ( 2 n + ~ ) - 2 ( ~ + - - T )  P2 - 2  ; 
a magnetic moment for the defect." .>o O n  0, 
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For the case of a point defect of the "local field" type, the 
source function T (p) takes in the SDW model the form 

For the case of a defect of "local temperature7' type we have 
in the SDW model 

In (A.4) and (A.5)  U = TUU; I ,  and U is the potential of 
the defect [in (A.4) ,  U = JM where M is the local frozen-in 
magnetization and J is the effective exchange intergral; in 
(A.5) ,  U is the potential of the nonmagnetic defect]. 

APPENDIX 2. 

The nonlinear-transformation equations used in $ 5  
were taken from Ref. 15 .  The solutions u,(x) and u, ( x )  
( J  = 1,2) of the KdV equation are connected by the Back- 
lund transformation if 

where 
cc 

and d, are the transformation parameters. By algebraic 
transformations we can obtain from (A.6)  a new solution of 
the KdV equation: 

( d % t d 2 )  li'-, ( . r ) - W 2 ( x )  1 (A .7 )  
w l , ( x )  =wo ( x )  - dl-d,+' - [T1; ( .c )  - W ,  (x) ] ' 

Equation (A .7 )  is known as the nonlinear superposition 
principle for solutions of the KdV equations. 
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