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Precision measurements of the anisotropy of relaxation of helicons were made for single- 
crystal spherical resonators made of indium and of dilute indium-base alloys. It was found that 
on a background anisotropy associated with the topology of the Fermi surface there were 
superimposed additional singularities which depended on the type of impurity and were 
governed by the anisotropic electron-impurity scattering. It was demonstrated that 
measurements of the helicon relaxation anisotropy could be used to investigate electron- 
impurity scattering in metals. 

The transport properties of metals in the case of aniso- 
tropic scattering of conduction electrons by impurity atoms 
do not obey the majority of the approximate rules formulat- 
ed in earlier stages of studies of transport phenomena. For 
example, the scattering anisotropy is used to account for 
deviations from the Kohler rule,' deviations from the 
Matthiessen rule dependent on the nature of impurities (see, 
for example, Ref. 2), and absence in real metals of the Peierls 
exponential fall of the electrical re~istance.~ It therefore fol- 
lows that detailed information on electron-impurity scatter- 
ing and its anisotropy is needed to describe transport phe- 
nomena in real metals. Experimental information on the 
scattering is essential also for the development of a theory of 
the electron-impurity interaction in metals. Unfortunately, 
these phenomena simply signal a possible anisotropy of the 
electron-impurity scattering and it is difficult to extract any 
information on the anisotropy itself from these phenomena. 

At present there is essentially only one experimental 
method for investigating the electron-impurity scattering 
anisotropy of metals and it is based on the de Haas-van Al- 
phen e f f e ~ t . ~  In spite ofmajor capabilities of this method, it is 
subject to a number of serious limitations, which make it 
essential to supplement it by other independent methods. 

We shall report precision measurements of the magne- 
toresistance anisotropy of indium in a strong magnetic field 
by the method of a helicon resonance5 under conditions of 
predominance of the electron-impurity scattering and we 
shall show that a background anisotropy associated with the 
topology of the Fermi surface of indium has superimposed 
additional singularities that depend on the nature of the scat- 
tering impurity and are governed by the electron-impurity 
scattering anisotropy. We shall demonstrate that such mea- 
surements can be used as the basis of a method for investigat- 
ing the anisotropy of the probabilities of electron-impurity 
scattering in metals with a known shape of the Fermi sur- 
face. Therefore, the helicon resonance measurements com- 
plement the data deduced from measurements of the scatter- 
ing anisotropy carried out using the effects governed by 
extremal-path electrons, particularly the de Haas-van Al- 
phen effect. The low sensitivity of the transport relaxation 
time to the scattering by dislocations and small-angie boun- 

daries makes it possible to carry out measurements at low 
concentrations of impurities in the range where the solubil- 
ity is complete. Measurements were made using impurity 
concentrations of loe3 at.% or less. It should be pointed out 
that studies of the electron-impurity scattering in polyvalent 
metals, particularly in indium, with such a low impurity 
concentration are practically impossible if the de Haas-van 
Alphen effect is to be used because of the experimental diffi- 
culties resulting from the Fermi surface topology and from 
the dominant contribution of the small-angle processes of 
the scattering by crystal lattice defects. 

EXPERIMENTAL METHOD AND PREPARATION OF 
SAMPLES 

We used the helicon resonance method in which the 
samples that served as resonators were single-crystal indium 
spheres 10 mm in diameter. This eliminated at least two fac- 
tors that increase the errors in the anisotropy measurements: 
electrical contacts and influence of the shape of a sample. 

These measurements were made at a temperature of 1.3 
K in magnetic fields up to 40 kG. We determined the Q 
factor of the fundamental helicon resonance ( 1,O) in the 
transverse g e ~ m e t r y , ~  related to the components of the resis- 
tance tensor by6 

where the factors a and@ are independent, apart from small 
corrections of the order of (w ,T) - ' ,  of the conductivity or 
magnetic field, and amount to 0.25 and 2.0, respectively. In 
Eq. ( 1 ) we ignored the contribution of the mixed longitudi- 
nal-transverse components of the resistivity, because esti- 
mates indicated that the components and the coefficients in 
front of them were small. 

Our experiments satisfied the condition of the local lim- 
it ( I  g A  z 2d; I, A, and d are, respectively, the mean free path 
of electrons, the helicon wavelength, and the diameter of a 
sample). 

The experimental geometry is shown in Fig. 1. We re- 
corded a signal which was cophasal with the current in an 
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FIG. 1. Experimental geometry: 1) single-crystal spherical resonator; 2 )  
detection (measuring) coil. 

excitation coil. The excitation frequencies were 1-10 Hz. 
Special attention was paid to eliminate acoustohelicon ef- 
fects.'.' Examples of experimental records of helicon reson- 
ances in spherical resonators are given in our earlier paper.h 

A sample was rotated about an axis which coincided 
with the excitation and detection coils to within less than 
0.5". The rotation axis was perpendicular to a static magnetic 
field with an accuracy of at least lo. The selected crystallo- 
graphic axis of a sample was made parallel to the rotation 
axis to within better than 0.5" by an optical (laser) m e t h ~ d . ~  
The precision of the orientation of a sample was checked 
additionally in the course of an experiment by measuring the 
frequencies of the de Haas-van Alphen oscillations. The 
original indium samples of very high purity and with a resis- 
tivity ratiop (300 K)/p(  1.3 K )  -- 500 000 were prepared by 
us using a method similar to that described in Ref. 10. The 
dopants were pure Zn, Ga, Pb, and Bi with distribution coef- 
ficients close to unity. The dopant concentration was select- 
ed to be in the range 10-2-1~-4 at.%, so that, firstly, a 
strong magnetic field condition (w,r$l)  was satisfied in all 
cases and Eq. ( 1 ) was obeyed quite well and, secondly, the 
scattering by the dopant predominated. In reality, all the 
samples satisfied the condition w,r > 15 and the contribu- 
tion made to the helicon relaxation by the scattering on acci- 
dental impurities in the original samples did not exceed 3%. 

The investigated alloys were prepared by a method of 
Ref. 11. The impurity concentration was monitored by 
chemical analysis methods. Special measures were taken to 
ensure that the impurity distribution in the samples was ho- 
mogeneous. Single-crystal spheres were grown in a de- 
mountable quartz mold in which the surfaces were of the 
optical quality. 

EXPERIMENTAL RESULTS 

Figure 2 (curves a-e) showed the normalized, to the 
[001] direction, angular dependences of the helicon relaxa- 
tion in the investigated samples obtained by rotation of a 
static magnetic field in the ( 100) plane. Clearly, in addition 
to common features such as deep minima along the [loo] 
and [OOI] symmetry directions, the anisotropy exhibited 
also significant differences. There were changes in the 
depths and widths of the minima, new kinks appeared in the 

curves, etc. For example, the minimum along the [ 1001 di- 
rection in the case of InGa was much deeper and wider than 
the corresponding minimum in the case of InZn. The angu- 
lar dependences for the InBi and InPb alloys had inflections 
near the [ 101 ] direction, whereas the dependences for InGa 
and InZn showed no such inflections. 

Variation of the impurity concentration altered the an- 
isotropy in a similar manner, i.e., within the limits of the 
experimental error the angular dependences normalized to 
the [OOl] direction coincided. It should be stressed that 
these singularities of the anisotropy were not associated with 
changes in the Fermi surface parameters because of intro- 
duction of impurities. We confirmed this by measuring the 
de Haas-van Alphen oscillation frequencies, which for all 
the investigated samples agreed with high precision with the 
frequencies obtained for the pure samples. This was in agree- 
ment with the data reported for otheer metals, according to 
which impurities present in very low concentrations have a 
negligible effect on the electron energy spectrum. 

The dependences of the helicon relaxation on the impu- 
rity concentration c were linear for all the investigated im- 
purities, which was an indication that we were operating in 
the range in which impurities were fully dissolved. The 
slopes of the impurity concentration dependences were used 
to calculate the values of pH /c, which were proportional to 
the transport scattering cross sections of conduction elec- 
trons. Their values for the [001 ] direction are listed in Table 
I. 

This investigation was carried out at 1.3 K and the con- 
tribution to the anisotropy made by the scattering of elec- 
trons by phonons could be ignored, as deduced from the 
temperature dependences of pH .  When the magnetic field 
was altered by a factor of 2-3, the width of the helicon reso- 
nance line of all the samples and, consequently, the resistiv- 
i t y ~ "  and its anisotropy did not change within the limits of 
the experimental error and saturation was observed for the 
diagonal components of the resistivity tensor. 

The magnetoresistance, i.e., the increase 40 in the resis- 
tivity on application of a strong magnetic field, depended 
both on the direction-in accordance with the anisotropy 
(Fig. 2)-and on the nature of the dissolved impurity. There- 
fore, the Kohler rule was not obeyed by our experimental 
results, although the deviations from this rule were consider- 
ably smaller (Table I )  than in the case of other metallic 
systems. ' 
DISCUSSION OF RESULTS 

In the case of the isotropic electron-impurity scattering 
in the absence of magnetic breakthrough,I2 Eq. ( 1 ) describ- 
ing the Q factor of a helicon resonance can be reduced to the 
following form6: 

where T~~ is the effective relaxation time and @ is a function 
governed by the parameters of the energy spectrum of con- 
duction electrons in the host metal and dependent only on 
the orientation of the static magnetic field H relative to the 
crystallographic axes. This means that in the isotropic scat- 
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FIG. 2. Anisotropy of the helicon relaxation in sin- 
gle-crystal spheres of indium doped with various 
impurities (all curves normalized to the [OOI] di- 
rection): a )  InGa alloy; b) InBi; c )  InZn; d )  InPb; 
e )  commercial indium of the In-000 grade; f )  theo- 
retical curve representing the relaxation anisotropy 
in the case of the isotropic electron-impurity scat- 
tering. 

tering case the angular dependence of Q - ' normalized to 
some direction should be a universal function for all the sam- 
ples. 

Figure 2f shows the angular dependence of Q - ' calcu- 
lated using the known Fermi surface of indium and the iso- 
tropic scattering approximation, including the results of cal- 
culations of the components pik (Ref. 13). This angular 
dependence was used to deduce, with the aid of Eq. ( 2 ) ,  the 
angular dependence of 7,' (Fig. 3) and to determine more 
readily the different contributions of the various impurities 
to the anisotropy. 

The fact that the curves in Figs. 3 and 2 are not similar 
shows that the electron-impurity relaxation time of conduc- 
tion electrons in a magnetic field defined in the usual way 
(see, for example, Ref. 14) is anisotropic and provides defi- 

nite evidence of a strong anisotropy of the probability of the 
electron-impurity scattering in indium. 

The problem of calculation of Q - '  in the case of the 
anisotropic elastic electron-impurity scattering reduces to 
the solution of the Boltzmann transport equation with a col- 
lision integral characterized by a relatively simple form'': 

= - 3 (g -g l )  W (k, k') dk', ( 3  

where g and g' are the values of the nonequilibrium correc- 
tion to the distribution function in the initial ( k )  and final 
(k ')  states of an electron; W(k,kl) is the anisotropic scatter- 
ing probability. However, even in this case the solution of the 
transport equation with an arbitrary form of W(k,kl)  meets 
with well-known difficulties.I5 

*from Ref. 21 

TABLE I. 
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Zo / 0 0 8 l  
Ga 0.365 
Pb 1.345 
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1.72 

A r l n ~  / 10 I nl I n. I r 

1.8i0.2 
1.(5*0.1 
0 . 0  
1 3i.0.1 

0.083 
- 

0.13i 
0.233 

0.001 
- 

O.UU7 
0.017 

0032 
- 

1 
0.23i 

0.006 
- 

0.047 
0099 



FIG. 3. Normalized angular dependences of the quantity r ~ '  
[see Eq. ( 2 )  ] plotted for various impurities in indium. 

In some concrete situations wheng and Ware of special els. In these calculations we used the values of the Blatt cor- 
form the problem can be solved quite simply and the solu- rection given in Ref. 21. It should be pointed out that the 
tions can be expressed in terms of one anisotropic relaxation relationship between the phase shifts was not very sensitive 
time. One of such situations is that when the "incoming" to the Blatt correction, in contrast to the absolute values of 
term in the collision integral vanishes: the shifts and the impurity resistivity calculated from them. 

This increases the reliability of the conclusions which are 
1' = C r ~ ~ ( k ,  kr)  dkl=O. (4 )  drawn below. 

The probability W of the scattering by impurities in 
In addition to the well-studied case when the nonequi- 

simple metals, such as indium, can be written as 
librium correction is localized, for example, in the case of the 
anomalous skin effect," the condition ( 4 )  may be satisfied W(k, k') 
also in a static homogeneous electric field on condition that a, I 

W(k,kl) = W(k, - k') (Ref. 15). This is true, apart from 
the trivial case of the isotropic scattering ( W = const), if for 

1 y, y, exp(iq,)sin qLalm(k)almW(k') 1 ~ ( E K - - E ~ * ) ,  
1 - 0  m--1 

example only the phase shift predominates (in terms of the (6 )  

partial wave method) in the scattering process." The relaxa- 
tion time then depends on the initial state of an electron: 

11% (k) = J w (k, k t )  dkl. ( 5 )  

It therefore follows that the relationship between the 
phase shifts is of considerable importance in the analysis and 
solution of the transport equation. We calculated the phase 
shifts for the scattering of electrons in indium by Pb, Bi, and 
Zn impurities (see Table I)  employing the Friedel-Blatt 
model in which the form of the scattering potential is consid- 
ered to be a spherically symmetric rectangular well, the pa- 
rameters of which are governed by the impurity valence and 
by the lattice deformation in the vicinity of an impurity.'" 
According to several investigations, the model is in good 
agreement with the experimental results such as, for exam- 
ple, measurements of the electrical resistivity of metals with 
impurities of a valence other than those of the host metal.I9 
In several investigations it has also been pointed out that the 
model is much less satisfactory when describing the scatter- 
ing by isovalent impurities (see, for example, Ref. 20), so 
that in calculations of the phase shifts for gallium which is an 
isovalent impurity in indium, we need more rigorous mod- 

where a* and a are the coefficients governed by the host 
metal and independent of the type of impurity; n, are the 
phase shifts. 

Using Eqs. (3)  and (6 ) ,  we can draw certain conclu- 
sions without solving the transport equation. For example, 
in the case of small phase shifts, if the ratios of the shifts 
characterized by different values of Iare the same for a given 
group of impurities, we can say that the anisotropy of pik ,  
and, consequently, of the helicon relaxation due to interac- 
tion with these impurities should be the same, because in this 
case the collision integrals for impurities are simply propor- 
tional to one another. We can see from Table I that this 
situation, in agreement with the adopted model, applies to 
the Bi-Pb impurity pair for which the ratio of the first two 
dominant phase shifts is unity to within 10%. The helicon 
relaxation anisotropy is also similar for these two impurities 
(see Figs. 2 and 3) and this impurity pair satisfies the Kohler 
rule (Table I ) .  

An analysis of the transport equation was made in Ref. 
23 using a collision integral corresponding to the "pure" s 
scattering in aluminum and corrections to the resistivity 
were calculated for the case when thep scattering was "acti- 
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vated." These numerical calculations showed that in the 
case of the s shift, which was twice as large as the p shift, 
there were no qualitative changes due to the allowance for 
thep scattering and the electrical conductivity was described 
by the relaxation time, the anisotropy of which depended 
weakly on the nature of the nonequilibrium correction and 
the value of which was close to that deduced from Eq. (5 ) .  
We can see from Table I that such a situation occurs when 
conduction electrons are scattered by the impurity atoms of 
zinc in indium because in this case the phase shift corre- 
sponding to the s scattering is approximately twice as large 
as thep shift and ten times as large as the d shift. Although 
calculations similar to those for aluminum have not yet been 
carried out for indium, we can use the similarity of the elec- 
tron structures of these two metals to assume that the relaxa- 
tion time of indium given by Eq. ( 5 )  describes at least qual- 
itatively the anisotropy of the resistivity and helicon 
relaxation in the case of scattering by the zinc impurity. In 
the T approximation and in the limit of a strong magnetic 
field the resistivity tensor components are related to the scat- 
tering probability by the following expressions: 

where P, = p, - ( p ,  v)/(v) is the component of the electron 
momentum which oscillates along an orbit; p, is the projec- 
tion of the electron momentum along the magnetic field di- 
rection; u, is the electron velocity in the field direction; ( .  . . ) 
denotes averaging over the angle p on the Larmor orbit; 

T- ' ( k )  = v (p, ,p) is the frequency of collisions with impur- 
ities dependent on the position of an electron on the Fermi 
surface and defined above [see Eq. ( 5 ) 1. 

Equations ( 1 ) and (7 )  with the known parameters of 
the energy spectrum represent an integral equation relating 
the results of measurements of the helicon resonance Q fac- 
tor for different directions of the magnetic field to the aniso- 
tropic collision frequency of conduction electrons v (k ) .  

We are now faced with the inverse problem of finding 
the anisotropic frequency of the electron-impurity collisions 
from the results of measurements of the anisotropy of the 
helicon resonance Q factor in a spherical single-crystal reso- 
nator. 

An account of the theory and method for solving in- 
verse problems, including an analysis of the problems of the 
existence, uniqueness, and stability of the solutions can be 
found, for example, in Ref. 24. We shall adopt the usual 
method of solution by inspection.'' The procedure adopted 
consisted of the following steps: a )  construction of an ap- 
proximate model of v(k,v, ) satisfying the Fermi surface 
symmetry of the metal and dependent on unknown param- 
eters v, ; b) selection of the parameters v, which give the best 
agreement between the anisotropy of the helicon relaxation 
Q - I  (v, ) calculated from Eq. ( 7 )  and that found experimen- 
tally. 

The Fermi surface of indium in the second zone, gov- 
erning the conductivity of indium," can be divided in the 
first approximation into regions of three types (Fig. 4a):  
region I representing hexagonal "cups" where the wave 
functions of electrons differ little from the wave functions of 
free electrons; regions I1 and I11 representing quadrilateral 
"cups" perpendicular to the [OOl] and [ loo]  axes. It is as- 
sumed that electrons are perturbed most strongly in the re- 
gion where the Fermi surface approaches closely the boun- 
daries of the Brillouin zone, i.e., at the edges of the Fermi 
surface near the quadrilateral "cups."'6 

Bearing in mind these points, we can construct the fol- 
lowing approximate model for the anisotropic v: 

v1= const in region I 
v l  exp [- "2 (b2/o)2] vl in region 11, (8 )  
v3 exp [- I L  (1,/0)2] + v1 in region 111, 

where A2 annd A, are the distances of a point on the Fermi 
surface from the edges in regions I1 and 111, respectively; a 
are the angular dimensions of an extremum near the edges. 
An analysis shows that in the case of indium we have 
a = 10-15'. Therefore, bearing in mind that v,  can be calcu- 
lated from the absolute value of Q - I ,  our model is described 
simply by two parameters v, and v,. 

Figure 4b shows the angular dependence of T,', which 
occurs in Eq. ( 2 )  and depends on the magnetic field direc- 
tion, calculated for the InZn alloy using the model described 
by Eq. (8 ) ;  Fig. 4c shows the corresponding anisotropy of 
the frequency of the electron-impurity collisions on central 
sections of the Fermi surface in the ( 110) and (010) planes. 
The collision frequency anisotropy is independent of the 
magnetic field direction and is a characteristic of the alloy. 

We shall now consider how this scattering pattern is in 
agreement with the existing ideas on the symmetry of the 
wave functions of electrons on the Fermi surface of indium. 
According to Ref. 23, the electron states have thep symme- 
try on all the edges of the Fermi surface of indium, apart 
from the edges of the quadrilateral "cups" perpendicular to 
[OOl], where the s-type states are concentrated. Conse- 
quently, in the case of the s scatterers the maximum of the 
probability v ( k )  should be located near such a "cup" and 
the minima should be on the remaining edges. This is in good 
agreement with our results for InZn, which are dominated 
by the s scattering (Table I )  and the probability of the scat- 
tering of electrons by "cups" perpendicular to [OOl] as 
maxima (Fig. 4c). The scattering probability then changes 
severalfold, depending on the position of an electron on the 
Fermi surface. 

The results of the present investigation thus demon- 
strate that it is possible to obtain detailed information on the 
scattering of conduction electrons on impurities from mea- 
surements of helicon relaxation in the range of impurity con- 
centrations where similar investigations by other methods 
are difficult. The precision of such measurements is suffi- 
cient to reveal fine features of the angular dependences of the 
relaxation, which are due to the nature of the scattering. A 
fuller interpretation of the experimental results will require 
further development of the methods for solving the trans- 
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a FIG. 4. a )  Fermi surface of indium. Regions with very differ- 
ent wave functions of electrons are shown. b) Angular distri- 
bution of r;' calculated for the alloy InZn in the case of the 

v ,  rel. units v ,  1013 (sec. at. % ) - I  anisotropic electron-impurity scattering using the param- 
eters given in Fig. 4c. 

0. 05 

I .  ffff 0 

port equation in the case when the electron-impurity scatter- 
ing is anisotropic. 

The authors are grateful to I. B. Levinson and V. T. 
Dolgopolov for discussing the results. 
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