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A solution is obtained of the problem of emission of electromagnetic radiation at combination 
frequencies w, f w, due to incidence of an electromagnetic wave of frequency w, on a 
conductor in which a longitudinal acoustic wave of frequency w2 with a displacement vector 
normal to the surface is excited. The case of specular reflection of electrons by the conductor 
surface and isotropic dispersion law is considered. It is also assumed that the anomalous skin 
effect takes place. If the frequency of the acoustic wave is twice as high as the frequency of the 
electromagnetic wave, the difference frequency is w2 - w, = w,. This means that at o, = 20, 
there is a correction to the surface impedance at the frequency w, and this correction is linear 
in respect of the amplitude of sound. If the wavelength of sound is of the order of the skin 
depth at the frequency w,, this correction is no longer small compared with the linear 
impedance when the characteristic frequency of the oscillations of electrons trapped by the 
effective potential field of the acoustic wave becomes higher than the momentum relaxation 
frequency and the frequency w ,. In the case of pure metals or semimetals at low temperatures 
this condition may be satisfied when the energy flux density of the acoustic wave is less than 1 
W/cm2. Consequently, an acoustic wave of moderate intensity may alter greatly the surface 
impedance. 

When a conductor is subjected simultaneously to a 
transverse electromagnetic wave of frequency w, and a lon- 
gitudinal acoustic wave of frequency w, with its displace- 
ment vector normal to the surface, the always-present non- 
linearity gives rise to electromagnetic radiation at 
combination frequencies. If the waves are sufficiently weak, 
the nonlinear current at such combination frequencies can 
be represented as a sum of two terms. The first term, denoted 
by jCfs' , is the linear response to an electro-magnetic field of 
a nonequilibrium electron system perturbed by an acoustic 
wave. The second term, j'$', is a linear reaction to the field 
of a longitudinal acoustic wave in a nonequilibrium electron 
system perturbed by a transverse electromagnetic field. 

Since the distribution function is anisotropic in the 
presence of an acoustic wave, a linear response to the mag- 
netic field of the second wave is generated and under the 
anomalous skin effect conditions it dominates j'f"'. In its 
turn, the anisotropy of the distribution function induced by 
an electromagnetic field gives rise to a transverse component 
of the current j'sf' created by a longitudinal acoustic wave. 
The two currents j'/" and j'sf' may make comparable con- 
tributions to the electromagnetic radiation generated at the 
combination frequencies. This is manifested most strongly 
under the anomalous skin effect conditions when the skin 
depth is comparable with the acoustic wavelength. In this 
situation the two waves interact strongly with the same 
group of electrons moving almost parallel to the surface. 

There is a special interest in the case when a, = 2w1, 
because this gives rise to electromagnetic radiation resulting 
from the simultaneous effects of the acoustic and electro- 
magnetic waves when the frequency of this interaction is 
identical with the frequency of the main electromagnetic 
wave (w, - w, = o , ) .  It means that when w, = 2w, a cor- 
rection appears to the surface impedance at the frequency w, 

and this correction is linear in respect of the amplitude of 
sound. We may assume (and this is confirmed by the calcu- 
lations given below) that when the skin depth is comparable 
with the acoustic wavelength, the relative correction to the 
impedance is of the order of unity if the characteristic fre- 
quency of the oscillations of electrons trapped by the effec- 
tive field of the longitudinal wave is of the order of or greater 
than the collision frequency. In the case of metals and semi- 
metals at low temperatures this condition may be satisfied at 
moderate intensities of sound.' Therefore, an acoustic wave 
of moderate amplitude may alter considerably the surface 
impedance. 

Electromagnetic radiation generated by a nonlinear 
current created by the simultaneous action of electromag- 
netic and acoustic waves on a conductor must obviously be 
taken into account in the interpretation of the results of re- 
cent investigation~.~,~ These investigation~ have revealed a 
very strong increase in the nonlinear reflection of an electro- 
magnetic wave incident on bismuth, attributed to the excita- 
tion of acoustic waves. However, it should be pointed out 
that in Refs. 2 and 3 an important feature was the presence of 
a static magnetic field, whereas we shall consider only the 
case when the magnetic field is zero. 

1. We shall consider a conductor occupying the half- 
space z > 0 on which an electromagnetic wave of frequency 
w, is incideqt normally and in which a longitudinal wave of 
frequency w2 with its displacement vector parallel to the z 
axis is excited in some way. We shall determine the ampli- 
tudes of the waves emitted by such a conductor at the combi- 
nation frequencies o, f 0,. 

The reflection of electrons by the surface of the conduc- 
tor will be assumed to be specular and the dispersion law of 
electrons will be regarded as isotropic. It is well known that 
in this situation the problem of finding the solution of the 
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transport equation in the half-space by even continuation of 
the transverse electric fields and deformation fields to the 
region z < 0  reduces the solution of this equation in un- 
bounded space. We shall use this technique, which is valid 
also in the nonlinear case (when an allowance for the mag- 
netic field of the wave must be made in the transport equa- 
tion and, in accordance with the Maxwell equations, this 
field should have odd continuation). 

We shall consider an unbounded conductor. The trans- 
port equation for the electron distribution function f can be 
written in the form 

where I( f) is the collision integral; E and H are the electric 
and magnetic fields; p is the quasimomentum; t is the time; r 
is the radius vector; c is the velocity of light; e is the electron 
charge; E is the Hamiltonian for an electron in a deformed 
crystal. The most general expression for E was obtained re- 
cently by Andreev and Pu~hkarov .~  However, we shall not 
consider here the effects which are quadratic or of higher 
order in respect of the amplitude of sound, so that we can 
employ an expression for E which is linearized in respect of 
its displacement vector u and which was derived by Kontor- 
ovich in Ref. 5: 

where go(p) is the dispersion law of the undeformed crystal; 
vk = d ~ ~ / c 3 p ~  ; Aik (p)  is the deformation potential tensor; m 
is the mass of a free electron; u, is the strain tensor; 
u, = au, /at. If the dispersion law is isotropic, then 

hik (p) =h, (pZ) 6 i k + h ~ ( p ~ ) ~ i ~ k / ~ ~ .  

Following Ref. 5, we shall write the collision integral 
I( f) in the form 

where T is the relaxation time; f, is the equilibrium distribu- 
tion function; 6p is a nonequilibrium correction to the chem- 
ical potential which is found from the condition 

The transverse electromagnetic field in the conductor at the 
frequency w, will be represented by 

c.z 

E, (z, t )  = 5 dk. ~ ( k , ,  0.1 eiA~z-im~t+c.c., 
- m  

(5)  
w 

B, (I, t )  = dk. H (k,, 01,) e'kfl-'"lt+ 

It follows from the conditions E l  (z,t) = El  ( - z,t) and 
H I  (z,t) = - H l  ( - z,t),  and from the Maxwell equations 
that 

In our case at the frequency w, there is only one nonzero 
component of the stain tensor u, : 

Uzz ( z ,  t) = J dk2 u,, (kr, 012) efk~z-'"a'+ C.C., 
- D1 

(7) 
uz2 (k2, 0 2 )  = U Z ~  ( 4 2 ,  0 2 ) .  

The acoustic wave described by the system (7)  is accompa- 
nied by oscillations of the longitudinal electric field E, (z,t) 
of the same frequency and the Fourier component of this 
field defined by analogy with Eqs. (5)  and (7)  will be de- 
noted by E, (k , ,~ , ) .  

We shall assume that the amplitudes of both waves are 
sufficiently small and solve the transport equation ( 1 ) by the 
iteration method. We shall expand the function g as a series 
in terms of the field amplitudes: 

The function obtained in the linear approximation g"' is de- 
scribed by 

where Sp"' is the linear correction to the chemical potential. 
The function g'l) will be represented in the form 
g'" = g(n  + g'") , where g'* is the reaction to the electro- 
magnetic wave of frequency w, andg'") is the reaction to the 
acoustic wave of frequency w,. Similarly, 6,~"'  is described 
by Sp"' = 6 , ~ ' ~  + lip'"'. 

The transverse wave of Eq. (5)  excites obviously acous- 
tic vibrations of the same frequency. However, in the lowest 
approximation we can ignore the direct transformation of 
the electromagnetic wave into sound, because it is practical- 
ly always weak (see Refs. 6 and 7).  Bearing this in mind, we 
find from Eq. (9)  that 6p ( f) = 0 and 

whereg(-" (p,k,,w,) is a Fourier component of the function 
g(-" (z,p,t). Then, 6,~'" is described by5 

Substituting Eq. ( 11 ) into Eq. (9),  we obtain 

o,~,, (p) u,, (k2, oz)  +ieBz (kz, 01,) afo 
g(=' (P, kz, 02) = - 

de k , ~ , - - a ~ - i ~ - ~  
(12) 

where A, 9)  = A ,  (p)  - (A, ) / ( I) .  The effective longitu- 
dinal field E, , which occurs in Eq. ( 12), can be found from 
the electrical neutrality condition which is equivalent to the 
condition ((g'"' ) )  = 0 (Ref. 5) if we describe 6,~'" by Eq. 
(11). 

Since we are considering the anomalous skin effect con- 
ditions, we shall assume that 
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where u, is the Fermi velocity. Using Eq. ( 13) and the con- 
dition ( (g'"' ) ) = 0, we find that 

wherep, is the Fermi momentum. It follows from Eqs. ( 12) 
and ( 14) that 

- - o,(A,.(p) - (inI2vF) sign ( k 2 ) ~ z v z )  uzz (kz, 0,) afo 
-. (15) 

k2~,-02-i'c-1 6' E 

We shall now find the functiong'" which is quadratic in 
respect of the field amplitudes. We shall be interested only in 
that part of the function g'" which is proportional to the 
amplitude of the acoustic wave and to the amplitude of the 
electromagnetic wave, and we shall designate it g'"' . The 
function g'"' can be described by 

whereg'"' is a linear reaction to the transverse electromag- 
netic field of Eq. (5)  of a nonequilibrium system of electrons 
perturbed by an acoustic wave of Eq. ( 5 ) ,  whereas g' is a 
linear reaction to an acoustic wave in an electron system 
disturbed from equilibrium by the transverse electromagnet- 
ic field. The function g is due to the nonlinear term 

in the transport equation. We shall not write down separate- 
ly the equation for g, but include it in g ' " ) ,  i.e., we shall 
understandg'") to be the ~ u m g ' ~ " '  + g. We shall show later 
that the contribution of g to the current at the combination 
frequencies is negligible. 

We therefore have the following equation for g'fi' : 

where 62 = 6.5 - pu and SE = E - E,. We then find that gCsB 
obeys 

In writing down Eqs. ( 17) and ( 18) we have assumed that in 
our case the corrections to the chemical potential at the com- 
bination frequencies are 8,~'"' = 0. This is easily demon- 
strated. In fact, integrating Eqs. ( 17) and ( 18) with respect 

to quasimomenta and using Eqs. ( 10) and ( 15 ), we obtain 
((g'f"' ) )  = ((g'"* ))  = 0. 

Representing g'P) in the form 
m 

g(fs)(p, z, t ) =  J dk, dk, exp[i(k,+k,)z-i(al+oZ)tl 
-9 

x g"" (p, kl, k2, ol, ~ 2 )  + ( 19) 

we find from Eq. ( 17) that 

oz (A,, (p) -i (n12uR) sign (k2)Azz~z)  d f o  
x- -, 

kzu,-m2-i~-l 8 E 

The equation forg'"' includes the longitudinal electric field 

Using Eqs. ( 14) and ( 131, we find that E, = eC1(aSp'" / 
az) . Therefore, it follows from Eq. ( 18) that 

g(sf' (p, kt, kZ. ~ i ,  ~ z )  

- - k, [A,, (P) +pzvr (pZ-mv,) oZlk,l uzz (k2,oZ) 
(kl+k2) v,-ol-oz-it-' 

a ieE(kl,ol)v a f o  x- ap, k,v,-o,-i~-~ .- 8, 

- 
klu,, (kz, oz) {(aldp,) (P) +pzvz- (pz-mu,) ozlkzl) 

(kl+kz) v,-ol-02-it-' 

Equations ( lo), ( 12), (201, and (21) show that the func- 
tions gW , g'"' , gC fi' , and gCSB satisfy the specular reflection 
condition:g(p,,px,p,,,z = 0)  = g (  -p,,p,,p,,z = 0).  In 
general, the boundary condition should be satisfied not at 
z = 0 but at z = u, (0,t) and, moreover, it should be modi- 
fied, since the boundary moves at a finite velocity (we shall 
use the laboratory coordinate system not linked to the lat- 
tice). However, we can readily show that an allowance for 
the motion of the boundary is unimportant because the de- 
formation (strain) is always very small: lu, 1 4 1. 

[It is clear that the influence of the motion of a bound- 
ary can be neglected if I u, I is much smaller than the depth of 
the skin layer at frequencies w, f w, and w , ,  and the addi- 
tional velocity acquired by an electron as a result of a colli- 
sion with a moving boundary is ti,, which is much less than 
the characteristic velocity of the active electrons 6, along the 
normal to the surface. In the case of greatest interest to us 
when the acoustic wavelength is of the order of depth of the 
skin layer at frequencies w , and w, f w,, it follows from Eqs. 
(20) and (21) that 6, is greater than or of the order of the 
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velocity of sound and both these conditions are satisfied if 
I <  1.1 
Using Eqs. (20) and (2 1 ) , we shall calculate the Four- 

ier component of the nonlinear current at the frequency 
w = w ,  +w,: 

. ( f a )  2 
1. (k, a) = d3p va J dki dkz 6 (k-Xi-kz) 

(2n) - m 

x gcir) (P, kt, kz, ol, oz), 
(22) 

rn 

. (sf) 2 
1 (k, o) = 1 d3p va 5 dk, dk, 6 (k-kt-k,) 

(2n) -m 

~ g ( ' ~ '  (p, kt, kz, mi, ~ z ) .  

We shall assume that in addition to the inequality ( 13 ), the 
following condition is satisfied: 

After substitution of Eq. (20) into Eq. (22) and integration 
with respect to quasimomenta, we obtain 

rn 

. ( f a )  e'pp2 o, j 
l a  (k, o) =6ae-- dk, dkz 6 (k-ki-kz) 

4n oi -_  

where E = [v~/2(dvz/dpz ) ] 1, = ,  and E, is the Fermi ener- 
E = E F  

gy and E - & F a  

The main contribution t ~ j ( ~ '  comes from the first term 
in the braces in Eq. (20) describing the f u n ~ t i o n g ' ~ )  and in 
this term we can ignore the electric field of the wave. The 
appearance of the theta function 8( - kk,) in Eq. (24) is 
due to the fact that the integrand in Eq. (22), which repre- 
sents the function g ' f s ) ,  has two poles of the variable 
w = cos Q (Q is the angle between the vector v and the z 
axis), which is located near the point w = 0 when the inequi- 
lities ( 13) and (23) are okeyed. A large contribution to this 
integral appears only when the poles are located on the oppo- 
site sides of the real axis, i.e., when kk, < 0. 

We can similarly calculate j:" (k,o ) : 

It is clear from Eqs. (24) and (25) that the current at the 
combination frequencies j'") (k,w) and, therefore, the field 
generated by the current has the same polarization as the 
electromagnetic wave incident on the investigated conduc- 
tor. Let us assume that the electric field of the incident wave 

is polarized along the x axis. Then all the transverse fields 
and currents of interest to us will be also polarized along the 
x axis, so that we shall omit the relevant vector indices. 

2. The amplitude ofan electromagnetic wave emitted by 
a conductor at the combination frequency can be calculated 
by solving the Maxwell equations in the half-space where the 
external current is j'"' (k,w) and the corresponding bound- 
ary condition for the fields applies at z = 0. This is easily 
done by continuing the Maxwell equations to the half-space 
z < 0. As a result, the amplitude of the electric field of the 
wave E'"' (0,w) emitted at a frequency w = w, + w, is de- 
scribed by 

0 

4n 
E C  0 ) = - - cL (w) j d j c  ( ) (2, ) (26) 

C 
0 

where CL (o) is the linear surface impedance at the frequen- 
cy w: the function $(z,w) represents linear penetration of 
the electric field of frequency w in the conductor 
$(z = 0,w) = 1. In the derivation of Eq. (26) we made 
allowance for the fact that under the anomalous skin effect 
condition we have (cL 1 4 1. 

We shall now go over in Eq. (26) to the Fourier compo- 
nents 

m 

4n2 
(0, W) = - - tL ( a )  dk j ( ~ ' )  (k, a ) &  (k, 0 ) .  (27) 

C - m 

We shall represent the Fourier component tf (k,w) of the 
function 69 (z,w) in the form 

wherex- ' (w ) is the depth of the skin layer at the frequency 
a. It follows from Ref. 8 that in the case of specular reflec- 
tion, we have 

and the function e, (k,w) is of the form 

Similarly, we find that 

where E(O,w,) is the amplitude of the electric field of fre- 
quency w, on the surface of the conductor. 

The explicit form of the Fourier component u, ( k , , ~ , )  
depends on the method of excitation of sound in the conduc- 
tor. An acoustic wave may be excited at the z = 0 surface or 
at the second z = d surface of a bulk conductor of thickness 
d s x - '  (a '), x-' (w) .  We shall consider the most interest- 
ing case when the attenuation length of sound of frequency 
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0, is much greater than X - I  (w, ), X-' (w).  We can then 
represent u, ( k , , ~ , )  in the form 

where Ti, (w,) is the amplitude of the strain near the z = 0 
surface, k, (0,) = w2/s, and s is the velocity of sound. 

If the sound is excited at the z = 0 surface, then 

u,, (2 ,  t )  =E,, ( 4  exp {ik,(02) I z l  -io2t)+c.c. 

and we obtain 

i 1 
ell (k2,02) = - 

n I-k,2+i0 sign o, ' 
(33 

However, if sound is excited at thez = d surface, whereas the 
z = 0 surface is free (i.e., the conductor is in contact in vacu- 
um on this side), then 

u,,(z, t )  =u,, ( 4  exp (-iozt) sin k.(o,) lzl+c.c. 

and el, (k,,w,) is described by 

A singularity in Eq. (34) at k:  = 1 should be integrated 
using the principal value. 

It follows from Eq. (27) when an allowance is made for 
Eqs. (28)-(32), (241, and (25) that, after certain opera- 
tions, we obtain 

where 

~ ( 0 1 )  
I1 ( a ,  a,, =2n( k - ) 2  5 dki5 dk, e,(k,, o,) 

3 

It is therefore clear that Eqs. (35 )-(37) solve the prob- 
lem of emission of electromagnetic radiation at the combina- 
tion frequencies. The amplitude of the wave at the sum fre- 

quency is obtained from Eq. (35) for w ,,w, > 0, whereas the 
amplitude a t  the difference frequency can be obtained from 
Eq. (35) replacing w, with - w, (or w, with - a , ) .  We 
shall assume that all frequencies a , ,  w,, and w, + w, are of 
the same order of magnitude. In this case the values o f l ,  and 
I, depend strongly only on one parameter which is k, ( a , ) /  
x (w, ) . I fk ,  (w2)/~(wI)(<1,itfollow~fromEq. (36) witha 
logarithmic precision that 

v 

~ ( 0 1 )  k,x (oil  I,=-2hin (- ) I  dk, e,(k,, o,)e,[- 
k a ( ~ ~ )  ~ ( 0 )  

where A = i even if el, (k,,w,) is described by Eq. (33) and 
A = 1 for other methods of excitation of sound when Eq. 
(34) applies. In this case the main contribution to the inte- 
gral of Eq. (36) comes from the region where k ,  - 1 and 
I S k z S k ,  ( ~ , ) / x ( m I ) .  

Obviously if k, (w,)/x(w,) - 1, then the estimate 
I I, 1 - JI, 1 - 1 is valid; it should be noted that 

2 
i-exp 3 m  [ -i-slgn(m,)J. : 

WecanuseEq. (37) toshow that lI,) - 1 also when k, (w2)/  
x ( w I )  < 1. If k, (w,)/x(w,) > 1, it then follows from Eqs. 
(36) and (37) 

In the case of metals and semimetals the condition k, (w2)/ 
~ ( w , )  - 1 is satisfied at frequencies o,,, 5 lo9. We usually 
find that w ,,, T 5 1. We can therefore see that for fixed values 
ofE(O,w,) and Ti, (w,), the amplitudes of the emitted com- 
bination harmonics are maximal in the frequency range 
where k, (w,)/x(w,) - 1. 

We shall now consider the case when w2 = 2a , .  In this 
case the emitted difference harmonic is of the same frequen- 
cy as the electromagnetic wave incident on the conductor. It 
follows that a nonlinear correction to the surface impedance 
appears at the frequency w, and we shall denote this correc- 
tion by A{, (w,) .  Using Eq. (35), we obtain 

Obviously, this correction to the impedance A<, (w, ) de- 
pends on the ratio of the phases of the acoustic and electro- 
magnetic waves. 

Ifk,(2wI)/,y(w,)-1 a n d w 1 r 5  1, we find that 

The quantity , ii,, (w,) is the amplitude of the effective 
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potential field acting on electrons and wo is the characteristic 
frequency of the oscillations of electrons trapped by the 
acoustic wave.' In the case of metals and semimetals with 
long mean free paths the parameter w0r may be of the order 
of unity when the energy flux density in the acoustic wave is 
less than 1 W/cm2. It follows from Eq. (41 ) that the condi- 
tion of validity of perturbation theory in terms of the ampli- 
tude of the acoustic wave is ( w , ~ ) ~  < 1. The amplitude of the 
electromagnetic wave can be assumed to be small iP  

where m* is the effective mass. 
It therefore follows that an acoustic wave of moderate 

intensity may have a significant influence on the surface im- 
pedance. One could expect a static field Ho > H,, parallel to 
the surface to reduce considerably this influence in the same 
way as it weakens the nonlinear effects in the absorption of 
sound. ' , I0  The field H,, may be very weak (less than or of the 
order of 1 Oe). 

We considered only the longitudinal sound. We can 
easily show that the current at the combination frequencies 
due to a transverse acoustic wave and a transverse electro- 
magnetic field is purely longitudinal in the case of an isotrop- 
ic dispersion law and, consequently, it does not generate 
electromagnetic radiation (this may happen if a conductor 
has a fourfold or eightfold symmetry axis normal to the sur- 
face). In the case of strong anisotropy the radiation at the 

combination frequencies does not depend strongly on the 
polarization of sound and is of the same order of magnitude 
as in the case of the isotropic dispersion law and longitudinal 
sound investigated by us. 

For the arbitrary ratio of the frequencies w, and w, 
there is no correction linear in the amplitude of sound to the 
surface impedance, but there is obviously a quadratic correc- 
tion, which ceases to be small for w0r 2 1. This effect will be 
considered in a separate communication. 
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