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A coil-globule phase transition (collapse) in a heteropolymer chain with random sequence of 
links of various types under the influence of external fields (which are different for the 
different types of link) is considered. It is shown that the system is renormalizable. A 
renormalization transformation is constructed, which unifies neighboring links into blocks and 
leads to a chain with a new linear structure. The equation for renormalization of the 
probability distributions of the effective external fields acting on block links is obtained in 
explicit form and solved. In most cases of physical interest, introduction of disorder in a 
sequence of links leaves the globule-coil phase transition in the same universality class to 
which it belongs for the homopolymer. It is shown that the swelling of the globule near the 
transition point is characterized by a single scale that is independent of the sequence of the 
links. Increase of the distance from the point of transition into the globular region enhances 
the dependence of the spatial structure and of the free energy of the globule on the sequence of 
links. The mean values and variances of the free energy and of the dimension of the random 
chain in the phase-transition region are calculated. 

1. INTRODUCTION 

This study was prompted by the demands of protein 
physics and continues a trend initiated by I. M. Lifshitz's 
classical paper.' In the physical context, one of the impor- 
tant unsolved problems in this field is the need to go beyond 
the scope of the model used for a homogeneous homopo- 
lymer in the theory of coil-globule phase  transition^,^ and 
the need to study the picture of collapse and structure of 
condensed phases for macromolecules of heteropolymers 
with inhomogeneous disordered link sequence (primary 
structure). The importance of this problem for biopolymers 
is obvious, and its formulation was discussed already in Ref. 
1. 

Our present purpose is to analyze the role of an inhomo- 
geneous sequence, frozen in the course of chain formation, of 
links in the picture of the simplest transition of the coil-glo- 
bule type. To be specific, we consider the collapse of an ideal 
(immaterial) heteropolymer under the influence of an exter- 
nal field. This model system is of independent physical inter- 
est in connection with polymer adsorption (see the bibliog- 
raphy in Ref. 4) and the helix-coil transition in DNA.5 Our 
results are of primary interest, however, in connection with 
the question of conformational entropy of a heteropolymer 
in a spatially inhomogeneous state, inasmuch as in the 
framework of I. M. Lifshitz's approach' this question is cen- 
tral in the development of a consistent theory of heteropo- 
lymer globules with volume interaction (see Ref. 6 for de- 
tails; we call attention also to Obukhov's alternate 
approach7). 

2. PRINCIPAL DEFINITIONS AND TERMINOLOGY 

The partition function of an immaterial chain with 
fixed ends, having the meaning of a Green's function, can be 
written in the form 

h 

where the transition operators Q, are given by the expres- 
 ion'-^ 

0. = exp(-q.(x)lT)g, glp = 1 g( 1 x-x' 1 ) +(xr)br'. 

Here p, (x)  is the potential of the external field acting on 
link number r ;  these potentials are different for different r ,  
since we are dealing here with a heteropolymer. In the transi- 
tion-temperature vicinity of interest to us the correlation ra- 
dius is large, i.e., the typical conformation of the globule 
includes long free loops and only a relatively small core. Ac- 
cordingly, all the external fields can be regarded as localized 
at the point 

We assume for simplicity the couplings between the links 
g (x  - x') to be identical and independent of the species of 
the links. In the simplest example the couplings g are Gaus- 
sian, and in the general case we have for the kernel g in the k- 
representation 

where a is the length of the link. 
Knowing the Green's function, we easily calculate the 

total partition function Z,  and the distribution function in 
the spatial points x of the end of the chain $, (x): 

Z, = G. (x) ddr,  $, (x) =Gt (x) 12,. 
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We shall find useful also the following obvious recurrence 
relations: 

For the free energy we have hence 

We emphasize that the disordered primary structure of 
the chain, i.e., within the scope of our model, a sequence of 
operators Q, or simply of numbers B,, is assumed to be fixed 
(frozen). If this structure is known, we can calculate from 
(4)-(7) all the necessary quantities step by step. But if we 
are considering a random primary structure, then the quan- 
tities G, (x) ,  Z , ,  $(x) ,  FN,  etc., turn out to be random. It is 
shown in Ref. 8 that in this case it is most natural to describe 
the difference between the coil and globule states in terms of 
probability distributions of the quantities $,(x), i.e., 
F,{$(x)). It is precisely in the globular regime that the 
distribution .Y,($(x)) approaches exponentially, with in- 
crease chain length t ,  a limit that is independent oft: 

.Fl {\I) (XI} 2 .Piy(x)} (for a globule) (8)  

in analogy with the fact that in a homopolymer the quantity 
$, (x )  itself becomes stationary with increase oft; for a coil, 
on the contrary, 9, ($) does not tend at all to a stationary 
value. 

The property (8) is well known in the theory of one- 
dimensional disordered systems, where relations of type 
(4)-( 6)  are called Dyson-Schmidt equations. Usually 
G, ( x )  is regarded as a vector in Hilbert space, and $, (x )  
defines its "direction" or "phase." Expression (8)  is re- 
ferred to as the stabilization of the distribution of the phase 
variable. This stabilization always takes place in models of 
the Ising type, while the coil regime and the coil-globule 
transition have no analogs in these models. 

The most meaningful interpretation of (8)  can be given 
by likening t formally to time and regarding (4)  as a dynam- 
ic equation of motion. In this analogy, the globule corre- 
sponds to a stochastic regime. Indeed, the various operators 
Q, do not commute with one another, therefore each suceed- 
ing application of the operator in (4)  leads to "rotation" of 
the vector G, (x )  through a finite angle, meaning thus insta- 
bility of the "motion." It is important that the instability is a 
property of a dynamic equation that includes noncommut- 
ing operators. The primary structure plays therefore the role 
not of external noise, but of a sequence of signs in the expres- 
sions for the initial conditions."he foregoing pertains pre- 
cisely to the globular regime, because the rezult of the action 
of the commutator of different operators Q, on the "coil" 
functions $,, inasmuch as they are "smeared out" over a 

large volume outside the localization region of the fields, 
turns out to be negligibly small, so that the coil corresponds 
to stable dynamic behavior. The coil-goluble transition is 
therefore none other than a transition from a dynamic to a 
stochastic regime in Eq. (4) .  Accordingly, the limiting dis- 
tribution is an exact analog of a microcanonical distribution 
in statistical mechanics. 

The Green's function ( 1 ) for x = 0 can, with allowance 
for (2) ,  represented by the series 

where each wavy line corresponds to a factor P,,, a solid 
segment represents the "free-field propagator" ( t  - t ' ) - d'2 

and the summation is over all the ti. The crux of the problem 
is the power-law form of the propagator. It shows, in partic- 
ular, that allowance for the excluded volume and the topol- 
ogy of the loops in the fringe of the globule, if it is permissible 
to neglect the influence of these factors on the core of the 
globule, reduces simply to replacing d by a somewhat more 
effective quantity. We shall therefore assumed itself to be an 
arbitrary, not necessarily integer, quantity, subject to the 
only condition d > 1. 

3. RENORMALIZATION TRANSFORMATION FOR 
HETEF~OPOLYMER 

If all the external fields are pointlike ( 2 ) ,  the basic 
equation (4)  can be rewritten in the form 

1 

To recast (4)  in this form we must take its Fourier transform 
and use the following notation in the resultant k-representa- 
tion 

According to (3 )  we have in the region of large distances or 
small k 

xrka(2d)-I", 
kd(x) =hd*xd-l, hd*=(d/2~)~ '~ /2r  (42 )  for kag l .  ( 10) 

Equation (9)  was investigated by us'' for the special 
case of a homopolymer, when 8, does not depend on t ,  and 
exhibited a "critical slowing down." This property is par- 
ticularly pronounced just for a heteropolymer. Indeed, the 
behavior of the end of the chain near the field-action point 0 
depends mainly on the force of interaction between the point 
0 and the last or the last few links. At the same time, the 
behavior of the end of the chain far from the point 0 is equal- 
ly dependent on many links, since the end of the chain at a 
large distance constitutes only a multilink "tail." It can thus 
be stated that  if^ is close to unity the quantity G :' "follows 
up" all the high-frequency fluctuations of the random pro- 
cess p,, whereas with decrease of K the "temporal" behavior 
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of G :' is smoothed out and G :" turns out to depend on ever 
slower harmonics of the process 8,. 

It follows from the foregoing that the heteropolymer 
equation (9)  can be analyzed by the dynamic renormaliza- 
tion-group variant developed for the homopolar problem.I0 
Recall that an infinitesimal renormalization-group transfor- 
mation consists of excluding fast modes with K > 1 - A and 
simultaneously making up blocks of 1 + 2A monomers each. 
By repeating the procedure of Ref. 10, it is easy to verify that 
the procedure described results again in an equation of type 
(9)-already a very important result because it proves re- 
normalizability of the problem-and this renormalization 
transformation of the 8, sequence takes the form 

Heres characterizes the current step of the renormalization 
and has the meaning of the number of bare (unrenorma- 
lized) monomers in one block monomer. For simplicity, we 
number the links in ( 11) in accordance with the bare mon- 
omers, regardless of the current value of s. Naturally, in this 
notation the renormalized monomers have numbers 0, s, 
2s, ..., and the recurrence transformations of type (4)  or (9)  
connect G"+")  with G(t) .  Owing to the critical slowing- 
down property, we can assume that the next block monomer 
starts out with the same value G, with which the preceding 
ends, since we are interested after the renormalization only 
in small K < 1 - A. This means that the block monomers are 
made up of nonoverlaping sections of the chain. 

Assume now that all the8, are statistically independent 
random quantities prior to the renormalization, i.e., at 
s = 1." From the overlap of the neighboring block mon- 
omers it follows that the renormalized sequence 8, also con- 
sists of statistically independent quantities. Averaging ( 11 ) 
with this fact taken into account, we get 

2s -= (') 2 g (s) + 8' (s) hr (s-"1 ~ - % a - ~ .  
as 

We see that the mean value of B(s) is renormalized just as 
P(s )  for a homogeneous hom~polymer. '~  The explicit solu- 
tion of (12) is 

However, knowledge of the mean value for the hetero- 
polymer problem is insufficient, and the question of renor- 
malizing the probability distribution arises. We denote the 
distribution of the bare values of 8, by P ( 8 ) .  By way of ex- 
ample, it is useful to consider a chain with links of two types, 
A and B, for which 

We denote the distribution of fl, (s) by P, (8 ) .  It is conven- 
ient to write the corresponding renormalization equation in 
terms of the characteristic function ( a ) ,  i.e., of a Fourier 
transform of P, ( 8 )  with respect to the variable 8. To this 
end we must average the quantity exp[iafi,(s(l + 2 A ) )  ] 
with the aid of Eq. ( 1 1 ); this yields 

where the angle brackets denote averaging over fl, - , (s) (re- 
call that this quantity is statistically is independent of 8, (s) 
over which we have already averaged). Separating the terms 
linear in A we obtain 

since B ( s )  can according to ( 13) to be regarded simply as a 
known function of s, Eq. ( 15) is linear in In F, ( w )  and it is 
easy to find its characteristics and write the explicit solution: 

P.(w) =P.( w exp [ 5 hd(sf -'")sf -%' (s')aPd ds1 i2 ] )  . ( 16) 
I  

4. ANALYSIS OF RENORMALIZATION RESULTS 

The first that can be seen from ( 16) is a decisive change 
ofits entire behavior when the bare valueBa - ddoes through 
the value 

a - d , .  = [ j  hd ( x )  n-' dx ] -I= { (2n ld)  "'lt (d/2),  d>2 

0 0, d<2 ' 

that corresponds to the point of the coil-globule transition in 
the homopolymer (the explicit expression with d > 2 is a 
Gaussian g-function). In fact, as 8 goes through PI,, the 
behavior of B(s) changes radically: The quantity 
f l (s)s  - d/2a - d  remains bounded for any s ifB<flt,, but di- 
verges at finite s if 8 > p,,. Obviously, the behavior of P, (8 )  
changes just as drastically. This leads already to an impor- 
tant conclusion: the critical point of the coil-globule phase 
transition in an infinite statistical heteropolymer is deter- 
mined by the condition 

To emphasize the nontrivial character of the result 
( 18), we call attention to the following: a periodic heteropo- 
lymer with the same ratio of the components CA and C ,  goes 
through a coil-globule transition not under the condition 
( IS), but at another point. Consider, for example, a periodic 
polymer ABAB .... (for which, of course, C, = C,  = 4) and 
assume that PA = 0. We obtain obviously simply a homopo- 
lymer with bonds twice as long, which is described by the 
usual homopolymer equations with the substitution g, -g:, 
i.e., ~ - 2 " ~ a ,  and for which the transition point is deter- 
mined by the condition fl, = 2d/2fl,,. In the same situation 
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(C, - C, = 4, DA = 0)  Eq. ( 18) gives for a statistical se- 
quence a different answer: flB = 2p,, . 

The foregoing example illustrates a very interesting 
property of the system. In fact, in a long-loop situation the 
heterogeneity of the sequencep, is effectively smoothed out; 
this is qualitatively quite clear. But the smoothed value of 
P,, actually obtained is determined by the small-scale prop- 
erties of chain. Thus, it can be seen from ( 13 ) and ( 16) that 
the behavior of p(p) and P, (a) becomes universal only at 
large s, and is determined only by the asymptote of h, ( K )  at 
small K. The behavior of these quantities at smalls, however, 
depends on the entire function h, (K), i.e., on the small-scale 
details of the arrangement of the "bonds" g ( x ) .  The small- 
scale properties of the inhomogeneous sequence B,, as seen 
from the example with the periodic polymer, are also very 
important for the determination of P,, The result (18) 
states thus that a,, = B for a statistical sequence. 

As to the form of the P, (p) distribution, it is easy to 
conclude by analogy with the central limit theorem," where 
the analog of ( 16) takes the form ps (w) = ps (w), that as 
s- w the distribution becomes asymptotically normal. The 
corresponding mean value is given by Eq. ( 13), and for the 
variance we get from ( 16) the following expression, which is 
valid for all s and d: 

This expression takes the same form as, according to the 
central limit theorem, the analogous equation for ordinary 
values o fp  averaged over blocks of length s. The substantial 
difference is, however, that p ( s ) ,  and with it according to 
( 19) also /71(s), can in our situation be singular. 

The P, (P) distribution becomes thus monomodal and 
its variance (19) becomes small at large s. The length of a 
block monomer in a coil or at the transition point can be 
increased all the way to the total length N of the chain. In a 
globule, however, there is a finite correlation radius along 
the chain or, equivalently, a finite characteristic length I of 
the loop in the fringe of the globule. Near the phase transi- 
tion we have 1% 1 and this is precisely why the scale I is 
unique and independent of the realization of the random 
chain or of the coordinate along the chain, because the P, (P) 
distribution is narrow at s - 1% 1. The size of the scale I, since 
it is unique, is determined simply by the mean value ofp(s).  
A simple analysis shows that renormalizations in the globu- 
lar regime preserve an accuracy of the order of unity all the 
way to a scale such that 

The meaning of this estimate is made clear by the fact that 
ld"ad is the unperturbed Gaussian volume of the block 
monomer, anda(1) is the virial coefficient of its interaction 
with the external field. Using (10) for the analysis of the 
asymptotic of the integral (13) at a small lower limit, we 
easily get 

The scale in a globule can thus be increased only up to 
I@). Is this enough to make the variance ofp(s) small? This 
question is vial if d < 2, when the right hand side of ( 19) has 
near the transition point a large factorB -'besides the small 
factor s-I. Equation (20), however, shows that 
1 -  - I d  , therefore the variance of g (s -  1 ) becomes 
small near the transition point at d > 1 but not at d < 1. We 
shall consider hereafter just the case d > 1. 

Thus, at d > 1 the loops in a coil and near the point of 
transition to a globule turn out to be quite long, and the 
heterogeneity of the sequence of the links evens out over 
their length. The probability distribution for P(s)  becomes 
thus monomodal, even if the distribution P(P) was initially 
bimodal as in ( 14), or even more complicated. This circum- 
stance has an important physical meaning: notwithstanding 
the presence in the heteropolymer chain of several species of 
distinctly different links, we are unable to classify sufficient- 
ly long sections of the chain, in a physically meaningful man- 
ner, into qualitatively different types: the chain cannot be 
regarded as a sequence of globulized and coil-like segments 
with different fluctuations of the density of the link types. 

5. CALCULATION OF THE DIMENSIONS OF A RANDOM 
HETEROPOLYMER 

The starting point of the analysis of the spatial structure 
of a chain should be a recurrence relation for the 11 function 
( 5 ) .  For example, the mean squared2' distance from the ori- 
gin 0 to the link t is equal to 

and for pointlike fields (2)  we easily obtain 

A.  Coil regime. Using once relation (23) renormalized 
to s = N, and assuming that 11, ( K )  in this equation pertains 
to the start of the chain, i.e., 11, (x )  = &(x)  = S(x) ,  11, ( K )  

= 1, R, = 0, we obtain directly a characteristic of the entire 
chain-the mean squared distance R, between its ends: 

(I hd (xN-"'1 d x  for N ,  I is evaluated using (14)). ( '24) 
0 
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~ i n c e p ( s )  is renormalized just asP(s) for a homopolymer, where R $Om"' is the homopolymer dimension calculated in 
we get directly from (24) Ref. 10. To calculate the mean values of the other powers3' of 

R, it is necessary to expand in (24) in powers of the second 
term in the square brackets, and to use expression ( 19). For 

(F)-x=R p m o ) ( p ) ,  (25) example, 

The second term in the square brackets of (26) is the fluctu- 
ation correction. It is, of course, the first term of a series but, 
most importantly, by far not in powers of the variance of& 
which is not assumed small, but in powers of N - I .  The vari- 
ance ( -N - ' I2)  of the size of the coil (27) is also small, and 
is additionally decreased when the coil comes close to an 
ideal one (for which R, = Nu2). The latter is due to the 
smallness (at d > 1 ) of the fraction of the coil links that inter- 
acts with the local field. 

At B<P,, (for a coil) the results (26) and (27) are 
asymptotically correct at N) 1; moreover, Eq. (25) is rigor- 
ously exact. These results remain valid also at p>p , ,  for 
relatively short chains ~ 4 l ( p )  (or for chains with N given 
in the immediate vicinity of the transition point). 

B. Globular regime. In a truly globular situation we 
should have not only p >  P,, but also ~ ) l ( p ) .  The diver- 
gence of p ( s )  (as well as of p '(s) ...) as s-I(P) becomes 
therefore essential. Just as in a hoinopolymer, the scale l ( p )  
is none other than the characteristic loop length of the glo- 
bule. The inequality N)l(p)  means that globulized chain 
contains many loops, and the divergence is interpreted as a 
manifestation of the fact that at scales s > l(p) the chain is 
strictly held together by the external field. For a heteropo- 
lymer, however, one can go even farther: it is natural to as- 
sume that over the scale on which the block links are rigor- 
ously held together in the globule, the probability 
distribution Pi{$)  (8)  is stabilized over a length of the 
order of one block link. To explain this fact, let us examine 
relation (9) once more and assume that the renormalization 
in it has already been advanced to a relatively large scale 
s)  1.  If at the same time the function G, (x)  is localized over 
distances -as1'*, then G, + , (x)  becomes practically inde- 
pendent of the form of G, (x)  and is determined only by the 
integral Z,  and by the primary structure of the chain on the 
section from t to t + s. Accordingly, $, (x) should become 
independent of $,+, (x )  at a value of s such that as1/' be- 
comes comparable in order of magnitude with the size of the 

I 
localization region $(x), thelatter being -a1 ' I 2  in aglobule. 

We arrive thus at the conclusion that the mutual influ- 
ence of the functions $, (x)  does not extend farther than a 
length 1 along the chain. In particular, the value of RN for a 
globule is independent of N and is determined only by the 
last section of a chain consisting of -I links. To calculate 
this value we must use Eq. (23 ) ,  renormalized to s-I, to 
obtain R,, ,, regardless of what is used here for $,; (it is 
simplest to put $, (x )  = S(x)). As a result weobtain for R, a 
formula of the same form as (241, but containing I in place of 
N a n d P t = N - I ( ~ - I )  inplaceof,8,=, ( s =  N):  

In contrast to Eq. (24) which is exact for the coil, its 
analog (28 for the globule is accurate to unity. Continuing 
the calculations at this accuracy, it is natural to expand in 
(28) in powers of the second term in the square bracket; 
terms of higher order i np  turn out to be small here by virtue 
of 1) 1.  As a result we obtain the mean value and the vari- 
ance of R, for a set of globulized random chains: 

under the condition N) I@). We omit for and the 
subscript N, on which they do not depend in the globular 
regime. We have used the equal sign in (29) in view of the 
continuity of the dependence of R on the variance of& the 
fluctuation term in R, just as the variance DR, were deter- 
mined by us only apart from a factor. Just as in (26), the 
expansion in (29) is not with respect to the variance of fl, 
which can be arbitrary. The small parameter in (29) is in 
fact I - I @ ) ,  i.e., the proximity to the transition point. 

1288 Sov. Phys. JETP 64 (6), December 1986 A. Yu. Grosberg and E. I.  Shakhnovich 1288 



We see that the mean distance RN between the ends of a 
heteropolymer chain practically coincides in the globular 
regime (29), just as in the coil regime (26), with the analo- 
gous distance for an "average" homopolymer with P = p. 
The fluctuational correction term in (29) for d > 1 is small 
near the transition point if l ( p )  ) 1, as is the analogous term 
in (26) for a coil. It must be understood, however, that on 
moving farther from the transition point into the globular 
region the dependence of R on the primary structure be- 
comes stronger, and the difference between R and R 
not only increases qualitatively but becomes also qualitative. 

The simplest characteristic of the sensitivity of the spa- 
tial structure of a chain to a change of a sequence of types of 
links is the variance of the dimension. Note that in the coil 
regimeDR tends to zero asN+ w (27). On the contrary, in a 
globule DR tends as N- w to a finite limit. On the whole, the 
value of lim DR as a function of has a singularity at 
B = p,, i.e., at the end of the transition. The character of the 
singularity is determined by Eqs. (2 1 ) and (30). 

We call particular attention to the case 2 < d < 4, which 
is most important in practice. In this case the dependence of 
DR on 3 has in the globular region a maximum at 

i.e., at a finite distance from the transition point. A similar 
dependence was obtained earlier in a computer experi- 
ment." Thus, the theoretical result shown in Fig. 1 agrees 
with the results of the computer experiment. 

The quantity R characterizes by definition precisely the 
end point of the chain. In a globule, however, the loop sizes 
are also of the order of R, and moreover, the probability 
distributions for them is the same as for R. Therefore R (29) 
is the average dimension of a loop in one long globulized 
chain, and DR (30) is the relative scatter of the dimensions 
of various loops in one chain. The number of loops in a chain 
is - N /I@), since the fraction of particles in the core of the 
globule is small near the transition. The radius of inertia of 
the gl~bule,~'which characterizes it as a unit, is a self-averag- 

1 P t ,  = 0 
P 

FIG. 1. Dependence of the variance of the inertia radii of random chains 
onB for - = const and for different dimensionalities: a )  2 < d < 4, 
b ) l < d < 2 , c )  d-I .  

ing quantity: it receives statistically independent contribu- 
tions from a large number of loops. Accordingly, 

6. CALCULATIONS OF THE FREE ENERGY OF A RANDOM 
HETEROPOLYMER 

The general expression for the free energy (7)  for point- 
like external fields (2)  is reducible, according to (23), to the 
form 

where we have left out the term ln(R,/R,)', which is insig- 
nificant in the thermodynamic limit (it is 5 In N). 

We determine first the mean value of the free energy of a 
random globule. To this end it is necessary in (33) to expand 
in powers of (a2/R :) and then average each term of the 
expansion in the manner described in the derivation of (2). 
Since the R, are uniformly distributed, according to (28), in 
a globule for almost all the links (except at the start of the 
first loop), we easily obtain 

A clarification is in order here. If (33) is formally averaged 
with the aid of (28), the fluctuation term contains 1 - 2  in 
place of the correct I -', because (a2/R :), the main term in 
(33), is linear inp(s  = I )  in the approximation (28). In fact, 
however, the absence of a term quadratic inP(s = I) in (28) 
is due not to some fundamental cause [as in (24) 1, but to the 
fact that (28) is approximate. We find therefore that the 
fluctuation term in R, i.e., in the free energy, is of the 
same order for the globule as in R with some other a, as 
indeed written in (34). Thus, the fluctuation correction to 
the free energy of the globule (34), just as to its size (29), 
becomes small as the transition point is approached for any 
d > 1. The analogous fluctuation terms for a coil turn out to 
be proportional to negative powers of N. Such terms are 
meaningless in the free energy, i.e., in a coil we have, as also 
for a homopolymer, FN = 0. 

The result (34) has an important physical meaning. It 
means that not only the transition point (18), but also the 
thermodynamic type of transition in an infinite heteropo- 
lymer is the same as in an "average" homopolymer. In other 
words, introduction of an inhomogeneity in a linear struc- 
ture of a polymer leaves the coil-globule transition in the 
same universality class to which it belongs for a homopo- 
lymer (at d >  1). 

The probability distribution for the free energy of a glo- 
bule is normal, since the chain contains many loops, 
N > I ( ~ ) .  In fact, the sequence of terms in (33) can be 
broken up in blocks containing I terms each, and these blocks 
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are practically independent of one another. To estimate the 
variance of the free energy we must reason as follows. The 
terms within the blocks are strongly correlated and the 
spread of their sum is of the same order as the relative spread 
ofone term a2/R :, and this quantity is easily calculated with 
the aid of (28) and ( 19). The addition of the contributions 
of the blocks, however, is subject to the central limit 
theorem. Simple calculations yield the following very simple 
result: 

FT-P~Z 1 8 2 - 8 2  --- 
P," N p2 ' 

which is independent of the dimensionality of the space. 
Equation (35) allows us to find the probability of losing 

the thermodynamic stability, defined by the inequality 
FN < 0, of the globular state at P #,8,,. Since F, has a Gaus- 
sian distribution, the probability in question is small under 
the condition 

~ ~ j y ( p - p ) .  (36) 

Consider an example in which - p * remains constant 
when8 is varied. At d > 2, for exqmple in the most important 
three-dimensional case, the condition (36) reduces in the 
transition region simply to N (  1, because p > P,, > 0. At 
d < 2, however, whenp,, = 0, it turns out that the free ener- 
gies of different heteropolymers of length N (differing in the 
squence of the elements) vanishes in the interval 

I 5 N -'I2.  In a finite chain, however, it is meaningless to 
speak of two different states at IFN 1 5 T, i.e., the transition 
becomes smeared out in an interval of width 
18 I 5 N - (' A comparison shows that at d > 1 the usu- 
al thermodynamic smearing of the transition point exceeds 
the smearing due to the uncertainty of the primary structure. 

7. CONCLUSION 

We have thus obtained a sufficiently complete solution 
of the problem of collapse of an immaterial heteropolymer 
under the influence of a pointlike external field. Recall that 
the results (25)-(27) for the coil phase are exact. Moreover, 
they are asymptotically exact in the limit N-.  co also for a 
nonpointlike external field. Also exact are the results that 
the transition point (18) and the transition order (34) are 
the same for a stochastic heteropolymer and an "average" 
homopolymer. The results (29), (30), (34), and (35) for a 
globule near a phase transition are valid accurate to numeri- 
cal factors. 

We have not considered the regime of a well shaped 
globule with short loops far from the transition point. The 
point-field model is obviously senseless for the description of 
this regime, and the renormalization-group method is use- 
less. Yet a highly varied behavior of a globule and interesting 
peculiarities can be expected in this region. This is clear, for 

example, from a comparison with the data on helix-coil tran- 
s i t ion~, '~  where it is precisely for moderate loop lengths that 
one observes the most interesting effect, viz., successive 
"melting out" of individual segments of the chain. Of course, 
the analogy with the helix-coil transition is complete only for 
point fields, and for physically natural extended field the 
behavior of the globule should be even more varied. Al- 
though there are three exactly solvable models of heteropo- 
lymer globules for definite field ~ h a ~ e s , ~ ~ ' ~ ~ ' h h e  question of 
their description far from the transition into a coil remains 
on the whole open and timely. 

Even more important and quite subtle is the question of 
the qualitative conclusions that can be drawn from the re- 
sults of the present paper for proteins. We discuss this in part 
in Ref. 11. 

We are very grateful to S. P. Obukhov who read this 
paper in manuscript and made many helpful remarks. We 
are indebted also to 0. B. Ptitsyn and A. V. Finkel'shtein for 
helpful discussions. 

"We do not consider here the subtle question of the applicability of a 
random primary structure to simulation of biopolymers. For details and 
a bibliography on this subject see Ref. 11. 

2'We have in mind, of course, a thermodynamic average over all states of 
the given random chain. 

"To prevent misunderstandings, we point out that in our notation 

defined in (22). 
4'The squareof the inertia radius is the ratio of the moment of inertia to the 

mass. 
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